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Stability for a third order Sine-Gordon equation

B. D’ACUNTO – A. D’ANNA

Riassunto: Preliminarmente si studia un problema di valori iniziali e al con-
torno per una equazione non lineare di ordine superiore. Successivamente, si discutono
diverse proprietà di stabilità usando il secondo metodo di Liapunov. Si forniscono e-
sempi tratti dalla teoria dei superconduttori e dalla meccanica quantistica. Inoltre, si
applicano i risultati a un problema di perturbazioni iniziali e al contorno.

Abstract: We first analyze an initial-boundary-value problem for a nonlinear
higher order equation. Then, we discuss several stability properties basing on the Lia-
punov second method. We give examples from the Superconductor Theory and Quantum
Mechanics. Moreover, we apply the results to a problem of initial and boundary pertur-
bations.

1 – Introduction and main results

In this paper we give a detailed analysis of some stability properties

of the third order nonlinear equation

(1.1) Lu = f(x, t, u, ux, uxx, ut), L = −ε∂xxt − c2∂xx + ∂tt,

where the constants ε and c are positive. One of the most interesting
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applications of (1.1) occurs when the nonlinear forcing term reduces to

(1.2) f = −b sin u − aut + Γ(x, t),

with a and b positive constants. In this case, (1.1) represents the perturbed

Sine-Gordon equations which arises in the Superconductor Theory when

one studies the current flow in the Josephson tunnel junctions, see e.g.

[6], [15].

Moreover, when in (1.2) it is b = 0, equation (1.1) is related to a

viscoelastic fluid [18]-[21] or to a linear viscous gas (a = 0) [7], [14].

Some stability properties and wave features for equation (1.1) are

discussed in [9]-[12], [16], [22]. However, in [8] the parabolic aspects of

the operator L are emphasized. This seems to agree with the analysis

developed in [3] where basic properties of the fundamental solution of the

operator L are proved.

In this paper we investigate stability properties for the nonlinear

equation (1.1) basing on the Liapunov second method. We first discuss

an initial-boundary-value problem by means of Volterra integral equa-

tions, Section 2. Then, we consider a Liapunov function depending on

a parameter that plays a flexible role in the different problems we deal

with. In particular, we obtain some useful inequalities and the derivate

along the solution of the strip problem, Section 3.

Under reasonable hypotheses on the forcing term and employing the

definitions of eventual properties due to Yoshizawa [23], we prove a

first theorem concerning the eventual uniform boundedness of the solu-

tions and the eventual quasi uniform asymptotic stability in the large

of the origin. Specializing the hypotheses on f , a theorem of quasi uni-

form asymptotic stability in the large is also obtained. Of course, the

assumption (3.13)1 of Theorem 3.1 is incompatible with the condition

f = −c2uxx + f1(x, t, u, ux, ut).

Next, we discuss the case when the forcing term can be expressed as

sum of two terms: the first depends only on u and the second is given by

ut times a bounded function. Considering a new Liapunov function, we

show the uniform asymptotic stability in the large of the origin.

Finally, the results are applied to some examples: the perturbed Sine-

Gordon equation, an equation of Quantum Mechanics and a problem of

initial and boundary perturbations.
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2 – Existence and uniqueness

We consider the following initial-boundary-value problem

(2.1) Lu = f(x, t, u, ux, uxx, ut), 0 < x < 1, 0 < t < T

where L = −ε∂xxt − c2∂xx + ∂tt and c and ε are positive constants,

u(x, 0) = u0(x), ut(x, 0) = u1(x), 0 < x < 1,(2.2)

u(0, t) = h1(t), u(1, t) = h2(t), 0 < t < T .(2.3)

We discuss the above problem by means of an equivalent integro-differen-

tial equation. We start from the identity

(2.4)
∂ξ(c

2uwξ − c2uξw + εuξwτ − εuwξτ ) + ∂τ (uτw − uwτ − εuξξw) =

= fw − u(εwξξτ − c2wξξ + wττ ),

that follows from (2.1), assuming u(ξ, τ), 0 < ξ < 1, τ > 0, is a smooth

solution of (2.1). Moreover, we take

(2.5) w(x, ξ, t − τ) = θ(x − ξ, t − τ) − θ(x + ξ, t − τ),

with

θ(x, t) = K(|x|, t) +
∞∑

m=1

[K(|x + 2m|, t) + K(|x − 2m|, t)] ,(2.6)

K(|x|, t) =

∫ t

0

e−c2τ/ε

√
πετ

dτ

∫ ∞

0

x2(z+1)

4ετ
e−x2(z+1)2/4ετI0

(
c

ε
2|x|√z

)
dz,(2.7)

where I0 is the modified Bessel function of order 0. The function K rep-

resents the fundamental solution of the linear operator L. It has been de-

termined in [3] where its interesting properties have beeen proved. Since

θ(−x, t) = θ(x, t) and θ(x+2m, t) = θ(x, t), m ∈ N , we consider 0 < x < 2

and note that θ is continuous together its partial derivatives and satisfies

the equation Lθ = 0. Moreover, from the analysis of K developed in [3],

we can deduce that θ is a positive function that has properties similar to

ones of the analogous function θ used for the heat operator, see [1].
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For the data we shall assume that:

(2.8) f(x, t, u, p, q, r) is defined and continuous on the set

{(x, t, u, p, q, r) | 0 ≤ x ≤ 1, 0 ≤ t ≤ T, −∞ < u, p, q, r < ∞, T > 0},

(2.9) there exists a constant µ such that

|f(x, t, u1, p1, q1, r1) − f(x, t, u2, p2, q2, r2)| ≤
≤ µ{|u1 − u2| + |p1 − p2| + |q1 − q2| + |r1 − r2|},

(2.10) u0, u′
0, u

′′
0 , u1 continuous on 0 ≤ x ≤ 1,

(2.11) hi, ḣi, i = 1, 2, continuous on 0 ≤ t ≤ T,

(2.12) h1(0) = u0(0), h2(0) = u0(1), ḣ1(0) = u1(0), ḣ2(0) = u1(1).

By integrating (2.4) on {(ξ, τ) | 0 < ξ < 1, δ < τ < t − δ}, δ > 0

and letting δ → 0, we get the following integral equation for a solution of

(2.1)-(2.3)

u(x, t)=

∫ 1

0

wt(x, ξ, t)u0(ξ)dξ +

∫ 1

0

w(x, ξ, t)[u1(ξ) − εu
′′
0 (ξ)]dξ+

− 2

∫ t

0

h1(τ)(c2 + ε∂t)θx(x, t − τ)dτ+

(2.13)

+ 2

∫ t

0

h2(τ)(c2 + ε∂t)θx(1 − x, t − τ)dτ+

+

∫ t

0

dτ

∫ 1

0

w(x, ξ, t − τ)f(ξ, τ, u(ξ, τ), uξ(ξ, τ), uτ (ξ, τ), uξξ(ξ, τ))dξ.

Viceversa, as Lθ = 0, a solution u of (2.13), under the assumptions

(2.8)-(2.12), satisfies (2.1) and the initial conditions (2.2), as one can

verify basing on (2.5)-(2.7) and using an argument of [3]. Moreover, we

have

2(c2 + ε∂t)θx(x, t) = 2(c2 + ε∂t)Kx(x, t) + R(x, t), 0 < x < 1,
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where, as it easy to verify,

lim
x→0

R(x, t) = 0, lim
x↑1

(c2 + ε∂t)θx(x, t) = 0.

Consequently, since for 0 < x < 1

lim
x↓0

∫ t

0

2(c2 + ε∂t)Kx(x, t − τ)h1(τ)dτ = −h1(t),

see [4], the first boundary condition (2.3)1 is satisfied. Similarly, (2.3)2
can be verified.

In the linear case, when f = f(x, t), (2.13) gives the unique explicit

solution of (2.1)-(2.3). However, in our nonlinear situation, (2.13) is an

integro-differential equation that we shall discuss briefly.

We consider the mapping

T u(x,t) =

∫ 1

0

w(x, ξ, t)u0(ξ)dξ +

∫ 1

0

w(x, ξ, t)[u1(ξ) − εu
′′
0 (ξ)]dξ+

− 2

∫ t

0

h1(τ)(c2 + ε∂t)θx(x, t − τ)dτ+
(2.14)

+ 2

∫ t

0

h2(τ)(c2 + ε∂t)θx(1 − x, t − τ)dτ+

+

∫ t

0

dτ

∫ 1

0

w(x, ξ, t−τ)f(ξ, τ, u(ξ, τ), uξ(ξ, τ), uτ (ξ, τ), uξξ(ξ, τ))dξ

that maps the set B, defined by

B = {u(x, t) | u, ux, ut, uxx ∈ C([0, 1] × [0, T ])},

into

‖u‖T = sup
[0,1]×[0,T ]

|e−λtu(x, t)| + sup
[0,1]×[0,T ]

|e−λtux(x, t)|+

+ sup
[0,1]×[0,T ]

|e−λtut(x, t)| + sup
[0,1]×[0,T ]

|e−λtuxx(x, t)|,

where, λ is a positive constant such that

(2.15) λ > max{1, µ(2 + 1/c + 3/ε)}.
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From (2.14) we get

|T u1(x, t)−T u2(x, t)|e−λt ≤ µ‖u1−u2‖T

∫ t

0

e−λ(t−τ)dτ

∫ 1

0

|w(x, ξ, t−τ)|dξ,

where

∫ 1

0

|w(x, ξ, t − τ)|dξ =

∫ 1

0

|θ(x − ξ, t − τ) − θ(x + ξ, t − τ)|dξ ≤ t − τ.

From here we have,

(2.16) |T u1(x, t) − T u2(x, t)|e−λt ≤ µ

λ2
‖u1 − u2‖T .

Morever, making use of the basic properties of K proved in [3], the fol-

lowing estimations can be deduced:

∫ 1

0

|θx(x − ξ, t − τ) − θx(x + ξ, t − τ)|dξ ≤ 1/c,

∫ 1

0

|θt(x − ξ, t − τ) − θt(x + ξ, t − τ)|dξ ≤ 1,

∫ 1

0

|(∂t − ∂2
x)θ(x − ξ, t − τ) − (∂t − ∂2

x)θ(x + ξ, t − τ)|dξ ≤ 1.

From here one can get results similar to (2.16) related to the partial

derivatives ∂x, ∂t, ∂2
x of (2.14). Thus, we achieve

(2.17) ‖T u1(x, t) − T u2(x, t)‖T ≤ µ

(
1

λ2
+

1

cλ
+

1

λ
+

3

ελ

)
‖u1 − u2‖T .

Under assumption (2.15), inequality (2.17) shows that T is a contraction

of B into itself. Thus we can state the following

Theorem 2.1. Under hypotheses (2.8)-(2.12), the nonlinear prob-

lem (2.1)-(2.3) has a unique smooth solution.
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3 – Stability via the Liapunov direct method

Let us define the set

X = {(x, t) | x ∈]0, 1[, t > t0 ∈ J = [0,∞[}

and consider the problem

(3.1)

{
−εuxxt + utt − c2uxx = f(x, t, u, ux, uxx, ut), (x, t) ∈ X,

u(0, t) = 0, u(1, t) = 0,

with the initial conditions

(3.2) u(x, t0) = u0(x), ut(x, t0) = u1(x).

In the space C2
0 ([0, 1]) × C0([0, 1]) we introduce the distance of an

element (ϕ, ψ) from the origin O = {ϕ = 0, ψ = 0} setting

(3.3) d2(ϕ, ψ) =

∫ 1

0

(ϕ2 + ϕ2
x + ϕ2

xx + ψ2)dx.

For the solution u ∈ C2, ut(·, t) ∈ C of (3.1) we shall write d(u(t), ut(t))

instead of d(u(·, t), ut(·, t)); in particular d(u0, u1) means the initial value

d(u(t0),ut(t0)).

3.1 – Definitions

Definition 3.1. The solutions of (3.1) are eventually uniform-

bounded (e.u.b.) if for any α > 0 there exist an s(α) ≥ 0 and a β(α) > 0

such that if t0 ≥ s(α), d(u0, u1) ≤ α, then d(u(t), ut(t)) < β(α) for all

t ≥ t0. If s(α) = 0 the solutions of (3.1) are uniformly bounded (u.b.).

Definition 3.2. The origin O of C2
0 ([0, 1]) × C0([0, 1]) is eventually

quasi-uniform-asymptotically stable in the large (e.q.u.a.s.l.) for the so-

lutions of (3.1) if for any ε > 0 and α > 0 there exist an s(α) ≥ 0 and a

T (ε, α) > 0 such that if t0 ≥ s(α), d(u0, u1) ≤ α, then d(u(t), ut(t)) < ε

for all t ≥ t0 + T (ε, α). If s(α) = 0, O is said to be quasi-uniform-

asymptotically stable in the large (q.u.a.s.l.) for the solutions of (3.1).
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Definition 3.3. The origin O of C2
0 ([0, 1])×C0([0, 1]) is exponential-

asymptotically stable in the large (ex.a.s.l.) if for any α > 0 there are

two positive constants D(α), C(α) such that if d(u0, u1) ≤ α, then

d(u(t), ut(t)) ≤ D(α) exp [−C(α)(t − t0)] d(u0, u1), ∀t ≥ t0.

3.2 – Preliminary results

Consider the functional

(3.4) V (ϕ, ψ) =
1

2

∫ 1

0

{(εϕxx − ψ)2 + γψ2 + c2(1 + γ)ϕ2
x}dx,

where γ is an arbitrary positive constant. It results

V ≤ 1

2

∫ 1

0

{ε2ϕ2
xx + ψ2 + εϕ2

xx + εψ2 + γψ2 + c2(1 + γ)ϕ2
x}dx;

setting

(3.5) c2
2 = max{c2(1 + γ)/2, ε(1 + ε)/2, (1 + ε + γ)/2},

we derive

(3.6) V (ϕ, ψ) ≤ c2
2d

2(ϕ, ψ).

On the other hand, it is known that

(3.7) ϕ(0) = 0 =⇒
∫ 1

0

ϕ2
x(x)dx ≥

∫ 1

0

ϕ2(x)dx,

and [5]

(3.8) ϕ(0) = 0, ϕ(1) = 0 =⇒
∫ 1

0

ϕ2
xx(x)dx ≥

∫ 1

0

ϕ2
x(x)dx.

As it is also

V (ϕ, ψ) =
1

2

∫ 1

0

{(εϕxx/2 − ψ)
2
+ (εϕxx − ψ)2/2 + ε2ϕ2

xx/4+

+ (γ − 1/2)ψ2 + c2(1 + γ)ϕ2
x}dx,
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from (3.7),(3.8) we get

V (ϕ, ψ) ≥ 1

2

∫ 1

0

{
ε2

8
ϕ2

xx + c2(1 + γ)ϕ2
x +

ε2

8
ϕ2 +

(
γ − 1

2

)
ψ2

}
dx

and hence, if

(3.9) c2
1 = min{ε2/16, c2(1 + γ)/2, (γ − 1/2)/2}, (γ > 1/2),

it results

(3.10) V (ϕ, ψ) ≥ c2
1d

2(ϕ, ψ).

Along a solution of (3.1)

V̇ (u, ut) =

∫ 1

0

{(εuxxt − utt)(εuxx − ut) + γututt + c2(1 + γ)uxuxt}dx;

integrating by parts and considering (3.1), it results

(3.11) V̇ =

∫ 1

0

{−εc2u2
xx − εγu2

xt + (1 + γ)fut − εfuxx}dx.

3.3 – Stability results for a general forcing term

Now we are able to give some stability properties concerning prob-

lem (3.1).

Theorem 3.1. Suppose that for the function f of (3.1) there exists

a positive constant M, and two continuous functions gi(t, η) ≥ 0, i =

1, 2, t ∈ J, η > 0, such that

(3.12)

d(ϕ, ψ) ≤ η =⇒ f2(x, t, ϕ, ϕx, ϕxx, ψ) ≤
≤ M(ϕ2 + ϕ2

x + ϕ2
xx + ψ2)+

+ [(ε/2c2) + 2/ε]−1[g1(t, η) + g2(t, η)].

Moreover, admit

εc2

6
− M

(
ε

2c2
+

2

ε

)
> 0 ,

ε

2
− M

(
ε

2c2
+

2

ε

)
> 0 ,(3.13)

g1(t, η) → 0 as t → +∞,

∫ ∞

0

g2(t, η)dt < +∞, η > 0.(3.14)

Then the solution of (3.1) are e.u.b. and the origin O is e.q.u.a.s.l.
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Proof. Choose in (3.4) γ = 1. From (3.11) we get

V̇ =

∫ 1

0

{
−εc2

2
u2

xx − εu2
xt +

ε

2
u2

t − ε

2
(cuxx + f/c)

2
+

−ε

2
(ut − 2f/ε)

2
+

(
ε

2c2
+

2

ε

)
f2

}
dx

and hence, owing to (3.7), (3.8), (3.12), if d(u, ut) ≤ η then

V̇ (u, ut) ≤ −
∫ 1

0

{[
εc2

6
−

(
ε

2c2
+

2

ε

)
M

] (
u2 + u2

x + u2
xx

)
+

+

[
ε

2
−

(
ε

2c2
+

2

ε

)
M

]
u2

t

}
dx + g1(t, η) + g2(t, η).

Considering (3.13), we obtain the positive constant

(3.15) c2
3 = min

{
εc2

6
−

(
ε

2c2
+

2

ε

)
M,

ε

2
−

(
ε

2c2
+

2

ε

)
M

}
,

and consequently the previous inequality becomes

(3.16) V̇ (u, ut) ≤ −c2
3d

2(u, ut) + g1(t, η) + g2(t, η).

Exploiting (3.16) and (3.6), considered for γ = 1, we finally obtain that,

if d(u, ut) ≤ η then

(3.17) V̇ (u, ut) ≤ −(c3/c2)
2V (u, ut) + g1(t, η) + g2(t, η).

For each α > 0 we choose β(α) =
√

3αc2/c1, where c2 and c1 are defined

by (3.5) and (3.9) when γ = 1. Now, employing an argument of [23], we

consider the solution u(x, t) of (3.1) satisfying initial conditions (3.2) such

that d(u0, u1) ≤ α. As long as d(u(t), ut(t)) ≤ β(α) we draw from (3.17)

(3.18) V̇ (u(t), ut(t)) ≤ −hV (u(t), ut(t))+g1(t, β) + g2(t, β), h = (c3/c2)
2.

Let us indicate by ω(t) the solution of

(3.19) ω̇(t) = −hω(t) + g1(t, β) + g2(t, β), ω(t0) = V (u0, u1);
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it results

ω(t) = V (u0, u1)e
−h(t−t0) + e−ht

∫ t

t0

ehs[g1(s, β) + g2(s, β)]ds.

By (3.6) we derive

V (u0, u1) ≤ c2
2α

2.

From (3.14)1 we obtain a T1(α) > 0 such that for t ≥ t0 ≥ T1(α) it is

g1(t, β) < c2
3α

2; therefore,

e−ht

∫ t

t0

ehsg1(s, β)ds < c2
2α

2.

From (3.14)2 we have a T2(α) > 0 such that
∫ ∞

t0

e−h(t−s)g2(s, β)ds < c2
2α

2, for t0 ≥ T2(α).

Thus, for the solution ω(t) we get

ω(t) < 3c2
2α

2.

On the other hand, employing the comparison principle and (3.10) when

γ = 1, the condition

d(u(t), ut(t)) < β(α)

for

t ≥ t0 ≥ s(α) = max{T1(α), T2(α)}
is proved. So the solutions of (3.1) are e.u.b.

Now (3.18) can be considered for t ≥ t0 ≥ s(α). Therefore, applying

Lemma 24.3 of [23] to the solution ω of (3.19), for every ρ > 0 and α > 0

there is a T (ρ, α) > 0 such that if d(u0, u1) ≤ α, then d(u(t), ut(t)) < ρ

for all t ≥ t0 + T and hence the set {u = 0, ut = 0} is e.q.u.a.s.l.

As a particular case of the previous theorem we obtain

Theorem3.2. Under the assumptions of Theorem 3.1 then:

A) if in (3.12) the functions gi = gi(t) ∀t ∈ J and i = 1, 2 are indipendent

of η, the solutions of (3.1) are e.u.b. and moreover the set {u =

0, ut = 0} is q.u.a.s.l.;

B) if in (3.12) the functions gi(t) ≡ 0 ∀t ∈ J and i = 1, 2, the origin O

is ex.a.s.l.
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Proof. If A) holds, formula (3.17) becomes

V̇ (u, ut) ≤ −hV (u, ut) + g1(t) + g2(t).

for each value of d(u, ut). Therefore, the solutions of (3.1) are e.u.b.;

moreover equation (3.19) holds for every t0 ∈ J and it is independent

of β(α). Thus, Lemma 24.3 of [23] implies the set {u = 0, ut = 0} is

q.u.a.s.l.

If B) is satisfied the result is straitght-forward.

3.4 – Stability for a special f

Now we specialize the function f of (3.1) as F (u)−a(x,t,u,ux,ut,uxx)ut,

where F ∈ C(R) and a ∈ C(]0, 1[×
◦
J × R4

), and examine the particular

problem

(3.20)

{
Lu = F (u) − a(x, t, u, ux, ut, uxx)ut, (x, t) ∈ X,

u(0, t) = 0, u(1, t) = 0,

with initial conditions (3.2).

We add a new term to the functional defined by (3.4) changing V

into

(3.21)

W (ϕ, ψ) =
1

2

∫ 1

0

{(εϕxx − ψ)2 + γψ2 + c2(1 + γ)ϕ2
x}dx+

−
∫ 1

0

{
(1 + γ)

∫ ϕ

0

F (z)dz

}
dx

and consequently exploiting (3.11) we obtain immediately

Ẇ (u, ut) = −
∫ 1

0

{c2εu2
xx + εγu2

xt + a(1 + γ)u2
t + εF (u)uxx − εauxxut}dx.

From this one considering inequalities (3.7), (3.8) it follows

(3.22)
Ẇ (u, ut) ≤−

∫ 1

0

{(3/4)c2εu2
xx + [εγ + a(1 + γ − εa/c2)]u2

t + εFuxx+

+ ε[(c/2)uxx − (a/c)ut]
2}dx.
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Now we are able to show the following

Theorem 3.3. Suppose that F (u) ∈ C1(R), F (0) = 0, and there

exists a positive constant K such that

(3.23) Fu ≤ K < 3c2/4.

Moreover, admit the function a satisfies

(3.24) inf a > −ε, sup a < +∞.

Then the set {u = 0, ut = 0} is u.a.s.l.

Proof. Condition F (0) = 0 considered together with (3.23) implies

∫ ϕ

0

F (z)dz ≤ 3c2ϕ2/8

and therefore, employing (3.7) too, from (3.21) we get

W (ϕ, ψ) ≥ 1

2

∫ 1

0

{(εϕxx − 2ψ)2/4 + (εϕxx − ψ)2/2 + (γ − 1/2)ψ2+

+ c2(1 + γ)ϕ2/4 + ε2(ϕ2
xx + ϕ2

x)/8}dx

and hence if

(3.25) k2
1 = min{ε2/16, c2(1 + γ)/8, (2γ − 1)/4}, γ > 1/2,

it results

(3.26) W (ϕ, ψ) ≥ k2
1d

2(ϕ, ψ).

Now, using an argument employed in [2] and exploiting condition

F (0) = 0, we obtain

∣∣∣∣
∫ ϕ

0

F (z)dz

∣∣∣∣ =

∣∣∣∣
∫ ϕ

0

Fζ(ζ)(ϕ − ζ)dζ

∣∣∣∣ .

Consequently, setting

m(|ϕ|) = max{|Fζ(ζ)| : |ζ| ≤ |ϕ|}
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we have

(3.27)

∣∣∣∣
∫ ϕ

0

F (z)dz

∣∣∣∣ ≤ m(|ϕ|)ϕ2/2.

Therefore, considering (3.21) and using (3.5) and (3.27), it results

(3.28) W (ϕ, ψ) ≤ c2
2d

2(ϕ, ψ) + (1 + γ)/2

∫ 1

0

m(|ϕ|)ϕ2dx.

Finally, because ϕ(0) = 0 implies ϕ2 ≤ d2(ϕ, ψ), (3.28) gives

(3.29) W (ϕ, ψ) ≤ c2
2[1 + m(d(ϕ, ψ))]d2(ϕ, ψ).

Now, we refer to (3.22) integrating by parts the third term. Ex-

ploiting hypotheses F (0) = 0 and (3.23), inequality (3.8) and boundary

conditions (3.20)2, we deduce

Ẇ (u(t), ut(t)) ≤ −
∫ 1

0

{(3/4)εc2(1 − λ)u2
xx + ε(3c2λ/4 − K)u2

x+

+ [εγ + a(1 + γ − εa/c2)]u2
t}dx,

where λ ∈]0, 1[ is a constant choosed in such a way that 3c2λ/4 − K > 0.

Owing to (3.24) we assume

γ = [1 + sup |a(aε/c2 − 1)|]/(ε + inf a) +
1

2

and observe

Ẇ (u, ut) ≤ −
∫ 1

0

{(3/4)εc2(1 − λ)u2
xx + ε(3c2λ/4 − K)u2

x + u2
t}dx.

Finally, considering (3.7) and (3.8), it results

(3.30) Ẇ (u(t), ut(t)) ≤ −k2
3d

2(u(t), ut(t))

where

(3.31) k2
3 = min{3εc2(1 − λ)8, ε(3c2λ/4 − K), 1}.
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Using (3.26), (3.29), (3.30) we obtain

(3.32) d(u(t), ut(t)) < (c2/k1)[1 + m(d(u0, u1))]d(u0, u1).

Moreover, if α is a positive constant, we set

β(α) = (c2/k1)[1 + m(α)]α

and hence from (3.32) we derive

(3.33) d(u(t), ut(t)) < β(α) for d(u0, u1) ≤ α and t ≥ t0

and therefore the uniform boundness of the solutions of problem (3.20)

is shown.

Referring to (3.29), for the solutions of (3.20) satisfying (3.33), we

get

W (u(t), ut(t)) ≤ c2
2[1 + m(β(α))]d2(u(t), ut(t))

and therefore (3.30) implies

(3.34) Ẇ (u(t), ut(t)) < −C(α)W (u(t), ut(t))

where C(α) = k2
3/c2

2[1 + m(β(α))]. Considering (3.34) jointly to (3.29)

we check Definition 2.3 is fulfilled.

4 – Examples

4.1 – We consider equation (3.20)1 when

F (u) = −b sinu, b = constant, a = 0.

If |b| < 3c2/4, all the hypotheses of Theorem 3.3 are fulfilled and therefore

the set {u = 0, ut = 0} is u.a.s.l. with respect to the metric d.

4.2 – We can employ Theorem 3.3 to the equation (3.20)1 when

F (u) = −K|u|pu, p = constant > 0, a = 0.

If K is a positive constant, we get the u.a.s.l. of the set {u = 0, ut = 0}.
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4.3 – Now we examine the initial-boundary-value problem

(4.1)





Lv = F (v), (x, t) ∈ X,

v(0, t) = h1(t), v(1, t) = h2(t), t > t0 ∈ J,

v(x, t0) = v0(x), vt(x, t0) = v1(x), x ∈]0, 1[,

where v0 ∈ C2([0, 1]), v1 ∈ C([0, 1]), hi ∈ C2([0, 1]), i = 1, 2, with the

compatibility conditions

(4.2)

{
v0(0) = h1(t0), v0(1) = h2(t0)

v1(0) = ḣ1(t0), v1(1) = ḣ2(t0).

Setting

(4.3) p(x, t) = (1 − x)h1(t) + xh2(t), x ∈]0, 1[, t ∈ J,

we consider the function

(4.4) v(x, t) = u(x, t) + p(x, t).

Using (4.4) we map the problem (4.1)-(4.2) into the problem (3.1)-(3.2)

where

(4.5) f = F (u + p) − ptt.

Assume the function F satisfies

(4.6) |F (v)| ≤ K|v|

for some positive constant K. Therefore

f2 ≤ Mu2 + G1(t) + G2(t)

where

M = 4K2, G1(t) = 8K2
(
h2

1(t) + h2
2(t)

)
, G2(t) = 4

(
ḧ2

1(t) + ḧ2
2(t)

)
.
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Thus, if

(4.7)
εc2

6
− 4K2

(
ε

2c2
+

2

ε

)
> 0,

ε

2
− 4K2

(
ε

2c2
+

2

ε

)
> 0,

and for i = 1, 2

(4.8) hi(t) → 0 as t → +∞,

(4.9) ḧi(t) → 0 as t → +∞ or ḧi ∈ L2(J),

the results of Theorem 3.2 hold.

As regard to the problem (4.1)-(4.2) if in addition to (4.6)-(4.9) it is

ḣi(t) → 0 as t → +∞, i = 1, 2,

from (4.3)-(4.4) we have the solutions of (4.1)-(4.2) are bounded and

moreover d(v(t), vt(t)) → 0 as t → +∞. These results are verified in a

uniform sense both with respect to the initial and boundary conditions if

we choose the boundary perturbations hi(t) satisfying

∑

i

(
|hi(t)| + |ḣi(t)|

)
≤ h(t) → 0, as t → +∞,

∑

i

|ḧi(t)| ≤ H(t)

and ∑

i

|ḧi(t)| ≤ H(t) → 0, as t → +∞,

or ∫ ∞

0

∑

i

|ḧi(t)|2dt ≤
∫ ∞

0

H(t)2dt < +∞.
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