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A real Schwarz lemma and some applications

G. BESSON – G. COURTOIS – S. GALLOT

Riassunto: Il “Volume minimo” di una varietà differenziabile è stato introdotto
da M. Gromov allo scopo di generalizzare (in dimensione qualunque) le disuguaglianze
dedotte dalla teoria delle classi caratteristiche di Gauss-Bonnet-Chern-Weil. La genera-
lizzazione è stata ottenuta assegnando una limitazione per il volume minimo in termini
del volume simpliciale. Calcolando i volumi simpliciali delle varietà iperboliche, M.
Gromov (con W. Thurston) ha reso tale disuguaglianza esplicita (ed ha rivisitato il
teorema di rigidità di Mostow). Egli ha formulato la congettura che tale disuguaglianza
possa essere precisa, cioè che il volume minimo sia raggiunto con la metrica iperbolica.
Noi abbiamo dimostrato questa congettura stabilendo un analogo reale del Lemma di
Schwartz: se X , Y sono due varietà tali che la curvatura di X è negativa e minore
di quella di Y , allora ogni classe di omotopia di applicazioni da Y a X contiene una
applicazione che contrae i volumi. Noi abbiamo dato una costruzione esplicita di questa
applicazione che, nelle ipotesi dei teoremi di rigidità di Mostow, risulta una isometria,
provvedendo una dimostrazione unificata degli stessi teoremi. Dimostriamo inoltre che
l’insieme di tutte le metriche di Einstein su ogni varietà iperbolica 4-dimensionale si
riduce ad un singolo elemento. Una versione modificata del Lemma di Schwartz reale
dà una disuguaglianza precisa tra le entropie di Y e X (ammesso che X sia localmente
simmetrica e che esista una applicazione di grado non banale da Y a X). Ciò dà
una risposta alle congetture di M. Gromov e A. Katok riguardo alla entropia minima.
Poiché tale disuguaglianza è una uguaglianza se e solo se Y è isometrica a X, essa
implica che Y e X hanno flussi geodetici coniugati se e solo se le due varietà sono
isometriche. Ciò completa anche la dimostrazione della congettura di Lichnerowicz:
ogni varietà localmente armonica, compatta, a curvatura negativa è un quoziente di
uno spazio simmetrico di rango 1 (noncompatto).

Il contenuto di questo lavoro è stato oggetto di una conferenza tenuta da uno degli
autori, S. Gallot, al Convegno “Rencenti sviluppi in Geometria Differenziale” Università
“La Sapienza”, Roma 11-14 giugno 1996.
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Abstract: The “Minimal Volume” of a differentiable manifold was introduced by
M. Gromov in order to generalize (in any dimension) the inequalities deduced from the
Gauss-Bonnet-Chern-Weil theory of characteristic classes. By bounding the minimal
volume in terms of the simplicial volume, M. Gromov gave such a generalization. By
computing the simplicial volumes of the hyperbolic manifolds, M. Gromov (with W.
Thurston) made this inequality explicit (and revisited Mostow’s rigidity theorem). He
conjectured that this inequality might be sharpen, (i.e. that the minimal volume is
attained for the hyperbolic metric). We proved this conjecture by settling a real analogue
of the Schwarz’s lemma: if X, Y are two manifolds such that the curvature of X is
negative and smaller than the one of Y , then any homotopy class of maps from Y to
X contains a map which contracts volumes. We give an explicit construction of this
application which, under the assumptions of Mostow’s rigidity theorems, occurs to be
an isometry, providing a unified proof of these theorems. It moreover proves that the set
of all Einstein metrics, on any compact 4-dimensional hyperbolic manifold, reduces to
a single point. A modified version of the real Schwarz’s lemma gives a sharp inequality
between the entropies of Y and X (provided that X is locally symmetric and that there
exists an application of non trivial degree from Y to X). This answers conjectures of
M. Gromov and A. Katok about the minimal entropy. As this inequality is an equality
iff Y is isometric to X, it implies that Y and X have conjugate geodesic flows iff they
are isometric. This also ends the proof of the Lichnerowicz’s conjecture: any negatively
curved compact locally harmonic manifold is a quotient of a (noncompact) rank-one-
symmetric space.

1 – The problem of minimal (and maximal) volume

Let M be a compact connected manifold; its “minimal volume” (de-

noted by MinVol (M) ) has been defined by M. Gromov [14] as being

the infimum of the volumes of all riemannian metrics g on M , whose

sectional curvature Kg satisfies −1 ≤ Kg ≤ 1.

Similarly, when the manifold admits some metric with strictly neg-

ative sectional curvature, one may define the “maximal volume” of M

as the supremum of Vol (g), for all metrics g whose sectional curvature

satisfies Kg ≤ −1.

Example. In dimension 2, one can compute the exact value of the

minimal (resp. the maximal) volume of any manifold and, moreover,

characterize all the metrics for which this minimum (resp. this maximum)

is attained. In fact, the Gauss-Bonnet formula gives

∫

M

Kgdvg = 2πχ(M) ,
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where χ(M) is the Euler characteristic of the surface M . This immedi-

ately implies that

MinVol (M) = 2π|χ(M)| .
Similarly, assuming that χ(M) < 0 and Kg ≤ −1, we get:

MaxVol (M) = 2π|χ(M)| .

It is then obvious that the minimal and the maximal volume are both at-

tained for (and only for) metrics with constant sectional curvature ±1.

It is thus a natural question to ask whether results of this kind exist

in higher dimensions. In the even dimensional case, the analogue of the

Gauss-Bonnet formula is the Allendœrfer-Chern-Weil one which writes:

χ(M) =

∫

M

P (Rg)dvg ,

where P is the universal polynomial of degree n/2 on the exterior alge-

bra, called the Pfaffian polynomial and where Rg is the curvature tensor,

viewed as a matrix with coefficients in Λ2(T ∗M). An immediate conse-

quence is that, for any metric g on M ,

|χ(M)| ≤ Cn‖Kg‖n/2
L∞ · Vol (M, g) ,

which implies that MinVol (M) ≥ C−1
n · |χ(M)|, where Cn is a universal

constant (other lower bounds for the minimal volume may be obtained

by using other characteristic classes than the Euler class).

Though the above inequality provides a lower bound for the minimal

volume in terms of a homology-invariant, this result does not fit our

purpose for two reasons, already underlined by M. Gromov:

(1) Except for dimension 2, it can never be sharp, so it cannot help com-

puting the exact value of the minimal volume. Moreover, it gives no

information about the fact that this minimal volume may be attained

for some metric or not.

(2) The Euler characteristic is a quite rough invariant, which often van-

ishes, in particular for every odd-dimensional manifold. In these

cases, the above inequality is nothing but trivial.
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2 – M. Gromov’s approach

a) A bound from below for the minimal volume

A first main result is that the above inequality remains valid if one

replaces the Euler characteristic by another homology-invariant: the sim-

plicial volume (denoted by SimplVol ). This writes:

Theorem 2.1 (M. Gromov, [14]). For any manifold M , one has

MinVol (M) ≥ Cn SimplVol (M), where Cn is a universal constant (only

depending on the dimension).

As illustrated in Section 1, this inequality may be seen as the most

natural generalization of the Gauss-Bonnet inequality that one may ex-

pect if one wants it to be valid in any dimension. Notice that the simplicial

volume may be non trivial in any dimension (for instance, as we shall see

later, it is non trivial for any negatively curved manifold).

Let us recall the definition of the “simplicial volume”: let us consider

the L1-norm on the real singular chains, defined by ‖c‖1 =
∑ |λi| when c

is the linear combination of simplices c =
∑

λiσi. The associated semi-

norm on Hk(M,R) is defined by

‖γ‖ = Inf {‖c‖1/c closed chain s.t. [c] = γ} .

We may then define the simplicial volume of M as being ‖[M ]‖, where [M ]

is the fundamental n-class of M . If the coefficients were integers, the sim-

plicial volume could be interpreted as the minimal number of n-simplices

in a simplicial triangulation of M . As the coefficients are real (or, equiva-

lently, rational), one accepts triangulations covering the manifold p-times

and may see ( [14] ) the simplicial volume as:

Inf p∈N

(
1

p
(Minimal number of simplices in a triangulation of p · [M ])

)
.

b) Computation of some simplicial volumes

Obvious property 2.2. Let f :Y →X be a continuous map between

two compact manifolds of the same dimension, then SimplVol (Y ) ≥
|deg f | · SimplVol (X).
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Proof. If [Y ] is represented by
∑

λiσi, then [X] = 1
deg f

f∗([Y ]) is

represented by
∑ λi

deg f
(f ◦ σi). This implies that ‖[X]‖ ≤ ∑ |λi|

| deg f | .

This gives a method for proving that some simplicial volumes are

trivial, for example one has the following immediate corollary:

Corollary 2.3. If there exists a continuous map f : X → X

whose degree is different from −1, 0 or +1, then SimplVol (X) = 0.

For instance, this proves that the simplicial volumes of Sn and Tn are

trivial for any n. Notice that the minimal volume of Tn is also trivial (just

write Tn as T×Tn−1 and multiply the first factor by ε: the volume goes

to zero, but the curvature is zero, and thus bounded); the minimal volume

of S2p+1 is also trivial (just see it as the total space of the Hopf-fibration

with fiber S1 and multiply the metric of the fiber by ε: the volume goes

to zero and the curvature remains bounded; these examples are from M.

Berger, cf. [8 p. 70] and [26]). On the contrary, the Allendœrfer-Chern-

Weil formulas (cf. Section 1) show that the minimal volume of S2p is non

zero; as its simplicial volume is trivial, the Theorem 2.1 gives nothing in

this case.

On the contrary, the simplicial volume is non zero when the (com-

pact) manifold admits a metric with strictly negative curvature. When

it admits a hyperbolic metric, one has the following exact computation

of the simplicial volume:

Theorem 2.4 (M. Gromov and W. Thurston, see [14]). Let X

be a compact riemannian manifold whose sectional curvature is constant

and equal to −1, then SimplVol (X) = T −1
n Vol (X), where Tn is the

supremum of the volumes of all geodesic n-simplices on the real hyperbolic

space-form.

Let us recall that a “geodesic simplex” is a simplex whose boundary

is made of pieces of totally geodesic hypersurfaces.

2.5. One interpretation of the Theorem 2.4 is that all possible vol-

umes of compact hyperbolic manifolds are n-homology invariants. For

example, any 4-dimensional compact hyperbolic manifold satisfies

Vol (X) =
χ(X)

2
· Vol (S4) .
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Proof. As X and S4 are Einstein manifolds, the Allendœrfer-Weil

formula writes, in this case:

8π2χ(X) =

∫

X

‖RX‖2 ,

8π2χ(S4) =

∫

S4
‖RS4‖2 ,

where the curvature tensors RX and RS4 of the two manifolds X and S4

satisfy ‖RX‖ = ‖RS4‖ = Constant, because both manifolds have constant

curvature ±1. This gives Vol (X)

Vol (S4)
= χ(X)

χ(S4)
= χ(X)

2
, since χ(S4) = 2.

In the odd-dimensional case, it is more difficult to compute the possi-

ble volumes of a compact hyperbolic manifold, for instance, an important

open problem is the:

Problem 2.6. What is the smallest volume of a hyperbolic 3-

manifold?

Another important problem is to compute explicitely Tn. We have

first to find what geodesic n-simplices have maximal volume.

Let us, in general, denote by X̃ the universal covering of X , endowed

with the pulled-back metric. In the above situation, X̃ is the real hyper-

bolic space Hn, which may be regarded as the unit ball Bn endowed with

the metric g0 defined (at the point x ∈ Bn) by

g0 =
4

(1 − ‖x‖2)2
gE

where gE is the euclidean metric.

We may thus compactify Bn by adding the “ideal boundary” Sn−1 =

= ∂X̃, and endowing Bn ∪ Sn−1 with the obvious topology.

We call “ideal simplices” those geodesic n-simplices of X̃ all of whose

vertices lie on ∂X̃. Such a simplex will be called “regular” when every

permutation of its vertices may be achieved by an isometry of the hyper-

bolic space (a regular ideal simplex is a limit of simplices all of whose

1-dimensional edges have same length). We then have the

Theorem 2.7 (U. Haagerup and H. J. Munkholm, [16]). Ideal

regular simplices have maximal volume among all geodesic n-simplices

(and thus their volume is equal to Tn).



[7] A real Schwarz lemma and some applications 387

In order to make explicit the equality of the Theorem 2.4, it re-

mains to compute the volumes of the ideal simplices as a function

Vol (θ0, θ1, . . . , θn) of the vertices θ0, θ1, . . . , θn (lying on ∂X̃ = Sn−1).

– In dimension 2, as all ideal triangles have zero angles, the Gauss-

Bonnet formula (with boundary) gives that all ideal simplices have

volume equal to ±π.

– In dimension 3, an explicit formula is known (see for example J. Mil-

nor [19].

– In any dimension n ≥ 3, we give an expression of Vol (θ0, θ1, . . . , θn)

as an infinite sum of symmetric polynomials in the θi’s [7].

c) A sketch of the proof of the Gromov-Thurston Theorem 2.4

First step: Vol (X) ≤ Tn SimplVol (X).

This proof is attributed to W. Thurston (see [14]). As X is hy-

perbolic (i. e. with constant curvature −1), it is quite obvious that any

simplex σ on X is homotopic to a geodesic simplex σ̄ having the same

vertices (just lift the simplex in the universal covering, which is the real

hyperbolic space X̃ = Hn, and take the geodesic simplex, with same

vertices, that you just push down on X). This process is called “straight-

ening a simplex” and is denoted by σ → σ̄. W. Thurston proved that one

can straighten a (real) simplicial decomposition
∑

λiσi of [X] in order

that the result
∑

λiσ̄i is still a (real) simplicial decomposition of [X]. Let

ω0 be the volume form on X associated to the hyperbolic metric, we get

Vol (X) =
〈
ω0,

[ ∑

i

λi · σ̄i

]〉
=

∑

i

λi Vol (σ̄i) ≤ Tn ·
∑

|λi| .

We get the desired inequality by taking the infimum in this last inequal-

ity.

Second step: Vol (X) ≥ Tn SimplVol (X). (M. Gromov [14]).

– In dimension 2, any compact hyperbolic 2-manifold (with Euler

characteristic χ) may be triangulated by 2(|χ| + 1) geodesic triangles: in

fact, such a manifold may be obtained from an hyperbolic k-gon (with

k = 2|χ|+4) by gluing the edges together, and such a k-gon is triangulated

by (k − 2) triangles.

Let π : Xp → X be a p-sheeted covering of X. As χ(Xp) = p · χ(X),

Xp is triangulated by m(p) = 2(p · |χ(X)|+1) triangles σ1, . . . , σm(p). We
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thus get

[X] =
1

p
π∗([Xp]) =

m(p)∑

i=1

1

p
(π ◦ σi) ,

and deduce that ‖[X]‖ is bounded from above by m(p)

p
, which goes to

2|χ(X)| when p goes to +∞, and thus ‖[X]‖ ≤ 2|χ(X)|. Then the Gauss-

Bonnet formula gives that

Vol (X) =

∫

X

(−KgX
)dvgX

= 2π|χ(X)| ≥ T2‖[X]‖

because, as we have seen in 2.7, T2 = π.

Remark 2.8. This (and the previous inequality) in fact proves that,

in dimension 2, SimplVol (X) = 2|χ(X)| when χ(X) < 0.

– How M. Gromov generalizes this proof in higher dimensions?

Roughly speaking, the idea of M. Gromov ([14], for more explana-

tions see [21]) is to admit chains which are limits of linear combinations

of simplices, i.e. chains whose coefficients are measures. Thus, instead

of writing a chain c =
∑

i λi · σi, we shall write it c =
∫

I λ(i) · σi dµ(i),

where I may be a continuous set of parameters and where µ is a positive

measure on this set. One may analogously define

‖c‖1 =

∫

I

|λ(i)|dµ(i) .

In the case where X is a hyperbolic manifold, assumed to be com-

pact (resp. with finite volume), π1(X) acts on X̃ = Hn by deck-transfor-

mations, which are isometries. We thus consider the set of parameters

I = Isom(Hn)/π1(X) , which is compact (resp. with finite volume), and

the measure µ on I, whose pull-back by the quotient map is the Haar

measure of Isom(Hn). We shall denote by g → sign(g) the function

which assigns to each g ∈ Isom(Hn), the number +1 or −1 whether it

preserves or changes the orientation.

Let σ0 be a fixed regular ideal simplex of Hn then, for any g ∈
Isom(Hn), g◦σ0 is also a regular ideal simplex whose projection π◦g◦σ0

(by the covering map π : X̃ → X) only depends on the image ĝ of g in

Isom(Hn)/π1(X) by the quotient map. We thus define a chain c by

c =

∫

Isom(Hn)/π1(X)

sign(g)(π ◦ g ◦ σ0)dµ(ĝ)
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which gives

‖c‖1 = Vol
(
Isom(Hn)/π1(X)

)
= Vol (I) .

As the symmetry, with respect to a totally geodesic hypersurface con-

taining one of the (n − 1)-dimensional faces of σ0, changes the sign of g

without changing the sign of the corresponding face, it comes that c is

a closed chain. Let ω0 be the canonical volume-form associated to the

hyperbolic metric, one gets:

〈
ω0, [c]

〉
= Vol (σ0) · Vol (I) = Tn · Vol (I) .

As 〈ω0, [X]〉 = Vol (X), this implies that [X] = Vol (X)

Tn· Vol (I)
[c], and thus

that

(2.9) ‖[X]‖ ≤ Vol (X)

Tn · Vol (I)
· ‖c‖1 =

Vol (X)

Tn

.

This inequality, together with the previous one, proves that ‖[X]‖ =
Vol (X)

Tn
, so that the first inequality of (2.9) is in fact an equality and we

have the

Remark 2.10. SimplVol (X) =
Vol (X)

Tn · Vol (I)
‖c‖1.

d) A first application: Gromov’s proof of Mostow’s rigidity theorem

The above ideas led M. Gromov to a new proof of the

Theorem 2.11 (G. D. Mostow). Let X, Y be two n-dimensional

hyperbolic manifolds (n ≥ 3), which are both compact (or noncompact

with same (finite) volume), then any homotopy-equivalence f : Y → X is

homotopic to an isometry.

Some ideas for the proof (see [21]): Any homotopy equivalence f :

Y → X may be lifted to a quasi-isometry f̃ : Ỹ → X̃, which may be

continuously extended to an homeomorphism f̄ : ∂Ỹ → ∂X̃.

Let σ be any ideal simplex of Ỹ , with vertices θ0, . . . , θn; we shall

denote by f̄(σ) the ideal simplex of X̃ whose vertices are f̄(θ0), . . . , f̄(θn).
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Let I and µ be as in the previous proof, and λ0 = Vol (Y )

Tn Vol (I)
. We have

seen in the previous proof that [Y ] may be represented by the chain c =

λ0

∫
I sign(g)(π ◦ g ◦σ0)dµ(ĝ); this implies that [X] = f∗[Y ] is represented

by the chain f∗c, which may be straightened as the (homotopic) chain

λ0

∫
I sign(g)(π[f̄(g ◦ σ0)])dµ(ĝ).

Computing 〈ω0, [X]〉 from two different ways, we obtain:

(2.12)
Vol (X) ≤ λ0

∫

I

Vol [f̄(g ◦ σ0)]dµ(ĝ) ≤ λ0 · Tn · Vol (I) =

= Vol (Y ) = Tn‖[Y ]‖ = Tn‖[X]‖ ,

where the last two equalities come from the Theorem 2.4, from the Prop-

erty 2.2, and from the fact that f is a homotopy equivalence. By the

Theorem 2.4, all inequalities of (2.12) are in fact equalities, this implies

that Vol (X) = Vol (Y ) and that, for almost every g, the ideal simplex

f̄(g ◦ σ0) has maximal volume Tn, and thus is also regular. This implies

that every regular ideal simplex is sent onto a regular ideal simplex by f̄ ,

and thus that f̄ is the trace on the ideal boundaries of an isometry from

Hn = Ỹ onto Hn = X̃.

e) A bound for the minimal volume of a compact hyperbolic manifold

Let us consider any manifold X which admits a hyperbolic metric

(denoted by g0). Theorems 2.1 and 2.4 imply the

Theorem 2.13 (M. Gromov, [14]). MinVol (X) ≥ Cn
Tn

Vol (X, g0),

where constants Cn and Tn are defined in Theorems 2.1 and 2.4.

Let us remind the two objections that we have made in Section 1

about the Gauss-Bonnet-Allendœrfer-Chern-Weil approach. M. Gromov’s

Theorem 2.13 answers quite conveniently to the objection (2), for it is

valid in any dimension. On the contrary, it does not answer to the ob-

jection (1) because it is not sharp (Cn
Tn

< 1). This led M. Gromov [14]

to make the following conjectures.

f) M. Gromov’s conjectures

Except in dimension 2 (cf. Section 1) or when it vanishes, one could

never compute the exact value of the minimal volume of a given manifold.

That is the reason why M. Gromov was naturally led to ask the following:
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Question Q1. For a given compact manifold X, what is the exact

value of MinVol (X)?

Mimicking the proof which works in dimension 2 (see Section 1), M.

Gromov remarked that, in the case where X admits a hyperbolic met-

ric g0 (i.e. with constant sectional curvature Kg0
≡ −1), the answer to

the question Q1 would then immediately derive from the solution of the

following

Conjecture Q2. If some compact manifold X admits a hyperbolic

metric g0, then MinVol (X) = Vol (X, g0).

These two conjectures were explicitely asked by M. Gromov [14].

The conjecture Q2 says that the functional g → Vol (g), defined on

the set of the metrics g on M which satisfy −1 ≤ Kg ≤ 1, attains its

minimum at the point g0. It is thus a natural question to ask if this

minimum is unique, this leads to the

Conjecture Q3. If some compact manifold X admits a metric

g0 with constant sectional curvature Kg0
≡ −1, any metric for which the

minimal volume is attained is isometric to g0.

Notice that Q1 and Q2 are already solved in dimension 2, as direct

consequences of the Gauss-Bonnet’s formula. On the contrary, Q3 is

false in dimension 2, for the minimal volume is attained for any met-

ric lying in the Teichmüller space of hyperbolic metrics, and it is well-

known that these metrics are not isometric to a fixed one (here denoted

by g0). The situation must be quite different in dimension n ≥ 3, because

Mostow’s rigidity Theorem 2.11 is then valid. By the way, let us notice

that Mostow’s rigidity theorem would be an immediate consequence of

the conjectures Q2 and Q3.

3 – Our approach

a) Classical Kählerian Schwarz lemmas

The original Schwarz lemma may be rewritten in the language of

the hyperbolic geometry, that is to say on the ball B2 endowed with the
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hyperbolic metric g0 = 4
(1−‖x‖2)2

gE, where gE is the canonical euclidean

metric (this rewriting is due to Pick):

Schwarz lemma 3.1. Given any holomorphic map f : B2 → B2,

then f is a contracting map from (B2, g0) in (B2, g0).

Considering holomorphic maps between compact Kählerian mani-

folds, there have been many extensions of the above Schwarz lemma (due

in particular to L. Ahlfors, S. T. Yau, N. Mok, and others . . . ). We shall

choose the following one, which may be found for instance in [20] (see [6]

Appendix A for a complete proof).

Proposition 3.2. Let X, Y be compact Kählerian manifolds of

the same dimension. If RiccigY
≥ −C2 ≥ RiccigX

, then any holomorphic

map F : Y → X satisfies |Jac F | ≤ 1. Moreover, if |Jac F | = 1 at some

point y, then dyF is isometric.

Let us recall that Riccig is the Ricci curvature tensor of the metric

g, and that the assumption Riccig ≥ −C2 means that Riccig(u, u) ≥
−C2g(u, u) for any tangent vector u.

Let us also remark that, when the sectional curvature of X is nega-

tive, there is at most one holomorphic map: Y → X in each homotopy

class ([15]). So, when such a map exists, it realises (in some sense) the

“best possible choice” for a map F (in the homotopy class) contract-

ing the volumes. So a natural question is the following one: when the

manifolds Y , X are not any more assumed to be complex, or when the

homotopy class does not contain any holomorphic map, what is the “best

possible choice” for F .

b) A real Schwarz lemma:

Theorem 3.3 ([4], improved in [5] and [6]). Let Y n, Xm be (real)

complete riemannian manifolds satisfying 3 ≤ dim (Y ) ≤ dim (X), let us

assume that there exists some constant C 6= 0 such that KgX
≤ −C2 and

that RiccigY
≥ −(n−1)C2·gY . Then any continuous map f : Y → X may

be deformed to a family of C1 maps Fε(ε → 0+) such that V ol[Fε(A)] ≤
(1 + ε)V ol(A) for any measurable set A in Y . Moreover
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(i) if Y , X are compact of the same dimension and if V ol(Y ) = |deg f |
V ol(X), then Y , X have constant sectional curvature (equal to −C2)

and we may choose the Fε’s such that they converge, when ε → 0, to

a riemannian covering F (an isometry when |deg f | = 1).

(ii) If Y , X are compact, homotopically equivalent, of the same dimen-

sion, and if KgY
< 0, then any homotopy equivalence f may be de-

formed to a smooth map F such that V ol[F (A)] ≤ V ol(A) for any

open subset A in Y , the equality beeing attained iff F is an isometry

on A.

Remarks 3.4 and generalization (cf. [6]). The property (ii)

of the Theorem 3.3 remains valid when dim(Y ) < dim(X) and when

X is not compact (however, we have to assume that π1(X) acts on the

universal covering X̃ in a “convex cocompact” way, i.e. that X retracts to

a compact submanifold with convex boundary). In this case, we still can

deform any homotopy equivalence f : Y → X to some map F such that

|Jac F | ≤ 1 and such that |Jac F | ≡ 1 iff F is isometric and moreover

totally geodesic.

Let us also remark that the maps Fε and F of the Theorem 3. 3 and

of the Remark 3.4 are explicitely built (see [4], [5], [6] and the Section 4

of the present paper). Thus, applied to the case where Y and X are both

hyperbolic, this theorem also gives a construction of the isometry which

was only proved to exist in the Mostow’s rigidity theorem (Theorem 2.11).

Before giving the ideas of the proof of the Theorem 3. 3, let us first

settle some applications.

c) Applications to minimal (and maximal) volume:

The following corollary answers to the conjectures Q1, Q2 and Q3.

Corollary 3.5 ([4], improved in [6]). Let X be a compact manifold

with dimension n≥3. If X admits a hyperbolic metric g0 (i.e. Kg0
≡ −1),

then

(i) MinV ol(X) = V ol(g0) = MaxV ol(X).

(ii) A metric g on X (such that |Kg| ≤ 1) realizes the minimal volume

iff it is isometric to g0.

(iii) For any other manifold Y n and any map f : Y n → Xn, one has

Min V ol(Y ) ≥ |deg f | · Min V ol(X).
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Proof of (i) and (ii). Any metric g satisfying the assumption

|Kg| ≤ 1 obviously verifies Riccig ≥ −(n − 1). As Kg0
≡ −1, by the

Theorem 3.3, this implies, for every ε, the existence of a map Fε : (X, g) →
(X, g0), homotopic to idX , such that |Jac Fε| ≤ 1 + ε. We thus get:

(1 + ε)V ol(g) ≥
∫

X

|Jac Fε|dvg ≥ |deg Fε| · V ol(g0) = V ol(g0) .

This proves the first equality of (i). Moreover, if V ol(g) = V ol(g0),

the equality case in the Theorem 3.3.(i) proves that the Fε’s converge,

when ε → 0, to a riemannian covering of degree 1, i.e. an isometry. This

proves (ii).

On the contrary, if Kg ≤ −1 , by the Theorem 3.3 (ii), there exists a

map F : (X, g0) → (X, g), homotopic to idX , such that |Jac F | ≤ 1. We

thus get:

V ol(g0) ≥
∫

X

|Jac F |dvg0
≥ |deg F | · V ol(g) = V ol(g) .

This proves the second equality of (i).

Remark 3.6. Improving the arguments of the corollary 3.5, A. Sam-

busetti ([24], Theorem 5.1) recently proved a sharp version of M. Gro-

mov’s Theorem 2.1 for any manifold Y n, when there exists some map f

from Y n to an hyperbolic manifold Xn such that the induced represen-

tation f∗ : π1(Y ) → π1(X) is an isomorphism (or, more generally, when

its kernel has subexponential growth). In fact, he proves that, in these

cases, MinV ol(Y ) ≥ Tn SimplV ol(Y ) (let us recall that the equality is

attained for real hyperbolic manifolds by the Theorem 2.4).

d) Applications to Einstein manifolds:

On a given manifold, an “Einstein metric” is a Riemannian structure

whose Ricci curvature tensor is proportional to the metric (and thus

is constant on the unit tangent bundle). In dimension 2 and 3, every

Einstein metric has constant sectional curvature. So the fundamental

problem of describing the whole moduli space of Einstein metrics on a

given manifold only begins at dimension 4.

When the dimension (denoted by n) is greater than 5, one knows

almost nothing about this problem: for instance, there is no counter-

example to the following.
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Conjecture (see for instance [2]). Every manifold of dimension

n ≥ 5 admits at least one Einstein metric.

In dimension 4, the following obstructions to the existence of Einstein

metrics on a given manifold Y were known:

3.7. If χ(Y )<0 then Y does not admit any Einstein metric (M. Berger, [2])

3.8. If χ(Y ) − 3
2
|τ(Y )| < 0 (where τ(Y ) is the signature of Y ), then Y

does not admit any Einstein metric (J. Thorpe, [2] p. 210).

3.9. If χ(Y ) < 1
2592π2 · SimplV ol(Y ), then Y does not admit any Einstein

metric (M. Gromov, [14], see also [2] Theorem 6.47).

The obstructions 3.7 and 3.8 derive from the Allendœrfer-Chern-Weil

formulas (see the Section 1). In fact, the space of quadrilinear forms on a

4-dimensional vector space V , satisfying the same algebraic properties as

a curvature tensor, (i.e. the space of symmetric bilinear forms on Λ2(V )

which satisfy the first Bianchi identity) splits as the direct sum of 4 sub-

spaces which are irreducibly invariant under the action of SO(4). When

V = TyY , let W+
g , W −

g , Zg and Ug be the components of the riemannian

curvature tensor Rg with respect to this decomposition. The components

W+
g and W −

g both vanish iff the metric g is locally conformally flat and

only differ by the fact that the composition by the Hodge operator ∗
acts as +id or −id on each of them. The component Zg corresponds to

the trace-free part of the Ricci curvature and vanishes iff g is Einstein;

on the contrary, the component Ug is the canonical symmetric bilinear

forms on Λ2(V ) associated to g, multiplied by the scalar curvature (see

for instance [2], Theorem 1.126, and [3] for more explanations). The

Allendœrfer-Chern-Weil theory (see Section 1, [2] p. 161 and [3]) gives

the following formulas for the Euler characteristic χ(Y ) and for the sig-

nature τ(Y ) of Y :

8π2χ(Y ) =

∫

Y

(‖W+
g ‖2 + ‖W −

g ‖2 − ‖Zg‖2 + ‖Ug‖2)dvg ,

12π2τ(Y ) =

∫

Y

(‖W+
g ‖2 − ‖W −

g ‖2)dvg .

As a consequence, any Einstein metric g on Y is such that ‖Ug‖2 is
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constant and satisfies:

8π2χ(Y ) =

∫

Y

(‖W+
g ‖2 + ‖W −

g ‖2 + ‖Ug‖2)dvg ≥(3.10)

≥ ‖Ug‖2V ol(Y, g) ,

8π2
(
χ(Y ) ± 3

2
τ(Y )

)
=

∫

Y

(2‖W ±
g ‖2 + ‖Ug‖2)dvg ≥(3.11)

≥ ‖Ug‖2V ol(Y, g) ;

moreover any metric g0 with constant sectional curvature satisfies W+
g0

=

W −
g0

= 0 (for g0 is then locally conformally flat), and both inequali-

ties (3.10) and (3.11) are equalities in this case.

The obstructions 3.7 and 3.8 immediately follow from the fact that

all the terms of the inequalities (3.10) and (3.11) are nonnegative when g

is Einstein.

On the other hand, the Theorem 2.1 bounds the volume from below in

terms of the simplicial volume when one assumes the sectional curvature

to be bounded. In fact, M. Gromov proved a stronger result: the same

result is valid when one only assumes the Ricci curvature to be bounded

from below ([14] p. 12, [2] result 6.46). For an Einstein manifold (Y, g),

it writes

|scalg|n/2V ol(Y, g) ≥ An SimplV ol(Y ) ,

where scalg is the (constant) scalar curvature of the metric g and where An

is a universal constant. In dimension 4, comparing with (3.10), this im-

plies the existence of a universal constant B such that

χ(Y ) ≥ B|scalg|2V ol(Y, g) ≥ BA4 Simpl V ol(Y ) .

This ends the proof of the obstruction 3.9 by estimating the constants B

and A4 ([14], [2] result 6.46).

Looking at J. Thorpe’s Theorem 3.8, one might conjecture that any

manifold with χ(Y ) − 3
2
|τ(Y )| > 0 admits an Einstein metric. M. Gro-

mov’s Theorem 3.9 already gave some counter-examples (see for exam-

ple [2] example 6.48); more recently, A. Sambusetti gave a systematic

answer to this question by proving the
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Proposition 3.12 (A. Sambusetti, [22], [23]). For any 4-dimen-

sional manifold Z, there exists an infinity of (non homeomorphic) 4-

dimensional manifolds Yi, which have the same signature and the same

Euler characteristic as Z, and which admit no Einstein metric.

The manifolds Yi are obtained by gluing to any hyperbolic compact

manifold X (such that χ(X) > χ(Z)) enough copies of CP 2 (with the

direct or reverse orientation) and enough copies of S2 × S2 or S2 × T2,

in order to obtain the right signature and Euler characteristic. Let us

notice that τ(X) = 0. As there exists a map Yi → X of degree 1, the

non-existence of Einstein metrics on Yi is then a consequence of the

Proposition 3.13 (A. Sambusetti, [22], [23]). Let Y be a compact

4-dimensional manifold. Let us assume that there exists a hyperbolic 4-

manifold X and a continuous map f : Y → X satisfying |deg f |(χ(X) −
3
2
|τ(X)|) > χ(Y ) − 3

2
|τ(Y )|, then Y admits no Einstein metric.

Example. As an illustration of this proposition, let us consider the

connected sum X#X of two copies of a compact hyperbolic 4-manifold.

By cellular decomposition, one gets χ(X#X) = 2χ(X) − 2 < 2χ(X),

and there exists an obvious application f : X#X → X of degree 2. The

Proposition 3.13 then proves that X#X does not admit any Einstein

metric.

On the contrary, when a manifold X is known to admit a very canon-

ical Einstein structure (i.e. a locally symmetric one), the main problem

is the

Conjecture. On a manifold X which admits a locally symmetric

metric with negative curvature, this metric is (modulo homotheties) the

only Einstein metric.

This would be a very strong version of the Mostow’s rigidity The-

orem 2.11. In fact, in this version of Mostow’s rigidity theorem, one

assumes the sectional curvature to be constant (equal to −1), thus all

candidates are quotients of the same hyperbolic space-form Hn (endowed

with its canonical hyperbolic metric) by some discrete subgroups Γ of

Isom(Hn). So all possible candidates are locally isometric and the prob-

lem is to decide if two isomorphic subgroups Γ and Γ′ of Isom(Hn) give
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two globally isometric quotient-spaces Hn/Γ and Hn/Γ′ (assumed to be

manifolds), in which case the isomorphism ρ : Γ → Γ′ extends to an iso-

morphism ρ̄ : Isom(Hn) → Isom(Hn) given by ρ̄(g) = F̃ ◦g ◦ F̃ −1, where

F̃ : Hn → Hn is the lift of the isometry F : Hn/Γ → Hn/Γ′.

On the contrary, two Einstein metrics (with constant Ricci curvature,

equal to −(n − 1) for example) are generally not locally isometric: for

example, the real and complex hyperbolic spaces are both Einstein with

constant Ricci curvature equal to −(n − 1) (if we rescale the complex

hyperbolic metric), but they are not locally isometric. Moreover, the

possible local models for Einstein manifolds are much more numerous,

and generally not locally symmetric.

Thus, there must be some global arguments saying that, even if all

these models are suitable from a local point of view, only one is suitable

for global reasons. This is certainly the reason why the first (partial)

answers to the above conjecture about the uniqueness of the Einstein

structure where given in 1994 by two different methods (one uses the real

Schwarz lemma, the other the Seiberg-Witten invariants). That is the

Theorem 3.14 ([4]). Let X be a compact 4-manifold which admits

a real hyperbolic metric, then this metric is (modulo homotheties) the only

Einstein metric on X.

Theorem 3.15 (C. LeBrun, [17]). Let X be a compact 4-manifold

which admits a complex hyperbolic metric, then this metric is (modulo

homotheties) the only Einstein metric on X.

Remark 3.16. A. Sambusetti noticed that the Theorem 3.14 may be

generalized in the following way: Any compact Einstein 4-manifold (Y, g),

admitting a continuous map f of non-zero degree onto a hyperbolic 4-

manifold (X, g0) which satisfies |deg f |(χ(X)− 3
2
|τ(X)|) = χ(Y )− 3

2
|τ(Y )|,

is hyperbolic. Moreover f is homotopic to a riemannian covering (an

isometry if f has degree 1).

This also gives a complete characterization of the equality case in the

inequality of the Theorem 3.13.

Proofs of Theorems 3.14 and 3.13 and of the Remark 3.16.

Let (Y, g) be the Einstein manifold and (X, g0) the real hyperbolic one (in

the Theorem 3.14, we have Y = X). We may always assume the existence



[19] A real Schwarz lemma and some applications 399

of a map f : Y → X of nonzero degree (in the Theorem 3.14, f = idX has

degree 1). As the assumptions imply that the Ricci curvature cannot be

nonnegative, one may assume (after rescaling) that Riccig = −(n − 1)g.

The real Schwarz lemma (Theorem 3.3 (i)) then implies that

(3.17) V ol(Y, g) ≥ |deg f |V ol(X, g0) .

On the other hand, as ‖Ug||2 = ‖Ug0
‖2 is a constant (here denoted by C2),

the inequality (3.11) and its equality case give:

χ(Y ) − 3

2
|τ(Y )| ≥ C2

8π2
V ol(Y, g) and χ(X) − 3

2
|τ(X)| =

C2

8π2
V ol(X, g0) ,

and implies that χ(Y ) − 3
2
|τ(Y )| ≥ |deg f |(χ(X) − 3

2
|τ(X)|), in contra-

diction with the assumption of the Theorem 3.13. In the Remark 3.16

(resp. in the Theorem 3.14), the last inequality is an equality. This im-

plies that the inequality (3.17) is also an equality and thus, applying the

equality-case of the Theorem 3.3 (i), that f is homotopic to a riemannian

covering (resp. an isometry) F : (Y, g) → (X, g0).

Notice that the method used by C. Lebrun also provides obstruc-

tions to the existence of Einstein metrics on some 4-manifolds (obtained

by blow-up from complex surfaces, cf. [18] and the conference of C. Le-

Brun in this issue).

For a more complete survey about Einstein manifolds, see [2] and [23]

(in this issue).

4 – Sketch of the proof of the real Schwarz lemma (see [4], [5],

[6] for a complete proof)

We shall first prove the Theorem 3.3 (ii). Rescaling the metrics gY

and gX , we notice that, in order to prove the Theorem 3.3 in the general

case, it is sufficient to prove it in the case where the constant −C2 which

bounds the curvatures of Y and X is equal to −1. In order to simplify

the proof, we shall moreover suppose that KgX
= −1 (the proof in the

general case KgX
≤ −1 is given in [6]).
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a) Reduction of the problem

We have already seen how to compactify the riemannian universal

covering (X̃, g̃0) of a compact hyperbolic manifold (X, g0) by adding the

ideal boundary ∂X̃ = Sn−1 (cf. Sections 2.6, 2.7).

It is classical that this construction generalizes to the riemannian

universal covering (Ỹ , g̃Y ) of any negatively curved compact riemannian

manifold (Y, gY ), the ideal boundary beeing defined as the set of geodesics

of (Ỹ , g̃Y ), quotiented by the relation which identifies two geodesics c1

and c2 iff dỸ (c1(t), c2(t)) is bounded when t → +∞ (where dỸ denotes

the riemannian distance in (Ỹ , g̃Y )); the corresponding point of the ideal

boundary is denoted by θ = c1(+∞) = c2(+∞).

Choosing an origin y0 in Ỹ , one may identify the unit sphere Uy0

of Ty0
Ỹ with ∂Ỹ by the map v → cv(+∞), where cv is the geodesic of

(Ỹ , g̃Y ) such that ċv(0) = v. The topology of ∂Ỹ is defined when deciding

that this map is a homeomorphism. Rescaling the time-parameter of the

geodesic cv, one may also identify Ỹ with the unit ball By0
of Ty0

Ỹ : this

gives the (topological) compactification of Ỹ , i e. Ỹ ∪ ∂Ỹ = By0
∪ Uy0

.

Let us also notice that the action y → γ · y of Γ = π1(Y ) on Ỹ (by

deck-transformations) induces an action c → γ ◦ c on geodesics, an thus

an action on ∂Ỹ that we shall still denote by θ → γ · θ.

As we have already seen in the proof of the theorem 2.11, any homotopy

equivalence f : Y → X may be lifted to a quasi-isometry f̃ : Ỹ → X̃,

which may be continuously extended to a homeomorphism f̄ : ∂Ỹ → ∂X̃

(see for instance [9]). Moreover, if ρ = [f ] is the induced representation

π1(Y ) → π1(X), for any γ ∈ π1(Y ), one has the following “equivariance

properties”:

(4.1) f̃ ◦ γ = ρ(γ) ◦ f̃ f̄ ◦ γ = ρ(γ) ◦ f̄ .

For any topological space Z, we shall denote by M(Z) the space of posi-

tive finite Borel measures on Z. Denoting by f̄∗µ the push-forward of a

measure µ ∈ M(∂Ỹ ), one defines a map f̄∗ : M(∂Ỹ ) → M(∂X̃). By (4.1),

this map is equivariant, i.e. f̄∗ ◦γ∗ = ρ(γ)∗ ◦ f̄∗. In order to build the map

F : Y → X it is thus sufficient to build an equivariant map F̃ : Ỹ → X̃

that we shall define by

(4.2) F̃ (y) = bar(f̄∗µy) ,
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where bar is the canonical “barycentre map”: M(∂X̃) → X̃ , introduced

by H. Furstenberg ([12], see also [10]), whose definition will be recalled

in Section 4.d, and where y → µy is the canonical map: Ỹ → M(∂Ỹ )

called the “Patterson-Sullivan measures”, whose definition will be recalled

in Section 4.c. The fact that f̃ and F̃ obey to the same equivariance prop-

erty with respect to the representation ρ implies that f and F induce the

same representation [f ] = ρ = [F ] : π1(Y ) → π1(X). All manifolds of

negative curvature beeing K(π, 1), this proves that f and F are homo-

topic.

b) The Busemann function

The Busemann function BY : Ỹ × ∂Ỹ → R is defined by

(4.3) BY (y, θ) = lim
t→+∞

[dỸ (cθ(t), y) − dỸ (cθ(t), y0)]

where y0 is the fixed origin in Ỹ and where cθ is the geodesic ray such

that cθ(0) = y0 and cθ(+∞) = θ. Roughly speaking, BY (y, θ) measures

the (rescaled by the choice of the origin) distance from y to θ. Thus

the function y → BY (y, θ) inherits all the properties of the distance

function, in particular its gradient has norm equal to 1; moreover its level

sets (called “horospheres”) are limits of the spheres of radius d(cθ(t), y)

centered at cθ(t).

c) The Patterson-Sullivan measures y → µy

Let us denote by B̃(y, R) the geodesic balls of (Ỹ , g̃Y ) centered at y

and of radius R. We can then settle the

Definition 4.4. The entropy hY of (Y, gY ) is the number

lim
R→+∞

[
1

R
Log(V olB̃(y, R)] .

It is classical that this limit exists (when Y is compact) and does not

depend on the particular choice of y.

Let now µ0 be a finite measure on ∂Ỹ , one defines µy as e−hY BY (y,•)µ0.

Remark 4.5. Only some very particular choices of µ0 are suitable: in

fact, in order to obtain the equivariance property for F̃ , we want the mea-

sures to satisfy µγ·y = γ∗µy for any γ ∈ π1(Y ). This may be done by a ge-

ometric construction as follows: let µc
y be defined by µc

y = e−cd
Ỹ

(y,•)dvg̃Y
,
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where dỸ and dvg̃Y
are the riemannian distance and the riemannian mea-

sure of (Ỹ , g̃Y ); µc
y is a measure on Ỹ which is finite iff c > hY . We shall

consider µc
y as a family of measures on the compact set Ỹ ∪̃∂Ỹ and a clas-

sical compactness result says that there exists a subsequence cn → hY

such that 1
µcn

y0
(Ỹ )

µcn
y weakly converges to a measure µy, whose support

lies in ∂Ỹ . From the equality µc
y = e−c[d

Ỹ
(y,•)−d

Ỹ
(y0,•)]µc

y0
, one easily de-

duces that the subsequence cn may be chosen independant from y and

that µy = e−hY BY (y,•)µy0
.

The equivariance of y → µy then derives from that of y → µc
y, which

is a consequence of the invariance of dỸ and dvg̃Y
with respect to the

isometries γ ∈ π1(Y ).

d) The barycentre map

Let BX be the Busemann function of (X̃, g̃X); given µ ∈ M(∂X̃), the

function

Dµ(x) =

∫

∂X̃

BX(x, b)dµ(b)

may be seen as the mean value of the distance from the point x to

∂X̃. When KgX
< 0, the distance function dX̃(•, z) is convex and thus

x → BX(x, b) and Dµ are also convex when restricted to any geodesic.

Moreover, if the measure µ is sufficiently spread, more precisely if every

single point x ∈ ∂X̃ satisfies µ({x}) < 1
2
µ(∂X̃), then Dµ is strictly con-

vex and goes to +∞ at infinity. Thus Dµ attains its minimal value at its

unique critical point, denoted bar(µ) and characterized by the implicit

equation

(4.6) (dDµ)|bar(µ) = 0 .

e) Implicit formulas for F̃ and dF̃ :

Let us define R : X̃ × Ỹ → R by

R(x, y) = Df̄∗µy
(x) =

∫

∂Ỹ

BX(x, f̄(θ))e−hY BY (y,θ)dµ0(θ)

and let ∂1 (resp. ∂2) denote the derivatives with respect to the first (resp.

the second) parameter in X̃ (resp. in Ỹ ). By (4.2) and (4.6), F̃ is defined

by the implicit equation: ∂1R|(F̃ (y),y) = 0. By derivation, it comes

∂1∂1R|(F̃ (y),y)(dF̃ (u), v) = −∂2∂1R|(F̃ (y),y)(u, v)
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for any u ∈ TyỸ and v ∈ TF̃ (y)X̃ This writes

(4.7)

∫

∂X̃

DdBX
|(F̃ (y),f̄(θ))

(dF̃ (u), v)dµy(θ) =

= hY

∫

∂Ỹ

dBX
|(F̃ (y),f̄(θ))

(v)dBY
|(y,θ)(u)dµy(θ) ≤

≤ hY g̃X(Hy(v), v)1/2 g̃Y (Ky(u), u)1/2 ,

where Hy (resp. Ky) is the symmetric endomorphism of TF̃ (y)X̃ (resp. of

TyỸ ) associated to the quadratic form v → ∫
∂Ỹ(dBX

|(F̃ (y),f̄(θ))
(v))2dµy(θ)

(resp. to the quadratic form u → ∫
∂Ỹ (dBY

|(y,θ)(u))2dµy(θ)).

As the gradient of BX(•, f̄(θ)) at the point x is the unit vector nor-

mal to the horosphere of X̃ centered at the point f̄(θ) and containing

the point x, the second fundamental form of this horosphere is equal to

DdBX |(x,f̄(θ))(•, •). When (X̃, g̃X) is the real hyperbolic space, the sub-

group of the isotropy group of x which fixes the unit normal vector acts

irreducibily on the hyperplane tangent to the horosphere at this point,

thus the second fundamental form is diagonal and

DdBX = g̃X − dBX ⊗ dBX .

Plugging this in (4.7), it gives:

(4.8) g̃X((Id − Hy) ◦ dyF̃ (u), v) ≤ hY g̃X(Hy(v), v)1/2 g̃Y (Ky(u), u)1/2 ,

which induces (by a simple argument of linear algebra) the same inequal-

ity on determinants, that is

(4.9)
det (Id − Hy)

(detHy)1/2
|det (dyF̃ )| ≤ hn

Y (det Ky)
1/2 ≤ hn

Y

( 1

n
Trace Ky

)n/2

.

The fact that ‖dBY ‖ = 1 = ‖dBX‖ implies that Trace Ky = 1 =

Trace(Hy); on the other hand, the function A → det (I−A)

(det A)1/2 (defined on

the set of symmetric positive definite n × n matrices (n ≥ 3) whose trace

is equal to 1) attains its minimum at the unique point A0 = 1
n
I. Plugging

this in (4.9), it gives:

(4.10) |det (dyF̃ )| ≤
( hY

n − 1

)n

≤ 1 ,
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the last inequality deriving from the comparison theorem of R. L. Bishop

and the assumption RiccigY
≥ −(n − 1).

When |det (dyF̃ )| = 1, then inequalities (4.10) and (4.9) are equalities

and Ky = 1
n
I; moreover Hy = A0 = 1

n
I. Plugging this in (4.8) and

replacing v by dyF̃ (u), we deduce that dyF̃ is a contracting map whose

determinant is equal to 1, thus it is an isometry.

f) Extensions and generalizations

The general inequality of the Theorem 3.3 may be obtained even

more easily: considering the family µc
y on Ỹ defined in the Remark 4.5,

we define

F̃c(y) = Bar(f̃∗µ
c
y) ,

where we have modified the previous notion of barycentre: in fact, this

new barycentre Bar(µ) of a measure µ on X̃ is now defined as the unique

point where the function

∆µ(x) =

∫

X̃

d2
X̃

(x, z)dµ(z)

attains its minimum (we restrict ourselves to measures such that the

above integral is finite).

Replacing BY (•, θ) and BX(•, f̄(θ)) by dỸ (•, z) and dX̃(•, z), the

same proof as in 4.e works and gives:

(4.11) |det (dyF̃c)| ≤
( c

n − 1

)n

≤ (1 + ε)n ,

for c may be chosen as equal to hY +ε and hY ≤ n−1 by the comparison

theorem of R. L. Bishop.

Remark 4.12. In the Theorem 3.3 (at least in the case where the

curvature is negative), it is not necessary to assume the existence of

some map f : Y → X. In fact, given any homomorphism ρ : π1(Y ) →
π1(X), we can directly build the family of maps Fε : Y → X, satisfying

|Jac(Fε)|≤1+ε, such that the induced homomorphism [Fε] :π1(Y )→π1(X)

is equal to ρ.

Proof. Let us fix origins y0 and x0 in Ỹ and X̃, and define νc
y ∈

M(X̃) as
∑

γ∈π1(Y ) e−c d
Ỹ

(y,γ·y0)δρ(γ)·x0
, where δz is the Dirac measure of
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the point z ∈ X̃. We now define F̃c(y) as Bar(νc
y). Then the same proof

as above gives

|det (dyF̃c)| ≤
( c

n − 1

)n

≤ (1 + ε)n .

It is moreover easy to verify the equivariance of F̃c, for νc
γ·y =(ρ(γ))∗ν

c
y.

We have just seen that the inequality of the Theorem 3.3 (i) is some-

what easier to settle than the inequality of the Theorem 3.3 (ii). On the

contrary, the equality case of the Theorem 3.3 (i) is much more difficult

to settle than it was in the Theorem 3.3 (ii): the reason is that, in the

Theorem 3.3 (ii), we directly built the good candidate to be the isometry

F : Y → X while, in the Theorem 3.3 (i), we have to prove that the

limit F of the Fc : Y → X (when c goes to hY ) exists and is an isometry

(see [4] Sections 7 and 8 for a proof).

5 – Generalization to locally symmetric manifolds (cf. [4], [5])

We shall now assume that (X, gX) is a compact n-dimensional locally

symmetric manifold with negative curvature, i.e. a compact quotient of

the real or complex or quaternionic or Cayley hyperbolic space. The

entropy of such a manifold will be denoted by hX , and is equal to n+d−2

(where d is the real dimension of the corresponding real or complex or

quaternionic or Cayley field), when the locally symmetric metrics are

rescaled in order that the maximum of their sectional curvatures is equal

to −1.

a) Main theorem

The following theorem solves conjectures of A. Katok and M. Gromov

about “minimal entropy”

Theorem 5.1 ([4], [5], [6]). Let (X, gX) be a compact locally sym-

metric manifold with negative curvature and (Y, gY ) be any compact rie-

mannian manifold such that dimX = dimY ≥ 3, then any continuous

map f : Y → X may be deformed to a family of C1 maps Fε(ε → 0+)

such that V ol[Fε(A)] ≤ (hY +ε

hX
)n V ol(A) for any measurable set A in Y .

In particular, one has (hY )n V ol(Y ) ≥ |deg f |(hX)nV ol(X). Moreover,
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if (hY )n V ol(Y ) = |deg f |(hX)n V ol(X), then Y is also locally symmet-

ric and f is homotopic to a riemannian covering F (an isometry when

|deg f | = 1).

Remark 5.2. As in the Theorem 3.3 (ii), when (Y, gY ) has negative

curvature and f is a homotopy equivalence, we may build directly and

explicitely the limit F of the Fε’s. It satisfies V ol[F (A)] ≤ ( hY
hX

)nV ol(A)

for any open subset A in Y and is an isometry in the equality case.

Sketch of the proof. The first inequalities of (4.10) and (4.11)

(recalling that µc
y is a finite measure iff c > hY ) and their equality cases,

already proved the Theorem 5.1 and the Remark 5.2 when (X, gX) is

(locally) real hyperbolic. It easily generalizes to the other cases. For

example, let us assume that (X, gX) is (locally) complex hyperbolic, the

proof is exactly the same as it was when (X, gX) was (locally) real hy-

perbolic (cf. Section 4), except for the fact that DdBX is now equal to

g̃X −dBX ⊗dBX +(dBX ◦J)⊗(dBX ◦J). This modifies the formula (4.9),

but the only new problem is to prove that the function A → det (I−A−JAJ)

(det A)1/2

(still defined on the set of symmetric positive definite n×n real matrices

whose trace is equal to 1) still attains its minimum at the unique point

A0 = 1
n
I. This comes from the Log-concavity of the determinant which

reduces the problem to the previous one (see [4], Appendix B).

b) Application to the general Mostow’s rigidity theorem

A corollary is a unified proof of the following theorem, initially proved

by G. D. Mostow:

Theorem 5.3. Let (X, gX) and (Y, gY ) be two compact locally sym-

metric manifolds with negative curvature such that dimX = dimY ≥ 3,

then any homotopy-equivalence f : Y → Xis homotopic to an isometry.

Proof. Let g : X → Y be such that g◦f ≈ idY . By the Remark 5.2,

there exist deformations F and G of f and g such that

V ol[G ◦ F (Y )] ≤
(hX

hY

)n(hY

hX

)n

V ol(Y ) .

As the degree of G ◦ F is equal to 1, this inequality is an equality and we

are in the equality case of the Remark 5.2, thus F is an isometry.
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c) Application to dynamics

Two riemannian manifolds Y and X are said to have the “same

dynamics” iff there exists a C1-diffeomorphism φ between their unitary

tangent bundles UY and UX which exchanges their geodesic flows, i.e.

φ(ċv(t)) ≡ ċφ(v)(t) for any unit vector v ∈ UY , where cv is the geodesic

such that ċv(0) = v. The fundamental question is the following:

Conjecture 5.4 (believed to be by E. Hopf). Two riemannian

manifolds Y and X having the same dynamics are isometric.

In the absence of any additive assumption, this conjecture is false,

because theire exists non isometric manifolds all of whose geodesic are

closed with the same period (see [1] for more informations).

C. B. Croke and J. P. Otal proved this conjecture to be true when Y

and X are 2-dimensional and negatively curved.

A corollary of the Theorem 5.1 is the following

Theorem 5.5 ([4]). The conjecture is true in any dimension pro-

vided that one of the two manifolds is locally symmetric with negative

curvature.

Proof. As UY and UX are homeomorphic and n ≥ 3, the mani-

folds Y and X are homotopically equivalent. It is well known that the

volume and the entropy are invariants of the dynamics, thus the fact

that Y and X have the same dynamics implies that hY = hX and that

V ol(Y ) = V ol(X), which means that we are in the equality case of the

Theorem 5.1. This proves that Y and X are isometric.

d) Application to the Lichnerowicz’s conjecture

A riemannian manifold is said to be “locally harmonic” when all

geodesic spheres of its universal covering have constant mean curvature.

It is well known that any locally symmetric manifold of rank one is locally

harmonic. A. Lichnerowicz asked the following converse question:

Conjecture 5.6. Any locally harmonic manifold is locally symmet-

ric of rank one.

In the case where the universal covering X̃ is compact, the conjecture

has been proved by Z. Szabo ([25]), any locally harmonic manifold beeing

(in this case) locally symmetric with positive sectional curvature.
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In the case where the universal covering X̃ is non compact, it is

known ([1]) that the geodesics of X have no conjugate points, and the

conjecture is not significantly changed when assuming the sectional cur-

vature to be negative. However, E. Damek and F. Ricci ([11]) proved

the conjecture to be false (even for negatively curved locally harmonic

manifolds), but we may notice that their counter-examples are such that

X̃ and X are both non compact. Thus the only case where the conjec-

ture remained open was the case where X̃ is non compact and where its

quotient X is compact, which is answered by the

Corollary 5.7 ([4]). Any compact negatively curved locally har-

monic manifold is locally symmetric of rank one.

Proof. It was proved by P. Foulon and F. Labourie ([13]) that,

under these assumptions, the manifold has the same dynamics as a locally

symmetric manifold with negative curvature. We conclude by applying

the Theorem 5.5.
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Saint Martin D’Heres Cedex
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