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Second order nonautonomous systems

with symmetric potential changing sign

F. ANTONACCI – P. MAGRONE

Riassunto: In questo lavoro si studia il problema della molteplicità di soluzioni
periodiche per una classe di sistemi hamiltoniani non autonomi del secondo ordine
aventi potenziale di segno variabile. Nel caso particolare in cui la parte quadratica del
potenziale è definita negativa, si ottiene anche un risultato di soluzioni subarmoniche
e omocline. La dimostrazione dei risultati di molteplicità si basa sul metodo della
categoria di Ljusternik e Schnirelmann; le subarmoniche sono ottenute come punti di
minimo del funzionale vincolati ad una opportuna varietà, e le omocline si ottengono
con un procedimento di limite a partire dalla successione di subarmoniche.

Abstract: In this paper we deal with the problem of multiplicity of periodic solu-
tions for a class of nonautonomous second order Hamiltonian systems, having indefinite
potential. In the particular case that the quadratic part of the potential is negative def-
inite, one reaches a result of subharmonic and homoclinic solutions. The proof of the
multiplicity results is based on the Ljusternik-Schnirelmam category theory; the sub-
harmonic solutions are obtained through the constrained minima of the functional to a
suitable manifold, and the homoclinics are obtained with a limit procedure starting by
the sequence of subharmonics.

1 – Introduzione

Let us consider the following second order Hamiltonian system

(P) ẍ + A(t)x + b(t)V ′(x) = 0
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where A(t) is a continuous T -periodic (for some fixed T > 0) matrix

valued function, b(t) is a continuous T -periodic real function and V ∈
C2(IRN , IR) . Recently many authors have studied the problem of ex-

istence and multiplicity for periodic and subharmonic solutions of (P)

either in case that the quadratic term is identically zero (cfr. [5], [7], [9],

[10]) or in case that it is definite in sign (see, e.g., [3], [6], [8], etc.). How-

ever there is no general result when A(t) is indefinite in sign: as far as

the authors know, the only existence results have been stated in [4], in

case that the matrix satisfies the integral condition

(1.1)

∫ T

0

〈A(t)ξ, ξ〉dt > 0 ∀ξ ∈ IRN , |ξ| = 1

and b(t) is such that
∫ T

0 b(t) dt > 0 .

In this paper we deal with a potential indefinite in sign that satisfies

suitable evennes conditions. Working in H1
0 , we prove a multiplicity result

for T -periodic solutions of (P). In the particular case that A(t) is nega-

tive definite, we also find the existence of subharmonic solutions, which

have some symmetry properties, and of an homoclinic solution, obtained

by a limit procedure starting from a suitable translation of these subhar-

monics. The techniques of proofs are based on the consideration of the

Nehari’ s manifold M , suitably connected to the functional f associated

with problem (P) (see also [2], where the manifold M was used for the

first time in the variational approach to Hamiltonian systems). Precisely

the symmetry assumptions on the potential allow to use some constrained

minimum arguments and a result of the Ljusternik-Schnirelmann category

theory, in order to find periodic solutions, subharmonic and homoclinic

solutions to (P), starting by the critical points of f on M .

2 – The main results

Let us consider the following second order Hamiltonian system in IRN

(P) ẍ + A(t)x + b(t)V ′(x) = 0

where

i) A(t) is a symmetric continuous T -periodic N × N matrix valued

function;



[3] Second order nonautonomous systems etc. 369

ii) b(t) is a continuous T -periodic real function such that:

(b.1) ∃t0 ∈ [0, T ] such that b(t0) > 0 ;

iii) V ∈ C2(IRN , IR) and there exists a constant β > 2 such that:

(V.1) ∃a1 > 0 : V (x) ≥ a1|x|β ∀x ∈ IRN

(V.2) ∃a2 > 0 : |V ′(x)| ≤ a2|x|β−1 ∀x ∈ IRN

(V.3) V ′(x) · x ≥ βV (x) ∀x ∈ IRN

(V.4) V ′′(x)x · x ≥ (β − 1)V ′(x) · x ∀x ∈ IRN

(V.5) V (x) = V (−x) ∀x ∈ IRN .

Remark 2.1. It is well known that any given square symmetric

matrix A(t) can be written as the sum of two matrices, i.e.

(2.2) A = A+ + A−

where A+ and A− are positive semidefinite and negative semidefinite re-

spectively, more precisely the positive (negative) eigenvalues of A coincide

with the eigenvalues of A+ (A−) different from zero.

For any fixed t ∈ IR let us put

(2.3) Λ+ = max
t∈[0,T ]

(
max

i
λ+

i (t)

) (
Λ− = max

t∈[0,T ]

(
max

i
λ−

i (t)

))

where λ+
i (t) (λ−

i (t)) are the eigenvalues of the matrix A+(t) (resp. A−(t))

( i = 1, . . . , N ) for T ∈ [0, T ] (observe that, in general, we can’t assure

that Λ+ and Λ− are different from zero). We will prove the following

theorem:

Theorem 2.4. Let b(t) ∈ C0([0, T ], IR) be a T -periodic function

satisfying (b.1), A(t) = [aij(t)] be a N × N symmetric matrix, where aij

is a T -periodic continuous function, for i, j = 1, . . . , n, and such that:

(A.1) Λ+ <
4

T 2

where Λ+ is given by (2.2) and V ∈ C2 (IRN , IR) satisfy (V.1)-(V.5).
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If we assume that b(t), A(t) and V (x) verify the following further

conditions:

(b.2) b(t) = b(T − t) ∀ t ∈
[
0,

T

2

]
,

(A.2) A(t) = A(T − t) ∀t ∈
[
0,

T

2

]
;

(V.6) B− [V ′(x) · x − βV (x)] ≤ c|x|2, ∀x ∈ IRN

and

(V.7) B−[V ′′(x)x · x − (β − 1)V ′(x) · x] ≤ d |x|2 ∀x ∈ IRN

where the positive constants c and d are such that

(2.5) max{2c, d} < (β − 2)

(
1 − T 2

4
Λ+

)
4

T 2
,

and

B− = max
t∈[0,T ]

b−(t) with b−(t) = − min{ 0, b(t) } .

Then there exist infinitely many pairs of distinct T -periodic solutions x(t)

of (P), which verifiy

(2.6) x

(
t +

T

2

)
= −x

(
T

2
− t

)
for any t ∈

[
0,

T

2

]
.

On the other hand, substituting (b.2), (A.2) and (2.5) respectively with

(b.2′) b(t) = b
(
t +

T

2

)
∀ t ∈

[
0,

T

2

]
,

(A.2′) A(t) = A
(
t +

T

2

)
∀ t ∈

[
0,

T

2

]
,
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(2.7) max{2c, d} < (β − 2)
(
1 − T 2

4π
Λ+

)4π

T 2
,

the solutions x(t) verify another kind of property, i.e.

(2.8) x(t) = −x
(
t +

T

2

)
∀ t ∈

[
0,

T

2

]
.

Remark 2.9. Let us observe that condition (2.5) implies (2.7), but

they must be considered separately because they come from different

symmetry conditions.

Remark 2.10. If A(t) ≡ 0, Theorem 2.1 yields Theorem 3 of [7] as

a particular case.

Starting from the critical points of the functional f : H1
0

[
0, T

2

] >−→ IR

defined by

f(x) =
1

2

∫ T
2

0

|ẋ|2 − 1

2

∫ T
2

0

〈A(t)x, x〉 −
∫ T

2

0

b(t)V (x),

we get the solutions of the problem

(P′)





ẍ + A(t)x + b(t)V ′(x) = 0

x(0) = x
(T

2

)
= 0 .

Precisely, putting

x̃(t) =





x(t) t ∈
[
0,

T

2

]

−x(T − t) t ∈
[
T

2
, T

]

one can easily check that if x solves (P′), x̃ solves (P). Observe that the

expression

‖x‖A =

[∫ T/2

0

|ẋ|2 −
∫ T/2

0

〈A−(t)x, x〉
] 1

2

∀x ∈ H1
0 = H1

0

([
0,

T

2

]
; IRN

)
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defines a norm in H1
0 which is equivalent to the usual norm

‖x‖H1
0

=

(∫ T
2

0

|ẋ|2
) 1

2

.

Thus the functional f can be written in the form:

f(x) =
1

2
‖x‖2

A − 1

2

∫ T
2

0

〈A+(t)x, x〉 −
∫ T

2

0

b(t)V (x).

On the other hand, if we consider the space H1
0,k = H1

0 ([0, kT ]; IRN)

endowed with the norm of H1
k = { x ∈ H1(0, kT ; IRN) : x(0) = x(kT )},

provided Λ− defined in (2.3) is strictly negative, we obtain that

(2.11) ‖x‖L2
k

≤ 1

λ
‖x‖A, with λ = min{1, −Λ−},

where ‖ · ‖L2
k

is the usual L2([0, kT ])-norm. Taking these notations one

can state the following existence result for subharmonic solutions:

Theorem 2.12. Let b(t) ∈ C0([0, T ], IR) be a T -periodic real func-

tion satisfying (b.1) and (b.2) and A(t) ≡ A−(t), with A−(t) negative

definite, satisfying (A.2). Moreover let V ∈ C2(IRN , IR) verify (V.1)-

(V.7) where

max{2c, d} < (β − 2)λ ,

with λ given by (2.11). Then for all k ∈ IN there exists a kT -periodic

solution xk, having minimal period kT and verifying

xk

(
t +

kT

2

)
= −xk

(
kT

2
− t

)
for any t ∈

[
0,

kT

2

]
.

In particular, for each couple of numbers k, h, with k 6= h, the solutions

xh and xk are geometrically distinct.

Starting from Theorem 2.12, the following result holds:

Theorem 2.13. Under the same hypothesis of Theorem 2.12 there

exists at least one homoclinic solution of (P), i.e. a nontrivial solution

x ∈ C2(IR, IRN) of (P) which satisfies

lim
|t|→+∞

x(t) = 0 and lim
|t|→+∞

ẋ(t) = 0.
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3 – Proof of the Theorems

Theorems 2.4 is obtained as an application of the following proposi-

tion, based on the theory of Ljusternik-Schnirelmann category:

Proposition 3.1 [1]. Let X be a closed C1 manifold of a Hilbert

space E, symmetric with respect to the origin 0 of E and such that 0 /∈ X.

Let there exist a closed infinite dimensional subspace Ẽ of E such that

the manifold X̃ = X ∩ Ẽ is homeomorphic to the unit sphere S∞ of Ẽ,

through an even homeomorphism. Suppose I ∈ C1(X, IR) satisfies the

Palais-Smale condition and

(I.1) I is bounded from below on X;

(I.2) I is even.

Then I has infinitely many pairs of critical points.

Proof of Theorem 2.4. Let us introduce the set

(3.2) M =

{
x ∈ H1

0 \ {0} : ‖x‖2
A =

∫ T
2

0

〈A+(t)x, x〉 +

∫ T
2

0

b(t)V ′(x) · x

}
.

Taking

h(x) = ‖x‖2
A −

∫ T
2

0

〈A+(t)x, x〉 −
∫ T

2

0

b(t)V ′(x) · x,

we can write

M =
{
x ∈ H1

0 \ {0} : h(x) = 0
}

.

Let us prove that M has the following properties:

(m.1) M 6= ∅
(m.2) M is a closed C1-manifold.

Indeed if one considers an element x ∈ H1
0 \ {0}, with ‖x‖A = 1 such

that supp(x) ⊂ supp(b+), (observe that (b.1) implies supp(b+) 6= ∅),

then from (V.2) it follows that for any constant r > 0

h(rx) ≥ r2‖x‖2
A − Λ+r2‖x‖2

L2 − a2r
β

∫ T
2

0

b+(t)|x|β.
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Putting B+ = max
t∈[0,T ]

b+(t), by the continuous embedding of H1
0 in Lβ we

obtain

(3.3) h(rx) ≥ r2

(
1 − Λ+ T 2

4

)
− a2B

+rβ · const .

As (A.1) holds and β > 2, h(rx) ≥ 0 for r sufficiently small.

On the other hand, by (V.1), (V.3) and the positivity property of

A+, we have:

h(rx) ≤ r2 − β

∫ T
2

0

b+(t)V (rx) ≤ r2 − a1βrβ

∫ T
2

0

b+(t)|x|β := α.

As β > 2, for r sufficiently large, α is negative, so h(rx) ≤ 0, and, together

with (3.3), this proves (m.1). Let us show now (m.2). By the continuous

embedding of H1
0 in Lβ and (V.2), for any x in M we have:

0 = ‖x‖2
A −

∫ T
2

0

〈A+(t)x, x〉 −
∫ T

2

0

b(t)V ′(x) · x ≥

≥ ‖x‖2
A

(
1 − Λ+ T 2

4

)
− const · B+a2‖x‖β

A.

So

(3.4) ‖x‖β−2
A ≥

(
1 − Λ+ T 2

4

)
· const · 1

a2B+
:= γ,

where γ is positive as (A.1) holds.

Moreover (V.4) and (V.7) imply that, for any x ∈ M :

(3.5)

〈h′(x), x〉 = ‖x‖2
A −

∫ T
2

0

〈A+(t)x, x〉 −
∫ T

2

0

b(t)V ′′(x)x · x ≤

≤ ‖x‖2
A −

∫ T
2

0

〈A+(t)x, x〉 − (β − 1)

∫ T
2

0

b+(t)V ′(x) · x+

+

∫ T
2

0

b−(t)V ′′(x)x·x ≤
[
2−β+ (β−2)Λ+ T 2

4
+d

T 2

4

]
‖x‖2

A.
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Therefore, by (2.5), one has 〈h′(x), x〉 ≤ c1‖x‖2
A, with

c1 =

[
2 − β + (β − 2)Λ+ T 2

4
+ d

T 2

4

]
< 0,

so (3.4) and (3.5) imply the C1-regularity of M.

At this point, taking X = M and Ẽ = {u ∈ E: supp(u) ⊂ supp(b+)},

we can apply Proposition 3.1 to the functional f after verifying that it

is bounded from below and verifies Palais-Smale condition on M . If we

denote with fM the restriction of f to M , (V.3) and (V.6) imply that,

for any x ∈ M,

(3.6)

fM(x)=
1

2
‖x‖2

A− 1

2

∫ T
2

0

〈A+(t)x, x〉−
∫ T

2

0

b(t)V (x)≥

≥ 1

2
‖x‖2

A− 1

2

∫ T
2

0

〈A+(t)x, x〉+

− 1

β

∫ T
2

0

b(t)V ′(x) · x − 1

β

∫ T
2

0

B−[V ′(x) · x − βV (x)]≥

≥ β − 2

2β
‖x‖2

A−β − 2

2β

∫ T
2

0

〈A+(t)x, x〉− c

β

T 2

4
‖x‖2

A ≥

≥
[
β − 2

2β

(
1 − Λ+ T 2

4

)
− c

β

T 2

4

]
‖x‖2

A,

where, by hypothesis (2.5),

c < (β − 2)

(
1 − Λ+ T 2

4

)
2

T 2
.

Therefore

(3.7) fM(x) ≥ cost‖x‖2
A > 0

i.e fM is coercive; in particular it is bounded from below.

Moreover, arguing as in [7], we can state that fM verifies Palais-Smale

condition, so we obtain the first statement of the theorem. For the second
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part we will search the solutions of (P) in the space

H1
odd =

{
v ∈ H1(0, T ; IRN): v =

∑

k=2h−1

v
(1)
k cos

(2kπt

T

)
+ v

(2)
k sin

(
2kπt

T

)
,

v
(1)
k , v

(2)
k ∈ IRN , h ∈ ZZ

}
.

In fact the functions belonging to H1
odd are T -periodic, T

2
antiperiodic (i.e.

satisfy a property of type (2.8)), with zero mean and verify the Wirtinger

inequality.

Moreover they don’t necessarily satisfy (2.6), but in some particular

cases, if b, A verify a suitable condition of symmetry, the solutions found

in H1
odd could concide with those found in H1

0 .

Arguing as in the proof of Theorem 2.1, we can apply Proposition 3.1

and find out that there exist infinitely many pairs of distinct T -periodic

solutions in H1
odd. In order to end the proof we need to show that the

critical points of the functional f on H1
odd are critical on H1

T too. Indeed,

let us consider the decomposition of H1
T given by

H1
T = H1

odd ⊕ H1
even

where H1
even is the subspace of H1

T of functions which have only even terms

in their Fourier expantion. Since (V.5) implies that V ′(x) = −V ′(−x) it

is easy to check that, if x ∈ H1
odd,

〈f ′(x), y〉 = 0 ∀y ∈ H1
even.

In order to prove Theorem 2.12 we will use a standard minimizing

argument, i.e. the following

Proposition 3.8. Let X be a reflexive space and K ⊂ X a closed

subset. Let F be a continuous functional on X, bounded from below on

K and satisfying the Palais-Smale condition on K. Then F admits a

minimum value on K.

Proof of Theorem 2.12. Putting

Mk =

{
x ∈ H1

0

(
0,

kT

2
; IRn

)
\ {0} : ‖x‖2

A +

∫ kT
2

0

b(t)V ′(x) · x = 0

}
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we can verify that F = fMk
is bounded from below and satisfies the Palais-

Smale condition on Mk. Moreover, since the H1-convergence implies the

uniform convergence we can take the limit under the integral sign and

obtain that fMk
is continuous. So we can apply Proposition 3.8 and find

out that fMk
has a minimum uk.

Now one has to show that the solution corresponding to uk has min-

imal period kT. Suppose, by contradiction, that for some h ∈ IN , h ≥ 2,
kT
h

is the minimal period of xk. Then there would exists t0 ∈ [
0, kT

2

]
such

that xk(t0) = 0.

If we consider the function

xk(t) =





xk(t) t ∈ [0, t0]

0 t ∈
[
t0,

kT

2

]
,

arguing as in [7],it is easy to verify that xk belongs to Mk, and

fM(xk) > fM(xk),

which contradicts the minimality property of xk.

Proof of Theorem 2.13. First of all observe that condition (b.1)

implies that there exists an interval [t1, t2] ⊂ [0, T
2
] such that b(t) > 0, for

any t ∈ [t1, t2]. Let us consider the function

φ̃(t) =





η sin

[
2π

(t2 − t1)
(t − t1)

]
if t ∈ [t1, t2]

0 if t ∈ [0, T ] \ [t1, t2] ,

where η ∈ IRN , and |η| = 1.

By construction φ̃ belongs to H1
0 (0, T

2
; IRN). Arguing as in the proof

of the nonemptyness of M , we claim that there exists a constant r > 0

such that φ = r φ̃

‖φ̃‖ belongs to M.

If we consider the element ψ ∈ H1
0 (0, kT ; IRN) given by:

ψ(t) =

{
φ(t) if t ∈ [0, T ]

0 if t ∈ [T, kT ] ,



378 F. ANTONACCI – P. MAGRONE [12]

then, by Theorem 2.12 and (3.6), we can construct a sequence {xk} of

subharmonics of (P) (corresponding to the minima of fM) such that

0 < α‖xk‖2
A ≤ f(xk) ≤ 1

2
‖ψ‖2

A −
∫ t2

t1

b(t)V (ψ) = L,

where L is a constant independent of k.

Therefore, using the same arguments of [3], and [6], we find the esti-

mates from below and from above on {xk} independent of k. Moreover we

can construct a sequence {x̃k} ⊂ H1
k which verifies x̃k(t) = xk(t + rkT ),

where the sequence rk ⊂ IN is such that

−∞ < max
t∈[0,T ]

|xk(t + rkT )| = max
t∈IR

|xk(t)| < +∞.

By construction the functions x̃k satisfy the same estimates of xk, so,

applying Ascoli’s Theorem and arguing again as in [3] and [6], we ob-

tain the homoclinic solution of (P) as a limit of a subsequence of {xk}
in C2

loc.
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