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A short course on the Pirogov – Sinai theory

M. ZAHRADNÍK

Presentazione: Quali sono le caratteristiche delle interazioni molecolari che in-
fluenzano le transizioni di fase dando luogo a fenomeni di coesistenza di fase? La
domanda, che ha grande interesse teorico e applicativo, è ampiamente dibattuta in
Meccanica Statistica, dove ha trovato significative risposte nella teoria iniziata da Pi-
rogov e Sinai negli anni 70 sulla struttura dei sistemi magnetici a basse temperature e
che è tuttora oggetto di studio ed estensioni.

La formula di Gibbs, su cui si fonda la teoria moderna della Meccanica Statistica
dell’equilibrio, è il punto di partenza che stabilisce la connessione tra stati termodina-
mici ed interazioni microscopiche. Lo stato termodinamico è in questa teoria descritto
da una misura di probabilità, la probabilità di una configurazione di energia E risul-
tando proporzionale a exp{−E/kT}, essendo T la temperatura assoluta e k la costante
di Boltzmann. In un limite in cui T → 0, la probabilità si concentra sui minimi
dell’energia ed il caso di interesse per le transizioni di fase, è quando vi sia più di
un minimizzante. La teoria di Pirogov-Sinai, oggetto del presente articolo, studia la
struttura delle misure di Gibbs a temperature prossime allo 0 assoluto e dimostra, sotto
opportune ipotesi sulla struttura del sistema, che le fasi termodinamiche pure sono in
corrispondenza con i minimizzanti dell’energia, da cui differiscono per isolate e piccole
fluttuazioni. La teoria è molto potente e permette di descrivere accuratamente le ecci-
tazioni energetiche rappresentate in termini di “contorni” la cui forma e localizzazione
sono l’oggetto principale della teoria.

Le nozioni e le metodologie sviluppate nell’ambito della teoria di Pirogov-Sinai
sono a tutt’oggi fondamentali per intraprendere uno studio matematicamente rigoroso
della Meccanica Statistica di sistemi a basse temperature.

This work was partially supported by Commission of the European Union under con-
tract CIPA-CT92-4016 and also Czech Republic grants č. 202/96/0731 and č. 96/272.
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– Introduction

In this series of lectures I will explain in some detail the Pirogov-

Sinai theory for spin systems. The theory applies to general models of

equilibrium statistical mechanics at low temperatures and is one of the

most powerful methods developed from the pioneering and fundamental

work by Peierls, [36]. Indeed the Peierls approach still plays a leading

role in the rigorous theory of Statistical Mechanics and his idea of a

contour is the main keyword of the Pirogov-Sinai theory.

One should however remark that notions like the “Peierls approach”

and the “Peierls argument” have also a broader meaning. A possibility

to estimate the probability of a “contour” does not mean yet that we

are necessarily in the realm of the Pirogov-Sinai theory. The other main

ingredient of the Pirogov-Sinai theory is its ability to establish also the

cluster expansion of the partition function – which gives a sharp control

of its dependence on the region and on the boundary conditions.

Some historical notes: After the appearence of the Peierls paper in

the late thirties, there was almost no additional progress till the mid

sixties – when Dobrushin and Griffiths started the new, rigorous inves-

tigation of the subject. An important milestone in its development was

then the work of Minlos and Sinai, [4], with their introduction (and

the systematic investigation) of “contour models”, which played a crucial

role in the later development.

These papers, [4], refer to the Ising model and focus on the prob-

lem of phase transition. At that time, namely in the early days of the

Key Words and Phrases: Low temperature Gibbs states – Local ground states –
Contours – Peierls condition – Pirogov-Sinai theory – Contour functional – Metastable
models – Cluster expansions
A.M.S. Classification: 82A25
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mathematically rigorous theory of statistical mechanics, the coexistence

of phases was in fact the most interesting and new (in its mathematical

description) phenomenon. The restriction to the Ising model, on the other

hand, allowed to exploit the spin flip symmetry present in the system for

zero magnetic field, which greatly simplifies the whole analysis. (This

does not mean that there is no nontrivial information in [4] on the Ising

model also with nonzero magnetic field, where the spin flip symmetry is

broken.)

After [4], it was then just a question of time to generalize the notion

of contour models to other systems offering adequate symmetries of their

Hamiltonian. Gertzik, [5], formulated quite a general version of what

is now commonly called the Peierls condition, working on systems whose

Hamiltonians have such symmetries, but the method of Pirogov and

Sinai, [1], which appeared at the same time, has proved far more reaching.

Quite importantly, it applies also to the nonsymmetric case. The Pirogov-

Sinai concept of a contour model (more generally, of a contour model with

parameter) is an ingenious generalization of the original [4] notion, and

their method turned out to be a powerful and general tool for the rigorous

study of many lattice spin models at low temperatures.
The original version of the theory is described in [1] and also in the

book [2].
Since from the beginning this theory was by many “outsiders” viewed

as a “complicated tool to be used only when all the other, usual methods

(reflection positivity, correlation inequalities, . . . ) fail”. Such an atti-

tude has been slowly changing in the last 20 years, but the feeling that

the Pirogov-Sinai theory is a standard tool (as, for instance, the high

temperature expansions) is not yet widespread in the rigorous statistical

mechanics community(1).
Of course I can neither describe the theory in all its aspects nor men-

tion all its various applications which have appeared in the literature.

I will instead focus in these lectures on a version developed in Prague

starting from the paper [7] and which was then applied, for example,

to the study of interface problems. (These aspects, which will not be

treated here in detail, were very important to us in understanding the

need for a more flexible and powerful version of the theory.) After some

(1)There is hope that the Pirogov-Sinai theory may be also extremely useful in nonrig-
orous studies, but unfortunately, very little has been done so far in this direction.
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years and with the experience of several works where the Pirogov-Sinai

theory, in the version described in [7], had been applied to various situ-

ations, we recently derived in [9] (which exists as a preprint in mp arc,

Texas) a new, simpler and, at the same time, more powerful version of

the Pirogov-Sinai theory. The method of [9] originates from our stud-

ies of “stratified phases” with one or more interfaces, but, as it turned

out, it has wider applications. Even when applied to problems that can

be solved by previous versions of the theory it gives a new, simpler and

more detailed description. I thus apologize for not describing in detail

the original Pirogov-Sinai theory here, but rather the working version of

that theory which we are using at the present time.
Of course, the important ideas of the original Pirogov-Sinai approach

(and some additional simplifying ideas, like that of the “metastable en-

semble”, which originally appeared in [7]) are not much changed in the

new approach. I simply believe that these ideas can be now expressed in

a simpler and stronger form than before. In particular, instead of stress-

ing the importance of the estimates (from above and below) of various

(so called) diluted partition functions appearing in the theory, we now

supplement these estimates by more accurate (and more informative) ex-

pansions, as we have been able to replace bounds for partition functions

by expansion formulas practically everywhere. Inequalities now appear

in our text (with few exceptions like (4.40)) only when formulating the

Peierls condition or in statements that the terms of some series converge

quickly to zero.
The plan of my lectures is the following. In Sections 1 and 2, after

introducing some typical examples where the theory usefully applies, I

will present the core of the original Pirogov-Sinai theory in the special

case when there is a maximal number of coexisting phases. I will explain

the simplifying role that the symmetry has in these considerations, but

the emphasis will be always on the nonsymmetric case.
In fact the strength of the Pirogov-Sinai theory is in its ability to

treat nonsymmetric systems, also when “not all the candidates for the

translationally invariant phases either survive the thermodynamic limit

or a small change of the parameters of the model”.
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Note. It is erroneous, I think, to consider the Pirogov-Sinai theory

just as mere “means to construct the phase diagram”. It is far more

important that the theory gives really a detailed control on the behaviour

of all the “phases” in all possible situations (when they become either

“stable” or “unstable”) in infinite but also (and not less importantly) in

any finite volume(2).

There will be very few assumptions like “if the volume goes to in-

finity” resp. “if the temperature goes to zero”; the assumptions on the

size of a volume resp. on the smallness of the temperature (for which the

statement is valid) will be usually given explicitly.

In conclusion, Sections 1 and 2 cover the simplest applications of the

theory, namely Hamiltonians with a finite number of “local” ground states

which fulfill the (so called) Peierls condition. We will find the conditions

on the Hamiltonian (resp. how to adjust its parameters) for which a

maximal number of phases (each phase corresponding to a particular

local ground state) would coexist. We will also introduce the fundamental

notions of Pirogov-Sinai contour functional , and of contour model . The

latter is mentioned, however, mainly for “historical” reasons. In fact in

our successive analysis (in Sections 3 and 4) we will deviate from the

concept of a contour model, but the change will not affect seriously the

special situation that we investigate in Section 2 (after an overview of the

general models was presented in Section 1).

Section 3 is a general course on the Pirogov-Sinai theory in its present

“Prague” form. This version follows essentially the approach in [7] with

some important recent simplifications and strengthenings from [9]. We

abandon here completely the notion of contour models and the behaviour

of the “unstable phases” is studied in a more concise way. Instead of the

notion of a contour model and the estimates of its partition functions we

work with expansions of partition functions.

Note. Cluster expansions were always an important tool in the

Pirogov-Sinai theory. However, in the previous versions of this theory,

the expansions were viewed merely as an “auxiliary” technique which was

(2)The question about what happens in a finite volume (under given boundary con-
ditions) is nontrivial, even in the (typical!) situation where only one infinite volume
phase exists. The case when several phases coexist is just marginal from such a general
point of view, and of course it is desirable to be able to treat such a case together with
the previous one. This is something which the Pirogov-Sinai theory does!
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applied to the study of the contour models. One might conceive that the

cluster expansion will be possibly replaced by some other method which

gives comparably nice expressions of the partition functions. Namely, the

possibility to work with precise decompositions of the partition functions

into “bulk” and “boundary” (surface tension) terms has always been a

characteristics of the Pirogov-Sinai theory, yet one could hope that such

a precise information may be obtained by other methods than cluster

expansion.

This is not so in the approach I present here, where the concept of

an expansion permeates even the basic notions and the basic ideology of

the theory. It can be really said that the Pirogov-Sinai theory, in the

version I present, is just the method of organizing the expansions of low

temperature partition functions and the Pirogov-Sinai contour functional

F (more specifically, exp(−F )) is the most important quantity entering in

these expansions. Our exposition of the expansion method presented in

these lectures is selfcontained, and no reference to the literature on cluster

expansions is absolutely necessary. However, some previous knowledge of

the cluster expansion theory will be useful for the reader, and we remind

the (extensive) literature on the subject, see (we restrict only to references

having direct influence on this text) [22], [23], [24], [25], . . .

The expansions are studied in detail in Section 4 – where also some

additional, “topological” investigations of the structure of systems of

“large” contours (appearing under “unstable” boundary conditions) are

made. This concludes the development of the Pirogov-Sinai theory in its

basic form.

1 – General Setting

1.1 – Hamiltonians, Gibbs States

We study the Gibbs states on a lattice Zν in dimensions ν ≥ 2. We

consider some norm on Zν e.g. the norm

|t| = max
i

|ti|

and say that a subset Λ ⊂ Zν is connected if for any t, s ∈ Λ there

is a connecting path {ti}, i = 1, 2, . . . , n such that t0 = t, tn = s and

|ti − ti−1| = 1 for each i = 1, 2, . . . , n.
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Our basic set of configurations will be the set

X = SZν

where S is some (finite) set of “spins”. One usually takes the σ – algebra

B generated by the set of all “cylindrical” events, i.e. events measurable

in terms of some finite projection

x ∈ X → xΛ ∈ SΛ

where Λ is some finite subset of Zν .

By a state we mean a probability measure on (X,B).

A Hamiltonian on X will be usually given by some family of interac-

tions i.e. functions ΦA defined on SA, A ⊂ Zν . These interactions will

usually satisfy some further requirements like the translation invariance

– if ΦA commute with all the shifts of the sets A (sometimes only the

invariance with respect to some subgroup of Zν , possibly of lower dimen-

sion, will be assumed) and the finite range – namely if ΦA = 0 whenever

the diameter of A is bigger than some integer r. A Hamiltonian of a

configuration xΛ in a finite volume Λ ⊂ Zν , under a boundary condition

xΛc will be defined as

H(xΛ|xΛc) =
∑

A "⊂Λc

ΦA(xA).

Given a state P on (X,B) and boundary condition xΛc given on a set

Λc, or at least on the set

∂Λc = {t ∈ Λc : dist(t, Λ) ≤ r}

for a finite Λ, consider the conditional probability

P ((·)|xΛc)

which is defined uniquely for P almost all xΛc . We say that P is a Gibbs

state with respect to the Hamiltonian H if this conditioned probability

satisfies, for almost all xΛc , the condition

P (xΛ|xΛc) = Z−1(Λ, xΛc) exp(−H(xΛ|xΛc))
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where

Z(Λ, xΛc) =
∑

exp(−H(xΛ|xΛc))

the sum being over all xΛ ∈ SΛ.

Note. We always incorporate the inverse temperature 1
T

into our

Hamiltonian. In other words, the temperature will be just one of the

parameters in the Hamiltonian H (usually not to be explicitly mentioned

below). The fact that we are actually studying the low temperature case

will be formulated later, by the Peierls condition.

A Gibbs state P is said to be an extremal one if it is moreover inde-

composable in the sense that there are no other Gibbs states P̃ , P̃ ′ such

that P would be a nontrivial convex combination of P̃ , P̃ ′. In the fol-

lowing we will have to work almost exclusively with the extremal Gibbs

states. Namely, these will appear as the limits of finite volume Gibbs

states P ((·), xΛc) under a special choice of (constant) boundary condi-

tions (yielding an extremal Gibbs state, as we will see).

We will usually omit the adjective “extremal” in the following, and

call these Gibbs states also “pure phases” or simply “phases” (especially

if one has in mind the translation invariant Gibbs states). Later we will

call them occasionally also as the “stable phases” – as opposed to the

“unstable phases” which appear only in volumes of a limited size. The

change of the parameters in the Hamiltonian affects usually the “stabil-

ity” of the considered “phases”. This is the main question to be clarified

by the Pirogov-Sinai theory.

One of the basic keywords of the Pirogov-Sinai theory is the notion of

a (local) ground state. This is used for the configurations x satisfying the

property that whenever we change it “locally” – in a set not exceeding a

prescribed size – then its energy increases i.e.

(0.0) H(x̃) − H(x) =
∑

A

(ΦA(x̃A) − ΦA(xA)) > 0.

Notes. 1. Roughly speaking, such a “local” ground state x usually

turns out to be the true ground state of a suitable “original”, “unper-

turbed” Hamiltonian H̃ (whose slight perturbation the given “perturbed”

Hamiltonian H is).

2. This is noted here just for an intuition; we will not use the formal

notion of a local ground state below! Even the notion of a ground state –
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appearing when we drop any requirements on the size of the perturbation

(except of its finiteness) of x̃ with respect to x – will not be employed

below (on the formal level). We notice that all the formal requirements

to be later used in connection with the idea of a (local) ground state will

be contained in the formulation of the Peierls condition below.

To avoid misunderstanding: Of course, the idea to construct Gibbs

states around some “local ground states of the given model” (and these

“local” ground states are often the true ground states of some “unper-

turbed” Hamiltonian) lies in the very heart of the Pirogov-Sinai theory.

However, the very notion of a ground state is not used by the theory(3).

3. By a degeneracy of a (local) ground state one usually has in mind

the fact that several (local) ground states exist for a given Hamiltonian.

This is the interesting case; Namely, in the regions of phase uniqueness,

well developed methods based essentially on the Dobrushin’ s unique-

ness theorem (and later complete analyticity investigations by [15]) are

available.

On the other hand, in the regions where phase coexistence is expected

apparently no alternative to the Pirogov-Sinai theory is developed attain-

ing a comparable level of generality and universality of its applications.

The idea behind the Pirogov-Sinai theory is the following one: un-

der the condition that there are “sufficiently strong energetical barriers”

between different local ground states (formally, such a requirement will

be formulated as the Peierls condition – see below) one should construct

the expected (generally “unstable”) “phases” as some perturbations of

the corresponding local ground states. Moreover, one should acquire a

full control on how these “unstable” phases turn out to be “stable”(i.e.

(3)In practice, one usually starts with a given Hamiltonian (the “unperturbed” one,
often having some additional symmetries) whose ground states are to be found – be-
cause one expects that no other (even local) ground states will appear even for the
slightly perturbed Hamiltonian. One moreover expects to be able to construct Gibbs
states around some, at least, of these ground states, also for the perturbed Hamilto-
nians. Of course, the determination of all the ground states of a given “unperturbed”
Hamiltonian is a very important and often nontrivial task. We are not discussing this
question here (see e.g. [14]) – because this is an investigation which should precede the
application of the Pirogov-Sinai theory (giving proper candidates for the elements of
the “reference set” Q introduced below & showing that the Peierls condition will be
valid). However, such an investigation should not be considered, strictly speaking, as

a part of this theory; it just opens a way to its application!
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giving rise to the true, infinite volume Gibbs states) under the change of

the parameters in the Hamiltonian.

The specification of the “stable phases” thus constructed (for any

values of the parameters in the Hamiltonian) is what is usually called the

phase diagram of the given model.

1.2 – Contours

The central notion of the Pirogov-Sinai theory is the notion of a

contour (see below). The idea is to consider contours as some “barriers”

(more precisely connected components of these barriers) separating the

regions occupied by various local ground states. Though very important,

such a notion cannot obviously have some “canonical” definition. On the

contrary, the notion of a contour in various situation can differ, and one

could tailor it with respect to the peculiarities of the considered model.

For example, in the Ising model, contours are traditionally defined as

some connected paths separating the regions occupied by + or − spins.

Having this in mind (the fact that the definition of a contour can be

adapted to particular features of the model or to the precise formulation of

the problem, which has to be solved) we present here a general definition

of a (“thick”) contour suitable for all the situations outlined above. This

general definition appeared first in [1]. To begin, we have to specify the

collection of the local ground states of the general model above. Let us

assume that we have already found this collection. Denote their elements

as {xq, q ∈ Q} where Q ⊂ S and xq denotes the constant configuration

{xt = q, t ∈ Zν}.

Notes. 1. This setting is sufficiently general to cover also the case of

periodical local ground states. Namely, if there are also some periodical

local ground states of the given model then it can be assumed that they

have the same period G; G is understood here as a subgroup of Zν such

that the factor group D = Zν/G is finite. By defining the blocks of

original spins xD′ (D being identified with a suitable subset of Zν , D′ =

D + t where t ∈ G) as the spins of the new (blocked) model (with the

spin space SD), the original model is converted to a new one having only

constant local ground states.

2. We recall that the concept of a local ground state is not defined pre-

cisely. The decision whether a given constant (or periodical) configuration
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is a local ground state is therefore sometimes a little bit arbitrary. This

should not cause substantial problems: namely the “phases” constructed

around such “suspect” local ground states will be so “highly unstable”

that even the very notion of an unstable “phase” will lose a reasonable

sense here.

3. The nontrivial task of finding all the local ground states (of the given

model) is completely left out here. The fact is that the Pirogov-Sinai

theory actually only starts at the moment when the collection of all local

ground states is already given. The specification of the family xq is of

course a very important (in spite of some arbitrariness contained in the

choice of xq) but preliminary step of the investigation of the given model.

We just call by the Pirogov-Sinai theory everything which follows the

finding of the local ground states of the model.

Now let us define the central notion of the Pirogov-Sinai theory:

Definition of a contour. Say that a point t ∈ Zν is a q – correct

point of a configuration x ∈ X if for all the points s ∈ Zν from the r

– neighbourhood of t (recall that r denotes the range of interactions of

the given model), xs = q. A point which is correct for no q ∈ Q will be

called incorrect. The collection, denoted by B(x), of all incorrect points

of x ∈ X will be splitted into connected components. Having such a

component B ⊂ B(x), the restriction of x to B will be called a contour

of x. Contours will be denoted by symbols Γ.

The above mentioned set B will be called the support B = suppΓ of

the corresponding contour Γ.

Diluted configurations. A configuration x will be called diluted,

more precisely q – diluted, if all the contours of x have finite supports and

moreover, if we denote by ext the infinite component of the complement

of ∪ suppΓ then such a component is unique and all the components of

the set extc are also finite and we have x = q on ext.

Any collection {Γi} of contours which is the collection of all contours

of some diluted configuration will be called an admissible collection of con-

tours. On the other hand, any admissible collection determines uniquely

some diluted configuration i.e. we can use the notions of an admissible

system of contours and of a configuration from X as synonyma.
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In the following text, we will work almost exclusively with finite vol-

umes, which moreover will be often simply connected. In such a case

we will consider diluted configurations, which are equal to some q ∈ Q

outside of the given finite volume. More specifically, if Λ ⊂ Zν is given

and x is a q – diluted configuration satisfying the condition that the sup-

ports of all its contours have a distance at least 2 from Λc and moreover

Λc ⊂ ext we will say that x is q – diluted in Λ. Denoting by C(x) the

union of all supports of contours of x we will write the above condition

as C(X) ⊂⊂ Λ.

Diluted partition functions. The partition function over all

configurations xΛ which are q – diluted in Λ (compare (2.2) below for the

motivation)

(1.0) Zq(Λ) =
∑

xΛ: C(x)⊂⊂Λ

exp(−H(xΛ|xq
Λc))

will be called the diluted partition function.

This will be our main object of study in what follows. We will see

that the study of the usual partition functions given for general bound-

ary conditions can be, after all, reduced to the study of diluted partition

functions: in particular one can take the diluted partition functions when

defining the free energy as the thermodynamic limit of |Λ|−1 log Zq(Λ).

The convergence will be especially “nice” for some special boundary con-

ditions q, called stable in the later text.

Note. The reader maybe expects some “telescopic”, recurrent rela-

tions, connecting the diluted partition functions in various volumes – in

a way analogous to the classical DLR equations. We will minimize the

use of such relations in the sequel. See (2.9), (2.10) – however even these

relations will be avoided in Section 3 and we will never study directly the

relations between diluted partition functions in two different volumes(4).

In what follows, the volume Λ will be fixed for most of our exposi-

tion (better speaking, all possible shifts of Λ will be considered at once)

(4)DLR equations will be used only at the very end of our exposition. Having achieved
the control over the “external behaviour” of considered configurations (and this is the
main theme of the Pirogov-Sinai theory) we can supplement the additional information

(on what happens inside of the external contours) from the usual DLR equations.
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and only at the very end of our investigation the limit Λ → Zν will be

considered. Thus, most of our effort will be devoted to the study of sit-

uations appearing in a given finite volume (simultaneously with respect

to all its shifts) and it will be quite sensible even not to think about the

infinite volume limit which should be (possibly) taken at the very end,

after finishing the development of all the important constructions. Just

imagine that our “universe” Λ in (1.0) has the cardinality of 1027 or so.

The philosophy of the Pirogov-Sinai theory is that it should give full an-

swers to all reasonable questions concerning the behaviour of the system

in any given finite volume (and not only in the infinite volume limit)!

1.3 – Reformulation of the Hamiltonian

As we already noted the idea is to consider the contours as some

“barriers” separating regions occupied by various local ground states. We

will now define the energy of such a barrier, relating it also to the “ground

energy” of the coresponding “underlying configuration” xq. Define first

the second notion:

Density of energy of xq. Put

(1.1) eq =
∑

A: A%0

|A|−1ΦA(xA) ; e = min{eq}.

Note. There is some arbitrariness in the precise form of this formula.

For example the following quantity has the same value as before:

(1.1’) eq =
∑

A

ΦA(xA)

where the sum is over A having 0 as its “selected” point, in some fixed

translation invariant selection rule, given on all finite subsets of Zν . Let

us take, for concreteness, the lexicographical order on Zν and the selection

of the first point of A.

In the following we will say that Γ has an “external colour q” if Γ is

the only contour of a suitable q – diluted configuration; this configuration

(it is uniquely determined by Γ) will be denoted by xΓ in the sequel, and

we will write Γ = Γq in such a case.
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Contour energy. Put

(1.2) Φ(Γ) =
∑

A:A∩suppΓ "=∅
ΦA(xA)| suppΓ ∩ A| |A|−1.

The following quantities obtained by subtracting, from Φ(Γ), the “ground

energy” e| suppΓ| will be more relevant later when formulating the Peierls

condition: Put

(1.3) E(Γ) = Φ(Γ) − e| suppΓ| , Eq(Γ
q) = Φ(Γq) − eq| suppΓq|.

The latter quantity will be considered only for a contour Γ = Γq. Notice

that then we have the relation Eq(Γ) = E(Γ) − (eq − e)| suppΓ|.

With these notations one has the following expression of the Hamil-

tonian, which will play a fundamental role in the following.

Theorem 1. Let x be a configuration which is q – diluted in Λ(5).

Then

(1.4)

H(xΛ|xq
Λc) =

∑

q′∈Q

∑

t∈Λq′

eq′ +
∑

Γ

(E(Γ) + e| suppΓ|) + C(q, Λ) =

=
∑

q′∈Q

∑

t∈Λq′

eq′ +
∑

Γ

∑

t∈suppΓ

e +
∑

Γ

E(Γ) + C(q, Λ) i.e.

(1.4′) H(xΛ|xq
Λc) =

∑

q′
(

∑

t∈Λq′∪(∪
Γq′ suppΓq′

)

eq′ +
∑

Γq′
Eq′(Γq′

)) + C(q, Λ)

where Λq′ denotes the collection of all points of Λ which are q′ – correct.

The first sum on the right hand side of (1.4) resp. of (1.4′) is over all

q′ ∈ Q (including q), and the second sum is over all contours Γ of x

resp. over all q′ contours Γq′
of x. The constant is equal to C(q, Λ) =

H(xq
Λ|xq

Λc) − eq|Λ|.

(5)Or, more generally, such that all its contours have supports in Λ.
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1.4 – The Abstract Pirogov-Sinai Model

Let us rewrite once again (1.4), from now on without the constant

term C(q, Λ) (which has no effect on the corresponding Gibbs measure):

(1.5) H(xΛ|xq
Λc) =

∑

q′

∑

t∈Λq′

eq′ +
∑

Γ

(E(Γ) + e| suppΓ|).

Recall that Λq′ denotes the collection of all points of Λ which are q′ –

correct and the sum is over all q′ ∈ Q including the “external colour” q

of xΛ.

Forget now the way how contours were constructed and apply the

following, more general approach to the problem of studying the “diluted

Gibbs measures” P q
Λ corresponding to the Hamiltonian (1.5), with the

partition function over all q – diluted configurations in Λ:

(1.6) Zq(Λ) =
∑

xΛ

exp(−H(xΛ|xq
Λc)).

Namely, imagine that contours are some abstract, “connected” objects

(the exact meaning of the word “connected” can be specified for any

particular model; at the moment we may assume that it means the usual

connectedness of the supports of contours; as above) which are “coloured”

on their boundary by colours from Q, such that any component of the

boundary of the set suppΓ has a constant colour q′ ∈ Q.

Admissible family of contours. By an admissible family of con-

tours we will mean a family {Γi} of contours which has the following two

properties: 1) Contours of the system do not mutually “touch” (e.g. in

the sense that dist(suppΓi, suppΓj) ≥ 2 if i )= j) and 2) The prescrip-

tions of the colours outside ∪ suppΓi are not in conflict i.e. there is a

mapping from (∪ suppΓi)
c to Q which is constant on each component

of (∪ suppΓi)
c and which is also in accordance with the “colour” of the

given component, induced by the neighbouring contours of the system.

Abstract Pirogov-Sinai model. Having defined a family of

“colours” Q, a family G = {Γ} of allowable contours of the model, some

quantities {eq, q ∈ Q} and {E(Γ)} we consider, in any volume Λ, a model

whose configurations space is the collection of all admissible systems of

contours in Λ and whose Hamiltonian is given by (1.5). This will be called
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the abstract Pirogov-Sinai model – corresponding to the given choice of

G and the given quantities {eq, q ∈ Q} and {E(Γ)}.

If G and also all the quantities eq and E(Γ) are translation invariant

then we will speak about the translation invariant abstract Pirogov-Sinai

model. This will be mainly the case considered in these lectures. In

fact the assumption of translation invariance can be relaxed both for the

quantities E(Γ) as well as for eq
(6).

Note. We are proposing here the following ideology: do not think

about the problem in the usual language of Hamiltonians (0.0), DLR

equations etc. Forget how contours were defined (they could be possibly

defined also in another way than before, tailored better to the particular

situation) and work with them as with some abstract objects.(7) Of course,

one needs some assumptions about the behaviour of the quantities eq and

E(Γ). These assumptions can be formulated in a concise way: Namely,

the following is really the only assumption which is needed to apply the

Pirogov-Sinai machinery (developed below) on a given abstract Pirogov-

Sinai model.

1.5 – The Peierls Condition

Assumption. Assume that there is some τ * 1 such that for any

contour Γ ∈ G we have the inequality(8)

(1.8) E(Γ) > τ | suppΓ|.

Notes. 1. Recall that, whenever we are in the case of a reformulated

spin model, we are including the inverse temperature into the Hamilto-

nian. Typically, E(Γ)/| suppΓ| is then of the order J/T where J denotes

(6)The case of nonconstant eq requires some modifications of notations in the formulas
below. The quantities eq are usually the leading ones, “more important” than E(Γ)
because the latter appear usually in the exponential form exp(−E(Γ)); however we have
to control the same kind of sums in both cases. See [12] and [13] for the discussion of

the problems thus arising. Detailed versions of these papers are in preparation.
(7)Once again, the ideology we propose is: Forget the notion of a spin & of a configura-
tion from X and replace these primitive notions by other primitive notions of a contour
& of an admissible system of contours!
(8)In the literature, such a condition is often formulated only with respect to all true
ground states of the original, “unperturbed” (and often more symmetric) Hamiltonian,
requiring a lower bound CN , N being the cardinality of the union of all contours of x̃,
for the right hand side of (0.0). However, the formulation (1.8) based on the notions

of eq and E(Γ) is more adequate for a general Hamiltonian.



[17] A short course on the Pirogov – Sinai theory 427

the “strength of the interactions” and T is the temperature of the original

spin model. See the examples in the forthcoming section.

2. If the “connectedness” of Γ has some “less standard” meaning (than

above) then the right hand side of (1.8) should be replaced by another

quantity, having the meaning of a “minimal number of points needed to

make the set suppΓ connected”.

3. Actually, what will be really needed is not (1.8) but the inequality,

with another τ̃ * 1 (in the former case we actually have τ̃ = τ − log |S|)

(1.9)
∑

Γ:suppΓ=G

exp(−E(Γ)) ≤ exp(−τ̃ |G|).

It is apparent that for contours constructed from the spin model as above,

this means (for |S| not too big and τ̃ slightly smaller than τ) practically

the same as (1.8). However, for large |S| (or for contours defined in some

more exotic way) it is sometimes advisable to work directly with (1.9).

4. The exact meaning of the relation τ * 1 depends on the dimension of

Zν . For ν = 3 this means something like τ > 100. See below.

5. The important observation is that the Peierls condition remains to be

valid for all sufficiently small perturbations of the given model (assuming

that for that model this condition was already established).

6. Peierls condition sounds quite natural and there was even a hypoth-

esis for some time that such a condition always holds in sufficiently low

temperatures (to make τ sufficiently big). The counterexample is due

toPecherski [6]. However, in practise, the nonvalidity of the Peierls

condition usually means that we just failed to find some local ground

states of the given model! In other words, our choice of Q was inappro-

priate. Either too small or, possibly, too big. To illustrate the former case

(the latter one can also appear – see the discussion below – but is less im-

portant in practise) imagine the Ising model at a small temperature, with

an external field whose intensity is even smaller (than the temperature).

It is a completely erroneous idea to construct the abstract Pirogov-Sinai

model only around the true ground state in such a situation! The other,

“slightly unstable” local ground state must be also included into Q; oth-

erwise the established constant in the Peierls condition (1.8) would be too

poor (namely for the contours marking large droplets of the slightly insta-
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ble “forgotten” state) to allow, except of extremely small temperatures,

the applicability of the Pirogov-Sinai method.

7. The collection Q should not be also too big. Namely, it could happen

that with a too big reference set Q one also would have difficulties with

establishing (1.8). Here, we do not mean the possibility that we would

not be able to check (1.8) even for those contours Γq with eq roughly

equal to e (this would be a real catastrophe; see the point 6 above) but

we have in mind the case eq − e * 1. Then the remedy is easy (if the

contour energy E(Γq) is not very low): Just remove these q from Q and

include also the collection of all q – correct points (for such q) of any

configuration x to the set B(x) of its incorrect points. An example of

such a situation is the Ising model with a very strong magnetic field, or

Blume Capel model with strong one site potentials. Let us look more

closely on some of these examples now:

1.6 – Some Examples

Ising model. This is the model where the notion of a contour was

invented (for the ferromagnetic case; by Peierls, 1936). Notice that the

usual definition of an Ising contour in the ferromagnetic case (as a path in

the dual lattice) is not identical to the definition of a contour given above,

when applied to the Ising model (r = 1). However, the interpretation

of the usual “contour model” (constructed for the Ising model) as an

abstract Pirogov-Sinai model is of course possible, if the notions like

“support of a contour” resp. the property “contours do not touch each

other” are defined properly(9). It is probably well known to any reader of

this text which was already exposed to some presentation of the classical

Peierls argument that for the Ising model, the Peierls condition is valid for

sufficiently small temperatures. In fact, the energy E(Γ) is proportional

to the length of the contour Γ in this case(10) and the quantities e+, e−
are equal to the ± intensity of the magnetic field. (It is a good idea to

imagine that all eq are roughly equal to zero when trying to grasp the

meaning of (1.5).)

Notice that any finite range perturbation of the ordinary Ising model

can be transcripted to a suitable abstract Pirogov-Sinai model. If the

(9)There are several ways how to do that; for example the connectivity “over the cor-
ners” may be or may be not considered etc.
(10)Of course, the antiferromagnetic case can be also treated by contour methods.
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perturbation is sufficiently weak then the validity of the Peierls condition

will not be destroyed.

Blume Capel Models. This is a canonical example for the Pirogov-

Sinai theory (together with the more general multiple well potential men-

tioned below). It consists of a variety of models whose properties depend

on the particular choice of the numerical constants below. We consider

the three spin case, the spin space being denoted by S = {−, 0,+}. The

interactions are again the nearest neighbour ones, and they are given as

follows:
Φ{t,s}(±, ±) = Φ{t,s}(0, 0) = 0,

Φ{t,s}(±, ∓) = α > 0,

Φ{t,s}(±, 0) = α± > 0.

The one spin interaction (“external field”) is

Φt(q) = aq where q ∈ S.

i) For a± = 0 and a0 > 0, this is a simplest discrete version of the

“double well model” (which appeared first in the euclidean field theory):

the reasonable choice of the set Q is then (for a0 not too small and for

sufficiently small temperatures) Q = {+, −}(11). We have

e+ = e− = 0; (& possibly e0 = a0)

and (the reader is kindly asked to check this inequality)

E(Γ) > C| suppΓ|

where C = min{a0,
α
2
,

α±
2

} (resp. C = min{α
2
,

α±
2

} if 0 is not included

to Q).

ii) Rather trivial case is obtained for a0 = 0 if a± > 0 are large. Taking

Q = {0} we obtain an object called a “polymer model”, where com-

patibility of contours means just the compatibility of supports and no

“outside colours” of the contours have to be discussed(12).

(11)If a0 is small then it may be advisable to include 0 into Q. See the point iii).
(12)Similar situation is obtained for the Ising model with a strong magnetic field h.
Then it is advisable to take the one element set Q = {sign h}.
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iii) The case when all the quantities a0, a+, a− are small (compared to

α±, α) is the most interesting one. It was first treated by Bricmont and

Slawny [14]. Then it is natural to take Q = S and for any sufficiently large

α, α± (sufficiently large is meant after being divided by the temperature;

this remark should be applied everywhere in the following examples!) one

can adjust a±, a near zero such that the coexistence of all three phases

takes place.

Consider, to be more specific, the case 1 , α+ = α− , α. Then

the 0 –th phase has obviously “more freedom” to make the smallest (one

point) perturbations. More specifically these perturbations (from 0 to

±) “cost the same” as 0 perturbations of the + resp. − regime(13) but

(because of the double possibility of the choice ± of the sign) the entropy

of these perturbations in the 0 regime is almost twice as big as the entropy

of the 0 perturbations of the + resp. − regime.

This, of course, should be compensated (to keep the coexistence of

all three phases) by requiring that a0 is suitably (slightly!) greater than

a+ = a− .

Finally, in the very special case when all the quantities α, α± are

the same then also the quantities a, a± should be the same to obtain the

phase coexistence. The model is symmetric in that case.

Polymer models. The class of so called polymer models is a very

special case of the abstract Pirogov-Sinai model, for Q containing one

element only. Of course there are no phase transitions in such a model –

but the question of constructing the cluster expansions for these models

is very important for us – as we will see below(14).

Below, in Section 2, we will assume some familiarity with the cluster

expansion theory. However, later in Section 3 we will present another,

more general, selfcontained approach to the Pirogov-Sinai theory which

incorporates a variant of the usual cluster construction methodology (pre-

sented here in a spirit of the recent reference [25]). When applied to

polymer models, our method of Section 3 will be just a variant of such a

cluster expansion method.

(13)We omit, in this approximate discussion, the energetically more expensive pertur-
bations going from + to − and vice versa.
(14)We ignore here completely the fact that polymer models are important also in the
study of high temperature situations.
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Other examples. Among many other examples (see the literature

on the subject) of models where it is advisable to use the Pirogov-Sinai

theory we mention here the Potts model [49] and, perhaps most typically,

the “double well potential” models of the quantum field theory (on a

discrete spin space(15) ).

Our next strategy. The exposition given so far in Section 1 will

be in the sequel developed in two separate (and more or less independent)

ways. The first one (presented in the forthcoming Section 2) will give a

brief explanation of the essence of the original Pirogov-Sinai approach

in the situation where “all the possible phases coexist”. By the last

statement one means the situation where for each q ∈ Q there exists a

“q – like phase” characterized by the following property: Almost all its

configurations have the following structure: their spins have “mostly the

value q” and the “islands” formed by contours of the given configuration

are relatively rare (though they are distributed with a uniform density

throughout the whole lattice).

Namely, this is the case where the original Pirogov-Sinai idea of con-

structing the so called contour functional (and the contour model) is seen

in a most simple and most characteristic situation.

We will not follow here the other original Pirogov-Sinai constructions

like the parametric contour models. Instead, we will rather apply, starting

from Section 3 , quite a different (and arguably, a stronger one) approach

based on [7] and [8].

2 – The coexistence of all phases. The contour model

Notations. Given a contour Γ (more generally, an admissible sys-

tem) with a support suppΓ denote by ext(Γ) resp. int(Γ) the only infinite

component of the set (suppΓ)c resp. the collection of all finite compo-

nents of (suppΓ)c. Denote by

(2.1) V (Γ) = (extΓ)c = suppΓ ∪ intΓ.

Contour partition functions. Denote by XΓ the collections of

all configurations y ∈ X which satisfy the property that Γ belongs to the

(15)The continuous spin case is more technical ([8]) and it will be treated in a continu-

ation of these lectures [50].
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collection of all their contours and moreover all the other contours of y are

inside V (Γ). Let q be the external colour of Γ = Γq. For any x ∈ XΓ and

any volume V ⊃ V (Γ) take the Hamiltonian H(xV |xq
V c) where q denotes

the external colour of Γ = Γq and the Hamiltonian is given, as always in

the following, by (1.5). Notice that we have the value e| suppΓ| “below”

suppΓ (in addition to E(Γ)). Take the corresponding partition function

(2.2) Z(Γ) = Zq(Γ) =
∑

x∈XΓ

exp(−H(xV |xq
V c)).

This partition function is called “crystallic” in the original Pirogov-Sinai

notation.

The following is really the central notion of the Pirogov-Sinai theory .

However, the definition given below causes no difficulties only in the “co-

existence regime” we are studying below; other aspects of this notion will

be discussed later, in Section 3.

The contour functional. Define the quantity, called the contour

functional(16) of Γ = Γq

(2.3) F (Γ) = log Zq(intΓ) − log Zq(Γ) − eq| suppΓ|.

The following statement follows immediately from the definition of

F (Γ) and from the additivity of the Hamiltonian (1.5) as a function of a

volume Λ:

Proposition. The quantity F (Γ) can be expressed as follows (recall

(1.4)):

(2.4) F (Γ) = Eq(Γ) + log Zq(intΓ) −
∑

q′∈Q

log Zq′
(intq′ Γ)

where intq′ Γ denotes the union of the components of intΓ which “have

the colour q′” and the last sum is over all q′ ∈ Q (including q).

(16)F (Γ) is chosen just to fit the equation (2.9) below!
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Notes. 0. The value(s) of q′ for which intq′ Γ is nonvoid will be

called the interior colour(s) of Γ. Typically, intq′ Γ is nonvoid for only

one q′ ∈ Q. If, in such a case, q′ = q then we will have F (Γ) = Eq(Γ)

because the logarithms cancel each other in (2.4).

1. In general, a good first approximation (neglecting all the possible

contours inside of Γ) to the quantity F (Γ), Γ = Γq is the quantity

(2.5) F̃ (Γ) = Eq(Γ) +
∑

q′∈Q:q′ "=q

(eq′ − eq)| intq′ Γ|.

In fact, this is quite an accurate approximation of F (Γ) for typical(17),

not too big contours; it is even exact for contours not exceeding some

limited size (such that there is no place for other contours in the volume

intΓ).

2. One could call the quantity F (Γ) as the “work needed to install the

contour Γ”. Notice that “more stable” colour inside Γ (roughly: the

negativity of the quantity (eq′ − eq)) means that F (Γ) < E(Γ) and vice

versa

The symmetric case. Assume that we have some group of trans-

formations G acting on Q in a transitive way i.e. such that any element

of Q can be mapped by a suitable transformation from G to a selected

element of Q. Assume that G acts also, in some way (which is in accor-

dance to the already determined images of the outside and inside colours

of Γ), on the family of all contours of the model. (Notice that we for-

mulate here the symmetry of our Hamiltonian in a more general setting,

in terms of the abstract Pirogov-Sinai model.) Assume that both eq and

E(Γ) are invariant with respect to the action of G. Then also the parti-

tion functions Zq(Λ) do not change after applying the group actions from

G to them and we have again (compare Note 0 above) the simple relation

(2.4 S) F (Γ) = Eq(Γ) = E(Γ).

(17)By a “typical” contour we mean here a contour which is “not dangerously large” –
in the sense that the volume term in the right hand side of (2.4) could not erode Eq(Γ)
substantially. We will see that for the contours which are large in such a sense (these
will “mark the jumps to the droplets of other, more stable phases”), the quantities
F (Γ) will not be introduced at all (or at least not as straightforwardly as above).

These “residual contours” must be treated in a different way.
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This includes the Ising ferromagnetic case with zero magnetic field and

also some of the other popular examples – like the symmetric Blume

Capel model (the case where +, −, 0 play exactly the same role), low

temperature Potts model etc. Of course, in such special cases the whole

Pirogov-Sinai theory is reduced just to an ordinary “Peierls argument”

which can be applied whenever the Peierls condition holds, with a suffi-

ciently large τ . Our emphasis will not be on such (trivial from the point

of view of development of the general Pirogov-Sinai theory) cases.

The contour model. Given q ∈ Q consider the polymer model

formed by the contours Γ = Γq (having the external colour q) and the

weights

(2.6) wΓ = exp(−F (Γ))

where F is some “abstract functional of contours” (not necessarily always

defined exactly by (2.3), see below).

We recall that configurations of such a polymer model are defined as

arbitrary collections of contours {Γi} such that the sets suppΓi do not

touch each other i.e. the relation dist(suppΓi, suppΓj) > 1 is fulfilled

for any pair i )= j, and the weight of any polymer configuration {Γi} is

defined as the product

(2.7)
∏

i

wΓi
.

We notice that we are studying here and everywhere (most notable ex-

ception will be the section dealing with general polymer models) mostly

the translation invariant weights wΓ i.e. the situation when the weights

(2.6) are invariant with respect to shifts in Zν .

The polymer model with the weights (2.6), defined for all possible

configurations of q–contours will be called below the q –th contour model

corresponding to the Hamiltonian (1.5). (This is in accordance with the

terminology of [2]; at least in the coexistence regime.)

Note. This is, more or less, a formal algebraic object up to now.

However, to obtain some genuine control over the behaviour of such mod-

els (in particular, to obtain some really useful information from the al-

gebraic relations (2.10) below) one needs some information about the
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behaviour of the weights (2.6) – which will be available only later. Thus,

one should have in mind that the following relations hold universally

(they actually form the basis of the notion of a contour model in the

traditional Pirogov-Sinai theory!) –but a really useful information can

be extracted from them only in special cases studied below.

Proposition (Equivalence of ensembles). Denote by Zq
Λ the parti-

tion function

(2.8) Zq
Λ =

∑

{Γi}

∏

i

wΓ
q
i

where the sum is over all admissible collections of polymer (i.e. q–

contours; even the nonexternal ones !) Γq
i such that ∪iΓ

q
i ⊂⊂ Λ and

the right hand side is from (2.6). F (Γ) is given by (2.3). Then

(2.9) Zq(Λ) = exp(−eq|Λ|)Zq
Λ.

The proof is done by the induction over the size of Λ: assuming

already the validity(18) of (2.9) for the interiors of contours appearing

in Λ one can write the partition function Zq(Λ) as the sum (over all

collections of external contours {Γi}) of the products:

Zq(Λ) =
∑

{Γi}
exp(−eq| ext |)

∏

i

Z(Γi)

(see (2.2)) which is equal to (the products below are over all Γi and all

q′ ∈ Q)

∑

{Γi}
exp(−eq| ext |)

∏

i

exp(−Eq(Γi) − eq| suppΓi|)
∏

q′

∏

i

Zq′
(intq′ Γi)

and this last expresion is equal (after inserting (2.4)) to

(2.10)

∑

{Γi}
exp(−eq| ext |)

∏

i

exp(−F (Γi) − eq| suppΓi|)Zq(intΓi) =

= exp(−eq|Λ|)Zq
Λ

(18)The validity of (2.9) for very small volumes (not containing any contour) is trivial.
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by the induction assumption for Zq(intΓi).

Corollary (Probabilities of external events). The probability of

any event of the type “ Γ is an external contour of a configuration in Λ”

is the same both in the diluted ensemble with the partition function Zq(Λ)

as well as in the contour ensemble with the partition function Zq
Λ.

Note. This concept, namely the description of an “external be-

haviour of a configuration” is quite characteristic for the Pirogov-Sinai

theory. The information about the behaviour of the given model (1.5)

inside of the contours is, of course, not directly available from the corre-

sponding contour model. However, knowing the probabilities of external

contours one can compute the probabilities of the events inside just by

computing the conditional Gibbs distributions.

Now, the question is what contour models offer a reasonable (for

Λ → Zν) “external behaviour”. This, of course, depends on the values

F (Γ)(19).

A standard condition assuring the “stability of q” is the following

Peierls type condition for the contour functional. In fact, the stability of

q requires such a condition; this will be clarified later.

Peierls type assumption for F . Below we are studying only the

situations where there is a τ̃ * 1 such that for any contour Γ which can

appear in the considered ensembles,

(2.11) F (Γ) > τ̃ | suppΓ|.

Namely, we will see that F (Γ) = F (Γq) may drop almost to zero if

q is “unstable” i.e. if the corresponding “q – th phase” does not exist.

However, this is not the behaviour to be studied here, in Section 2:

(19)In Section 2, we are interested only in the behaviour which will be later called the
“stability of all q ∈ Q”; in other words we assume that for any q ∈ Q the corresponding
“q –th phase” will exist; and, in any volume, a typical configuration of this phase will
look like a “sea” of the values q with relatively rare “islands of perturbations”, marked
by the external contours of the given configuration.
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2.1 – The strategy of solving (2.4) in the coexistence case

The original Pirogov-Sinai strategy of solving this particular situation

(all q “stable”) can be now formulated as follows: If the Hamiltonian

H = H(λ) in (1.5) depends on some n parameters λ ∈ Rn (in general one

needs at least n ≥ |Q| − 1 parameters to formulate the theorem below),

adjust the parameters λ such that all q will become “stable” (in the above

mentioned sense).

This will lead to some nonlinear integral equations for F (Γ) – and we

will look for the parameters λ for which these equations have a solution

satisfying (2.11).

Note. Below, we are using some rudiments of the cluster expansion

theory. The reader not acquainted with this theory can find more details

in Section 4, where an independent exposition of the elements of this

theory will be given.

In what follows (including Polymer Lemma below) we mean by a

contour Γ a contour Γq with a fixed “colour” q.

Definition of a cluster (of contours). A cluster T of contours

is a function φ : G .→ N (with a connected support; see below) defined on

the collection G of all contours satisfying the following condition: Denote

by Supp T resp. supp T the collection resp. union of the supports of all

contours of G for which φ(Γ) > 0. The collection of sets Supp T will be

called the “Support” of T . By saying that T is a cluster we will mean

that the support supp T is connected .

The notion of a cluster and of its support can be defined also recur-

sively as follows: i) any contour is a cluster ii) if Ti , i > 0 are clusters

and Γ is a contour such that dist(suppΓ, supp Ti) ≤ 1 then the collection

T = Γ + {Ti} is again a cluster; the + operation should be understood

in the sense of the indicators φ above. (If we replace contours by their

supports we obtain above a recursive definition of the collection SuppT .)

The cardinality |T | of a cluster T represented by a function φ will

now be defined as

(2.12) |T | =
∑

Γ∈T
φ(Γ)| suppΓ|

(or, recursively, as | suppΓ| +
∑

i |Ti|).
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Thus, one can interpret clusters as some “connected conglomerates of

contours” i.e. some collections of contours(20) which are indecomposable

into two subcollections – such that any contour of one subcollection would

be distant from any contour of the other subcollection.

Polymer Lemma. If the weights of the polymer model (“polymers”

are just contours here and we denote them by symbols Γ) satisfy assump-

tions of the type (with small ε)

(2.13) |
∑

Γ:suppΓ=T

wΓ| ≤ ε|T |

then the polymer partition function ZΛ = 1 +
∑

{Γi}:∪i suppΓi⊂⊂Λ

∏

i

wΓi
can

be expanded as the sum over clusters T ⊂⊂ Λ (21)

(2.14) log ZΛ =
∑

supp T ⊂⊂Λ

αT wT

where αT are some “combinatorial coefficients” satisfying a bound

(2.15) |αT | ≤ C |T |

for a suitable constant C depending only on the dimension ν. The quan-

tities wT are given by formulas

wT = wΓ

∏

i

wTi
resp. =

∏

Γ:φ(Γ)>0

w
φ(Γ)
Γ

and therefore satisfy the estimates

(2.16) |
∑

wT | ≤ (ε) |T |

where the summation is over all clusters with the same collection Supp T
(of the supports of elements of T ). The sums in (2.14) are quickly con-

vergent:

(2.16 S)
∑

T : supp T ⊃S

|αT wT | ≤ (ε′)|S|

(20)Recall once again that contours in the cluster are not required to be mutually
different; φ is in general an integer valued function having possibly also values > 1 i.e.
multiple copies of the same Γ are allowed.
(21)Recall that this means dist(supp T , Λc) ≥ 2.
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with another small ε′. Define the quantity st (the “density of free energy

of the polymer model at the point t”) as

(2.17) st =
∑

T : t∈supp T
| supp T |−1αT wT .

Then the following important approximation for log ZΛ ≈ ∑
t∈Λ st is ob-

tained. Denote by ∆(Λ) the quantity defined by the equation

(2.18) ∆(Λ) = log ZΛ −
∑

{t}⊂⊂Λ

st.

Then ∆(Λ) ≈ 0 more precisely it satisfies the bound, with another small ε′′

(2.19) |∆(Λ)| ≤ ε′′|∂Λ|.

If we moreover write the weights wΓ as wΓ = exp(−F (Γ)) and define the

norm

||F || = sup
Γ

|F (Γ)(V (Γ))−1|

then all the quantities st = st(F ) and ∆(Λ) = ∆(Λ, F ) are Lipschitz

functions of F :

(2.20) |st(F +F ′)−st(F )| ≤ ε||F ′|| ; |∆(Λ, F )−∆(Λ, F +F ′)| ≤ ε′||F ′||

assuming that both F and F + F ′ remain in the regime (2.11). Finally,

if all the weights wΓ depend analytically on a complex parameter λ from

some open set O ⊂ C such that (2.13) remains valid for all these λ then

all the functions st are analytical in λ ∈ O. The same is true for the

quantities ∆(λ) and they moreover fulfill (2.19) for all λ ∈ O.

Results of the type (2.14) – (2.16) are proven in almost any text

on cluster expansions. (We will give an independent proof later, in Sec-

tion 4.) The relation (2.19) is an easy consequence of the smallness of the

terms wT & of the quick convergence of the series (2.16). An analogous

argument can be used for the sums of the derivatives of wT with respect

to F ; this yields (2.20). (Take the segment {tF +(1− t)F ′} and estimate

the derivative with respect to t.)
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Notice that for a translation invariant model, all the quantities st

and ∆ are also translation invariant. For a q – contour model, we will

write st ≡ s more precisely as sq in the following.

The investigation of (2.4) continued. Let us conclude our

investigation of the equation (2.4): From now on we are again considering

only the translation invariant case (the setting of Polymer Lemma was

more general, also for translation noninvariant models!), and we are here

also assuming (2.11) to hold all the time. Put

(2.21) hq = eq − sq.

We will se later that this is equal to the limit (in the van Hove sense)

lim(|Λ|−1 log Zq(Λ)). Write (2.4) as follows: Using (2.9) for the expression

of the partition functions on the right hand side of (2.4), using the ex-

pression (2.18) from the above lemma, and forgetting the constant terms

(hq − hq′) | intq′ Γ| we can rewrite the equation (2.4) as follows:

(2.22) Fformal(Γ) = Eq(Γ) + ∆̃(Γ)

where, for Γ = Γq, ∆̃(Γ) = ∆̃(Γ, Fformal) is given as

(2.23) ∆̃(Γ) = ∆q(intΓ) −
∑

q′
∆q′(intq′ Γ)

and where ∆q(intΓ) is from (2.18). We consider F , written here more

precisely as Fformal, as an “independent variable” not defined by (2.3),(2.4)

but instead of it satisfying the integral equation (2.22). The quantity

∆(Γ) is then computed by (2.23)) from Fformal.

We stress that our forgetting of the (generally, of course, the most

important!) terms (hq − hq′) | intq′ Γ| above means that we are willing

to give the interpretation to the results obtained below only in the case

when all hq, q ∈ Q are the same.

Then, (2.22) can be really tracted not only as an integral equation for

the “unknown functional” Fformal – which can be solved (iteratively) by

the Banach fixed point theorem – but also as an equation from which the

“physical value” of F , determined by (2.3) and written more precisely as

F = Fphys can be computed: Namely, we solve for any Hamiltonian H =
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H(λ) (from (1.5)) the equation (2.22); then we compute the quantities

{hq} from the values Fformal and finally we solve the equation

(2.24) hq(λ) = hq′(λ) whenever q )= q′

where the quantities hq depend on λ through the functional Fformal.

Only those solutions of (2.22) which satisfy (2.24)(22) have a physical

sense; these solutions correspond to the situations where all the q – like

phases, q ∈ Q coexist.

Let us conclude this discussion by some theorem. It can be proven

by using the implicit function theorem and by establishing suitable dif-

ferentiability properties of the mapping {H .→ {hq}} . (In particular,

we stress the fact that sq is a slowly changing function of the variable F

in the norm ||F ||.)

Theorem. Let the Hamiltonian H = H(λ,µ) in (1.5) depend on

some vector parameters (λ, µ) (one may or may not include the temper-

ature into these parameters) where λ ∈ Rn and µ ∈ Rm. Assume that H

is continuously differentiable (resp. infinitely smooth, analytic) in these

parameters around the value λ = 0, µ = 0 and assume that the Hamilto-

nian H(0,0) has exactly n + 1 ground states. Let the matrix of the partial

derivatives of {e(λ,µ)
q } around λ = 0, µ = 0 satisfy the property that when

completed by the column “1” (all entries in the column are 1), it has

the rank n + 1. Then, for a sufficiently small temperature, there is a

continuously differentiable (resp. infinitely smooth, analytic) mapping

(2.25) { µ .→ λ(µ) }

(“for a prescribed µ one finds a suitable λ”) such that for each µ from

some neighbourhood of zero and for each q ∈ Q, the values hq =hq(Fformal)

are all the same. Therefore, Fformal = Fphys and for each q ∈ Q there is

a “q – like” Gibbs state P (λ(µ),µ)
q of the Hamiltonian H(λ(µ),µ), having the

support in the set Xq of all q – diluted configurations.

(22)It is rather straightforward to see (by induction over the volume) that the solution
Fformal of (2.22) satisfying (2.24) must be equal also to the “physical” value of the
functional Fformal given by (2.3) or (2.4). This would be, of course, no more valid if

(2.24) were violated.
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3 – The General Phase Picture

This lecture explains the core of the general Pirogov-Sinai theory. We

will use essentially the approach of [7] (however, with some important new

modifications, made in the spirit of the paper [9]).

Note We should warn the reader that no phase diagrams will be

explicitly constructed and no analogy of the theorem above will be for-

mulated here. This can be done, of course, similarly as the final theorem

of the preceding lecture was more or less direct consequence of the con-

struction of the quantities hq . So, our emphasis will be again on the

construction of (suitable variants of) the quantities hq, however we are

willing to do it now in the general case where any phase picture can

appear (which will be clarified only at the very last moment of our inves-

tigation)(23).

We will see that from these quantities, more specifically from the

mapping

{ H(λ) .→ {hq(λ)} }
(λ denotes the parameters on which the given Hamiltonian H depends)

everything important about the thermodynamics of the model can be

computed, after all. The phase diagram of the model will be then just

the specification (for any choice of the parameters λ in the Hamiltonian)

of all the q ∈ Q for which hq is minimal possible.

Concerning the “methodological” aspects of our approach, it will not

be of much importance for us whether we are in a regime where several

phases coexist or in the uniqueness regime. Maybe it sounds unusual to

some readers (who may identify the Pirogov-Sinai theory as some strange

method of construction of the phase diagram), but the essence of the

Pirogov-Sinai theory is conserved even in the case when we are studying

a fixed Hamiltonian, even in the uniqueness regime.

While in Section 2 we have used essentially the original technique of

[1] (adapted to a nontrivial special case of the coexistence of the maximal

number of phases; this case also “historically” arose as the first one in the

course of the development of the paper [1]) here we depart from it (and

depart also from the more general notion of a parametric contour model

(23)These quantities will have the meaning of the Gibbs free energy of some “metastable
model”.
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– see [2]) and adapt the point of [7] with some improvements adapted

from [9]. We abandon here the notion of a contour model completely

and replace it by another, more “physical” notion of a “metastable en-

semble”. What will not be abandoned is the crucial notion of a contour

functional F . The latter notion will have the same meaning as before

(Fphys = Fformal) in the regime of the coexistence of all phases; otherwise

its meaning will be changed compared to [1] (remaining, however, closer

to its previous value Fphys from (2.3) than to the more formal contour

functionals used in connection with the original Pirogov-Sinai parametric

contour models).

Some intuitive background. We are considering the abstract

Pirogov-Sinai model everywhere in the following. That is, we have a

general Hamiltonian of the type (1.5), with the Peierls condition (1.8)

resp. (1.9) being satisfied.

Recall for a moment the definition of a contour model from Section 2.

The basic problem which appears in the study of such a model – and

which we simply avoided in lecture 2 by studying only the regime of

the coexistence of the maximal possible number of phases – is that the

contour functional F = Fphys from (2.4) does not in general satisfy the

Peierls condition F (Γ) ≥ τ̃ | suppΓ| from (2.11).

In fact, we will see that Fphys(Γ) may drop almost to zero in the cases

when the contour Γ marks some “jump to the more stable phase inside”.

(This can happen only if the volume V (Γ) is sufficiently large). This

observation will lead us to the decomposition of the class of all contours

into two subclasses(24) with very different behaviour : The contours from

the first class (of “small contours”) will contribute to the entropy of the

corresponding (stable or metastable) “phase” while the other contours

(called “large” in the following) will mark possible large droplets of the

“more favorable” phases. These droplets should be so large, that the

jump into the (more favorable) phase inside (which requires an excessive

energy spending around the boundary of the droplet) is either “recom-

mended” or at least “disputable” – if the balance of the total free energy

loss/gain around Γ is measured.(25)

(24)Notice however, that the exact borderline between these two subfamilies will be
defined in somehow arbitrary manner.
(25)Namely, the loss of the energy E(Γ) around the boundary of the droplet may be
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There is no entropy gain from the contours of the second type as

we will see; more precisely the possible entropy gain of these contours

would be much smaller than the energy excess due to the dwelling in

the “less favorable regime” outside of these large contours. Thus, these

large contours tend to be (if they appear at all) as large as possible and

there will be typically one such large contour (at most) in a “normally

looking” volume Λ (e.g. in a cube Λ) if the outside boundary condition

is unstable.

On the other hand, the small contours will be relatively “rare” but

nevertheless they will appear with a regular (nonzero) density throughout

the whole Zν , in any phase. So the contribution, to the free density, of

these small contours will be nonzero. This contribution thus may play

a decisive role in the result of the “energy entropy fighting of various

possible phases of the given model” which determines the behaviour of

the given system. Its detailed computation really forms the core of the

Pirogov-Sinai theory.

Expansion (“recoloring”,“sweeping out”) of contours. The

basic ideas. To outline the technical constructions used below and to

understand better their meaning we will explain first the very idea of a

partial expansion (and the meaning of the notion of “recolorability” used

in it) on a simplified caricature of the models considered by us. Imagine,

for example, a model where for any q ∈ Q only one possible shape of a

contour Γq is permitted i.e. all allowed contours are of the type

Γq + t , t ∈ Zν

where Γq is a fixed contour. Assume for brevity that intΓq has only one

component, having a colour q′ ∈ Q inside. Expand the partition function

Zq for such a case: Write

Zq(Λ) =
∑

{ti}
exp(−eq| exxt |)

∏

i

exp(−Eq(Γi)) exp(−eq′ | intΓi|)

where the sum is over all collections of points {ti} such that the contours

Γi = Γq + ti mutually do not touch and where we denote by exxt =

compensated by the free energy gain resulting from the more favorable regime inside
of Γ.
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Λ \ (∪i intΓi). This can be expressed as

Zq(Λ) =
∑

{ti}
exp(−eq|Λ|)

∏

i

exp(−F (Γi))

where, of course, the contour functional of Γ = Γq is defined here simply

as

F (Γq) = Eq(Γ
q) − (eq − eq′)| intΓq|.

Assuming that F satisfies a Peierls type bound (compare Polymer Lemma,

Section 2!)

exp(−F (Γ)) ≤ exp(−τ̃ | suppΓ|)
we know already from this lemma that the above partition function can

be written as

(3.0) Zq(Λ) = exp(−eq|Λ| +
∑

T

kq
T )

with quickly decaying cluster terms kq
T . Thus, already in this simplified

case we may foresee the main problems which we will have to tackle in

the following:

1) A kind of Peierls condition for functionals F (Γ) is strongly desirable

here. Contours satisfying such a condition will be called “recolorable” in

the following text (roughly speaking) and the expression of the partition

functions of the original model by the formula of the type (3.0) (which

we presented above in an extremely simplified situation; of course) will

be called the recoloring of (all the shifts of) Γ(26).

2) Our desire will be then to repeat the expansion leading to formulas

(3.0) as many times as possible. It is useful to introduce here a kind of

a “generalized Pirogov-Sinai model” whose structure will not be changed

after applying such a “recoloring” procedure(27). So we introduce, in the

(26)Notice that the transition from Eq(Γ) to F (Γ) can be really visualized as the “change

of the colour (putting q instead of q′) inside of the contour Γ”.
(27)Notice that we are able to “recolor” only the internal (collections of) contours of a
configuration. An attempt to “recolor everything at once” would lead to much more
difficult control of the behaviour of F (Γ) due to the fact that also other contours inside
of Γ should be considered in such a case. Our inductive construction of the mixed
model solves this difficulty (which is typical in the Pirogov-Sinai theory) in quite a

convenient way.
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following, the important general notion of a “mixed model” which will be

defined as an abstract Pirogov-Sinai model having an “additional cluster

external field” {kT } i.e. its Hamiltonian will be defined by the following

analogy of (1.4):

H(xΛ|xq
Λc) =

∑

Γ

(E(Γ) + e| suppΓ|) +
∑

q

∑

t∈Λq

eq −
∑

q

∑

T⊂Λ

kq
T

where the last sum is over all “clusters” T whose support belongs to the

set Λq denoting the collection of q –correct points of the given configura-

tion xΛ = {Γi}.

3) Having such a notion, being “invariant” with respect to the procedure

outlined in 2) the question arises whether it is possible to apply the

recoloring procedure suggested above so many times such that it becomes

finally inactive in the sense that there is “nothing to recolor” in the final

mixed model obtained in such a way. In other words, the question is

whether “nothing to recolor” really means that there are no contours

in the final mixed model; the latter having the meaning that a total

expansion of the partition functions of the model was obtained.

The answer to the last question will be “yes, at least for some q”

(these will be called stable q). Then no contours Γq will remain in the

final mixed model and so a complete control over its behaviour under

boundary condition q will be obtained (through expansions of Zq(Λ), as

we outline below in (3.12)). The meaning of our main theorem will be,

more precisely, the following. We will find a simple constructive (at least

in principle) criterion on how to determine whether given q is “stable”.

Namely, looking at the quantities

hq = eq −
∑

T : 0∈T

kq
T | suppT |−1

constructed for the final (“most expanded”) mixed model we will have

the statement that q is stable (in the sense suggested above) if and only

if hq has its smallest possible value!

To prove this, we will have to investigate in more detail the relation

between the notion of a “recolorability” of Γ and another (more trans-

parent!) new notion of a “smallness” of Γ: A contour Γ will be called
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small if we are “absolutely sure” that the difference

∑

q′∈Q

(log Zq′
(intq′ Γ) − log Zq(intq′ Γ))

of partition functions on the right hand side of (2.3) “cannot substantially

erode the contour energy E(Γ)”. It is now quite a delicate technical task

to define this on a technical level .

The way chosen below by us turns out to be quite passable: Denote

by

aq = hq − h , h = min
q

hq.

We will see that whenever ! is a cube such that, say

aq|!| ≤ τ diam !

(and such a condition will hold for squares ! of any size if q is stable i.e.

if aq = 0 !) then no substantial erosion of the type above can happen for

contours Γq inside of !. These cubes will be called small .

4) Notice that the notion of a smallness (and recolorability) would not

work well if restricted to single contours only . Namely, the very idea

of recoloring requires its application only to interior contours (see next

page) or systems of the model:

Imagine the following concentric system of two contours: let the ex-

ternal contour of the system mark a jump of the configuration from a

stable phase outside to a “very instable” one residing in the “middle

belt”, and let the interior contour “jumps again to same stable phase

(e.g. the same as outside) in the center”. Clearly, it will be impossible

to recolor the interior contour itself because its contour functional may

violate the Peierls condition. However, it is obviously possible to recolor

both contours at once (assuming that no other contours are present in

the belt we recolor).

This example becomes even more instructive if we generalize it in such

a way that several interior (& mutually external) contours are inside of a

given external contour. It is clear that to speak about a “connectedness”

of such a system requires some care.

5) Having established the need for a “simultaneous recoloring” of all

contours in some admissible interior subsystem (like above) we want to
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claim now that all small objects (not only single contours but also their

admissible collections) Γ are recolorable.

To see the importance of such a statement notice that for q stable

it says that all systems Γq would be recolorable i.e. nonexistent in the

final mixed model! This is quite obvious for single contours but requires

some supplementary argumentation if general small (admissible, interior)

systems of contours are considered.

This problem is essentially “topological” in its nature, as we will see

later (in the subsection “Tight sets”).(28)

6) Of course, the quantities hq used in the argumentation below cannot

be defined so simply in a general “recoloring step” (which was outlined

above only in its simplest version). A useful idea here is to assume that

hq are defined, in general, as free energies of some “metastable models”

where “dangerous” (“nonsmall”, “nonrecolorable”)(29) contours are sim-

ply excluded .

Now we develop the ideas outlined above in a rigorous way: We start

with a precise definition what the metastable model should be:

The notion of a submodel. Throughout the rest of Section 3, we

will consider always the Hamiltonian (1.5). The corresponding diluted

partition functions Zq(Λ) will be defined by (1.6).

In the following we will use a concept of a submodel of the model

(1.5) (on the configuration space X). This is quite a general concept: the

determination of the submodel will be done below simply by specifying

the corresponding “subset of allowed configurations”(have in mind that

in volumes small enough, everything will be allowed)

(3.1) M ⊂ X

(28)Our very formulation of the “recoloring procedure” also for the systems of contours
will free us from the necessity to combine both the lower and upper bounds for for
considered partition functions

exp(−hq|Λ| − ε|∂Λ|) ≤ Zq(Λ) ≤ exp(−h|Λ| + ε|∂Λ|).
These bounds were very important in some previous versions of the Pirogov-Sinai the-
ory. Compare “Main Lemma” in [7]. We are not using these bounds in the development
of the theory now. However, we will formulate them later (in a stronger form!) as a

corollary of our Main Theorem.
(29)The difference between the choices of these adjectives is not crucial for the intuitive
understanding of this notion. Notice also that the precise value of hq will depend on
these conventions for “nonstable” q.
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of the given submodel.

The submodel residing on such a configuration space M will be de-

noted often also by the same symbol M.

Note. We continue to use the symbol X for the collection of all ad-

missible (finite or infinite) collections of contours in Zν . By a “submodel”

we will, however, mean in the following usually something more specific

than what was mentioned above: We will consider below some special

submodels called “metastable” ones. They will be indexed by elements

q ∈ Q. Each of these submodels will be defined in terms of exclusion, from

the family of all q diluted configurations, of configurations where some

“dangerous systems of large contours” (namely systems marking large

droplets of stable phases appearing inside of the given unstable regime)

appear.

The diluted partition functions Zq
M(Λ) of the submodel M will be

defined analogously as in (1.6) but with the additional requirement that

xΛ ∈ M.

Extend now also the notion of a contour functional F to a submodel

M just by putting (compare (2.3) and (2.4); for D small enough, the

restriction M will mean no restriction)

FM(D) = log Zq
M(intD) − log Zq

M(D) − eq| suppD| i.e.

(3.2) FM(D) = Eq(D) + log Zq
M(intD) −

∑

q′∈Q

log Zq′
M(intq′ D).

where intD denotes again the union of all nonexternal components of

(suppD)c.

It will be technically very important to generalize this notion below,

by the same prescription as in (3.2), to the case when we have, instead

of a single contour D = Γ, a general admissible system D of contours.(30)

(This is the reason why we already used the different symbol D – instead

of Γ – here.) Working with such a general system of contours we will

need a notion describing “how much connected the system is ”:

(30)Notice that the notion of an interior can be extended in a natural way to any
admissible system D.
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Definition. For any set T ⊂ Zν denote by conT the minimal possi-

ble cardinality of a connected set T̃ such that T̃ ⊃ T . Write conD instead

of con suppD (where, for D = {Γi}, we take suppD = ∪i suppΓi).

The following three mutually related notions are crucial in our ap-

proach. The notion of metastability appeared first in [7] and here it keeps

its intuitive meaning. However, technically we define it now in a different

way, based after all (this we will see below) also on the idea of a par-

tial expansion (of a metastable model). Such a partial expansion will be

based here always on an algorithm called the “recoloring of a contour”.

All these notions (and also the partial expansion of the model) will

be constructed now rigorously, in an inductive way:

Recolorability, Residuality, Metastability. Let us start

with another two auxiliary topological notions: Say that an admissible

subsystem Γ of an admissible system D is an interior one if there are no

other contours “inside of Γ” i.e. if

V (Γ) ∩ (D \ Γ) = ∅.

Say that an admissible subsystem Γ of an admissible system D is an

exterior one if there is another admissible subsystem Γ̃ ⊂ D such that

dist(V (Γ), V (Γ̃)) ≥ 2

and moreover the remainder D \ (Γ ∪ Γ̃) consists, if nonempty, only of

(one or more) interior subsystems (denote them by Γi) of D which are

inside of Γ i.e. which satisfy the condition V (Γi) ⊂ V (Γ).

Note. One should not interpret here the word “exterior” in a too

narrow sense: Even a “concentric” system Γ of several contours can be

an exterior one in the above sense, if the volumes V (Γi) of the interior

subsystems do not intersect suppΓ.

Definition.

i) Say that an admissible (nonempty) system D of contours is residual if it

has no recolorable (see the point iii) of this definition) interior subsystems.

ii) Say that an admissible system D is metastable if no residual (see the

point i) of this definition) exterior subsystems of D exist.
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iii) Say that D is recolorable if the quantity FM(D) (defined for the

metastable model; see below for more information) satisfies the bound

(3.4) FM(D) ≥ τ

12ν
con D

and moreover this holds also for any other D̃ with the same external

colour and the same support: supp D̃ = suppD(31)

Here, M denotes the metastable model defined as the subset of

the original model consisting of all metastable (see the point ii) of this

definition) configurations. Do not care now about the particular

choice of the constant namely the value τ/12ν on the right hand

side of (3.4). We will see later why namely this choice is convenient

here. The reason why we replaced here the (already “well established”)

quantity F (D) by another one is that FM(D) will be easy to ex-

pand. Both quantities are the same for those D which are not “very”

large.

One should emphasise the inductive (with respect to the growing

volumes) nature of the definitions i), ii), iii) above! There is no “cycle”

in these definitions, it is rather a “spiral”.

Agreement. In what follows, the subscript M at the quantity FM
will denote the metastable model mentioned above. We will also denote

the value of FM(Γ) as Fmeta(Γ). We emphasise again that for Γ small

enough, Fmeta(Γ) = F (Γ).

The following theorem contains the core of Section 3 (and the core

of our present approach to the Pirogov-Sinai theory in its simplest ap-

plication to the models with a finite number |Q| of constant local

ground states, satisfying the Peierls condition). We precede it by in-

troducing another important notions, closely related to the notion of a

recolorability:

(31)Thus, recolorability od D is, in our approach, rather the property of the set supp D
(and int D) and also of the external colour of D, not the property of a particular contour
resp. admissible system D. The reader may find unaesthetical the fact that even some
contours with the same colour outside and inside may be nonrecolorable (they surely
could be expanded if we wished to do so!) but the advantage will be that recolorable

objects can now be treated simply as sets in Zν .
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Densities of free energy. The concept of a “small” vol-

ume. Denote by hq the free energy(32)

hq = − lim
Λ→Zν

(|Λ|)−1 log Zq
meta(Λ)

(the limit is taken in Van Hove sense, i.e. such that any point of Zν

finally falls into Λ and such that |∂Λ||Λ|−1 → 0 ) of the metastable model

Mq consisting of all q – diluted metastable configurations. The existence

of the limit will be obvious only below (starting from (3.16)) and more

precise discussion of the notion of a smallness will be given only in the

last part of the proof of Main Theorem. Put

(3.5) h = min
q∈Q

hq ; aq = hq − h.

Say that q ∈ Q is stable if aq = 0. Say that a cube ! ⊂ Zν is q –small if

(3.6) aq|!| < Cτ diam !. (33)

The constant τ is from (2.11) and we can take here C = 1 or (better) a

slightly bigger C > 1 (see (4.27)) for example(34). Say that an admissible

system D = Dq with the external colour q is small if it can be “packed

by some q – small cube ! ” namely if ! ⊃ suppD.

The forthcoming definition recalls the definition of a cluster, given

already in Section 2, in a slightly more general context needed here:

Namely, the primitive objects from which clusters will be formed now

will not be always single contours but more generally some special (“re-

colorable”, see below) admissible systems of contours.

Clusters of sets resp. of systems of contours. Say that

the two collections T = {Γi}, T ′ = {Γj} of contours resp. of admissible

systems of contours (multiple copies of the same contour are allowed!)

are compatible if any two pairs Γi,Γj are compatible in the sense that

their supports do not touch. Say that a collection {Γi} of contours resp.

(32)Gibbs potential, or pressure are the other frequent names for this quantity.
(33) Thus, for q stable, any cube will be small!
(34)Do not inquire about the particular choice of the constant C ≈ 1 here. Any constant
C such that Cτ ' 1 would do the job.
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of admissible systems is (in)decomposable if it is (im)possible to split

it into two compatible parts. Indecomposable collections of contours or

of admissible systems of contours will be called clusters and denoted by

symbols T (35).

Main Theorem.

(1) The quantity h is the free energy (in the Van Hove sense) of the

model (1.5): For any q ∈ Q we have

(3.7) lim
Λ→Zν

|Λ|−1 log Zq(Λ) = −h.

(Recall that for the metastable partition functions,

lim |Λ|−1 log Zq
meta(Λ) = −hq.)

(2) Small subsystems D = Dq can not be residual. In particular there

are no residual systems Dq for q stable. In other words, for stable

q we have Mq = Xq where Xq denotes the collection of all q-diluted

configurations from X.

(3) The metastable partition functions Zq(Λ) can be more precisely ex-

pressed as

(3.8) log Zq
M(Λ) = −eq|Λ| +

∑

T ⊂⊂Λ

αT wq
T

where wq
T are products, over the contours (resp. admissible systems)

Γq
i which are elements of T , of the values exp(−F (Γi)) and αT are

some combinatorial coefficients depending only on the “topology” of

the cluster T , such that

(3.9) αT ≤ C
∑

Γ∈T conΓ

for a suitable constant C depending only on the dimension ν and

also on the meaning of the statement “contours Γ and Γ′ do not

touch”(36).

(35)This is closely related to the slightly less general notion of a cluster already intro-
duced in Section 2.
(36)If the latter is meant in the usual sense dist(Γ,Γ′) ≥ 2 then C can be taken some-

thing like C = 2ν.
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The cluster series (3.8) quickly converge, like in (2.16S). In analogy

to (2.17), the quantities hq can be computed also from the formulas

(3.10) hq = eq −
∑

T : 0∈supp T
| supp T |−1αT wq

T .

(4) Assume that the Hamiltonian H = H(λ,µ) in (1.5) depends on some

vector parameters (λ, µ) where λ ∈ Rn and µ ∈ Rm. Assume that H is

differentiable (resp. infinitely smooth, analytic) in these parameters

around the value λ = 0, µ = 0 and assume that the Hamiltonian

H(0,0) has stable values of hq for q ∈ Q̃ where Q̃ has the cardinality

n + 1. Let the matrix of the partial derivatives of {h(λ,µ)
q } around

λ = 0, µ = 0 satisfy the property that when completed by the column

“1” (all entries in the column are 1), it has the rank n + 1. Then

there is a differentiable (resp. infinitely smooth, analytic) mapping

(3.11) { µ .→ λ(µ) }

(“for a prescribed µ one finds a suitable λ”) such that for each µ

from some neighbourhood of zero and for each q ∈ Q̃, the values

hq(λ, µ), q ∈ Q̃ are all the same, they depend differentiably (smoothly,

analytically) on µ and hq > hq′ whenever q′ ∈ Q \ Q̃, q ∈ Q̃.

Corollary. The Hamiltonian (1.5) restricted to Mq = Xq gives a

probability measure P q
M which can be interpreted, by taking the inclusion

Mq ⊂ X, as the “q – th” Gibbs state on X if q is stable.

Notes. (See Corollary at the end of Section 4 for additional infor-

mation and interpretation.)

1. Of course, the support of the injection of PM into X has the support

in Xq and thus the measures P q
M are really disjoint(37). Therefore it

has a reasonable sense to say that almost any configuration of P q
M is

“externally equal to q”. More specifically, take the expansion (3.8) and

express the probability of the following event: “a given point t ∈ Λ is

outside of all contours of x in the volume Λ under boundary condition

(37)A support of a probability is a Borel set whose complement has measure zero.
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q”. More precisely consider the event “Γ ⊂⊂ Λ \ t for any contour Γ of

x”. The probability P q
Λ(t) of such an event is clearly equal (just subtract

the expansions of log Zq(Λ) and exp(−eq)Z(Λ \ t) !) to

(3.12) P q
Λ(t) = exp(

dist(supp T , t)≤1∑

T ⊂⊂Λ

αT wq
T ) ≥ 1 − ε

for some small ε. This can really be interpreted by saying that typical

configuration in Λ, under the stable boundary condition q, looks like a

“sea” of q with some rare, typically small islands of perturbations.

2. The main message of our theorem is that the properties of the phase

diagram of the model can be extracted from the mapping

{ H .→ {hq} },

more specifically from the mapping (3.11). One should have in mind that

while for stable q the quantity hq = h has the unique possible meaning ,

for unstable q there is some arbitrariness of the definition of hq (steming

from some arbitrariness in the definition of a recolorable subsystem D,

and from the related arbitrariness in the notion of a metastability). Thus

(for example), if we study the differentiability properties of the phase

diagram i.e. if the smoothness (as good as possible) of the mapping (3.12)

is required than it may be advisable to modify somehow (to “smoothen”

as possible) the notion of F (Γ) – or to work with a variant of the notion

of a recolorability which is fixed throughout the given (small) range of

parameters. Both these devices guarantee the nonexistence of “jumps”

in the formulas for hq (which would be otherwise caused by the fact that

some Γ may cease to be recolorable during a change of the parameter

in H).

3. Thus, if we keep the stable boundary condition q outside a set Λ and

take the thermodynamic(38) limit Λ → Zν then the “q –th regime” inside

will survive the limit. Such a statement is not true for unstable q; in that

case one expects, for enough large volumes (of the size at least 1/aq), the

formation of a droplet of a stable phase inside of Λ. We do not study

(38)The limit can be taken in a very general sense, requiring that any point of Zν finally
falls inside Λ.
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in detail this phenomenon here; see however the Corollary at the end of

Section 4 for some preparatory information in this direction.

The proof of Main Theorem. Introduction. An earlier vari-

ant of the theorem was proven in [7], using still some variant of the original

Pirogov-Sinai concept of a contour model (applied there, however, to the

study of the corresponding metastable ensemble). Here, we will apply a

more recent approach of [9] – which seems to be more powerful and at the

same time (at least conceptionally) more simple. Namely, the bounds for

partition functions will be now replaced by the exact expansions, when-

ever possible. (In fact, no bounds for partition functions will now be

employed below.)

Let us make some “philosophical” remark about the role of contour

models in the Pirogov-Sinai theory: Analyzing the simplest possible an-

swer to the question “why it is necessary to introduce the contour models

(i.e. some auxiliary gases of contours)?” the possible answer could be

the following(39) one: Contour models are good for expansions!

Asking further “why expansions are so needed here, in Pirogov-Sinai

theory”? the reasonable answer could be that there are, at present, no

other means enabling to prove the bounds (absolutely crucial for the

Pirogov-Sinai theory; this we have seen already in Section 1) of the type

(for stable q)

| log Zq
M(Λ) + hq|Λ|| ≤ ε|∂Λ|.

The essence of our present approach is the following. In the sequence

of reasonings

(metastable) partition functions → their equivalent expression by contour

models → expansions of these partition functions → extraction of useful

estimates from them(40) we will now omit the middle term, namely the

very construction of the contour model . Instead of the notion of a contour

model, the keywords of our approach will be the following:

1) The notion of a partial expansion of the model. This will be called as

(39)There are, of course, also relevant “historical” arguments explaining how the notion
of a general contour model emerged: The actual line of development of these ideas was
as follows: Peierls argument → Minlos – Sinai contour models → Pirogov-Sinai contour
models (in the maximal coexistence regime) → general Pirogov-Sinai theory.
(40)This byproduct of the expansion theory is sometimes (misleadingly!) viewed as the

only thing which is absolutely indispensable in the Pirogov-Sinai theory.
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a mixed model below. (This idea is, of course, not new; however in our

approach it is really the cornerstone of the theory.)

2) A procedure describing the transition from a given partially expanded

model to another, “more expanded” model.

“More expanded” means here that some contours will be “removed”

from the new, more expanded model (i.e. they will be “recolored” – in

the language we are using below). Of course, such a simplification of the

configuration space (configuration space of the given partially expanded

model) must be accompanied by a suitable definition of some new cluster

expansion terms appearing in the new, more expanded model.

It should be not surprising that these new cluster expansion terms are

employing the quantity already well known to us – namely the contour

functional F (of the contours which are just recolored).

3.1 – The notion of a partially expanded model (“mixed” model)

The concept of a mixed model will be now defined as a natural gen-

eralization of the abstract Pirogov-Sinai model (1.5). We just will gener-

alize the notion of an external field suitably: namely, in addition to the

quantities E(Γ) and et we will assume that another “cluster field” {kT }
(sitting on connected clusters T and depending also on the underlying

“colour” induced on T by the configuration {Γi}) is given.

In the following, it will be useful to simplify the notion of a cluster

variable by putting, whenever we have an expansion of the type (3.8),

(3.13) kq
T =

∑

T
αT wq

T

where the summation is over all clusters T = {Γq
i } with the same col-

lection of supports T = Supp T = {suppΓi}. In such situations the

notion of a cluster will have the meaning of a collection of sets whose

“connectedness” will be meant in the sense that

(3.14) |kq
T | ≤ εcon T

where we denote by

con T =
∑

suppΓi∈Supp T =T

conΓi.
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We define the new Hamiltonian HM of the mixed model as follows.

(3.15)

HM(xΛ|xq
Λc) =

∑

q

∑

t∈Λq

eq +
∑

Γ

(E(Γ) + e| suppΓ|)+

−
∑

T⊂⊂Λ\∪ suppΓ

k
q(x)
T

where q(x) denotes the “colour”(from Q) induced by x on T and the

quantities kq
T = kq

T (M) are the “external fields” of the given mixed model

M. In the following we will use the notations, analogous to what was

mentioned above (3.5),

(3.15h) hq = hM
q = eq − sq where sq =

∑

T :0∈T

kq
T

|T |

and call these quantities as “densities of energy” of the given mixed

model(41).

Note. In the following, the terms kT in any mixed model considered

by us will be given just by an expansion of some metastable model con-

structed so far . More precisely we will have from (3.8) (whose validity

we are assuming here) and (3.13) the relation

(3.16) log Zq
M(Λ) = −eq|Λ| +

∑

T⊂⊂Λ

kq
T ; kq

T = kq
T (M)

where M denotes the metastable model.

Then, if (3.15) is already an expression of such an expansion of

the metastable model “living outside of all Γ” (notice that different

metastable models live in the regions with different q(x) and the quan-

tities kq
T are functions of q!) in a volume Λ = intD where D is some

(admissible system of) contour(s) we can rewrite our quantity (3.2) as

follows, after substituting 3.16) into it :

(3.17) FM(D) = Eq(D)+
∑

q′∈Q

∑

T⊂⊂intq′ D
(kq

T −kq′
T )−

∑

q′∈Q

(eq −eq′)| intq′ D|.

(41)Notice that we ignore all contours of the mixed model. The quantities hM
q are

in fact the free energy densities of the metastable models whose expansion the given
mixed model is!
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In a more transparent expression we have

FM(D) ≈ Eq(D) +
∑

q′∈Q

(hq − hq′)| intq′ D|.

Extend now the notion of a recolorability, residuality, metastability

also to a situation of a general mixed model (42): Just write the mixed

Hamiltonian HM instead of H everywhere in the definitions like (3.4)

above. In particular, for the interior systems D we have the expression

(3.17), and therefore (3.4) says that

(3.18)

Eq(D) +
∑

q′∈Q

∑

T⊂⊂intq′ D
(kq

T − kq′
T ) −

∑

q′∈Q

(eq − eq′)| intq′ D| ≥

≥ τ

12ν
con D

if the considered mixed model is given as the expansion of the metastable

model constructed so far in the volume intD. Later, in our investigation

of the validity of (3.4) we will rather try to check another inequality

(3.18′) Eq(D) +
∑

q′∈Q

(hq − hq′)| intq′ D| ≥ τ ′

12ν
con D

which is a stronger (for slightly bigger τ ′ > τ) and more flexible alterna-

tive to the above inequality (3.18).

In fact, below we will be using the notion of a recolorable subsystem

of a mixed model only for a special class of admissible systems, which are

the “smallest possible” in the following sense:

Removable systems of the model. Say that an admissible sys-

tem D of a given abstract Pirogov-Sinai mixed model is removable if it

is recolorable and moreover it satisfies the condition that no admissible

recolorable system D′ with a smaller volume V (D′) (smaller is meant in

the sense that V (D′) ! V (D)) already exists in this mixed model.

(42)We are using here the same symbol M for the mixed as well as for the (original
abstract Pirogov-Sinai ) metastable model. There will be no confusion in the notation
of FM(D) (which will be later denoted also as Fmeta(D)) because our mixed model
will be always defined as an expansion (in a given volume Λ) of the metastable model

constructed so far.
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Note. Thus, like recolorability (see the text below (3.4)), removabil-

ity is a property of the set suppD and of the external colour of D, not

the property of a particular admissible system D. (In particular, internal

colours of D are not considered in this definition.) By a removal of D we

will in fact mean the removal of all D̃ with the same support and with

the same external colour at once; see below.

The following technical lemma is absolutely crucial for our approach.

Equivalence of mixed models. Say that two mixed models are

equivalent if all diluted partition functions are the same for both models.

Recoloring Lemma. Consider a mixed model M from (3.15).

If D is removable then it is possible to define a new, equivalent mixed

model Mnew living on a smaller configuration space given by the exclusion

of all configurations containing some D̃ such that supp D̃ is a shift of

suppD and such that the external colours of D̃ and D are the same, and

containing some new cluster quantities kT satisfying, together with the

“old” quantities kT (M), a bound

(3.19)
∑

T : Supp T =T

kT ≤ εcon T

where we put (see also (3.14)) conT =
∑

i con Ti for any collection T of

sets {Ti}. (Recall that contours resp. admissible systems Γ are counted

here with their multiplicity!). These new cluster quantities are defined

only for clusters containing some shift of suppD, and they depend only

on the values F (D) as well as on the “old” values kT ′, supp T ′ ⊂ V (T ).

Notation. The passage from the original mixed model to the new

one (as described in the lemma above) will be called the recoloring of D.

Proof of Recoloring Lemma. Given a configuration x of a given

mixed model write it as

(3.20) x = (D1 ∪ D2 ∪ . . . ) ∪ D̃

where D1,D2, . . . ,Dk are some shifts of D (which mutually do not touch

and which are interior subsystems of x) and D̃ is the admissible system

of the “remaining contours of x” (which appears if all the above shifts
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of D are removed). The fundamental observation – steming from (3.2)

(which is rewritten by (3.17)) is the following one. We write it here only

for k = 1; M = Mold is the mixed model given in Recoloring Lemma;

FM is the value of the contour functional (3.17) in the model Mold; we

are, of course, working in some finite volume Λ but we omit the symbols

Λ, xΛ here for the simplicity of notations:

(3.21) exp(−HM(D ∪ D̃) = exp(−FM(D)) exp(−HM(D̃)) exp(−
∑

T

kq
T )

where the sum in the exponent is over all T ⊂⊂ Λ having the colour q

and such that

dist(T, (intD)c) ≤ 1 & dist(T, suppD) ≤ 1

and where q denotes the external colour of D.

Then the new Gibbs factor exp(−HMnew(D̃)) of the remaining config-

uration D̃ should be equal to the sum of all corresponding (“old”) factor

exp(−HM(D̃)) as well as of the factors exp(−HMold
(D̃ ∪ D1 ∪ · · · ∪ Dk))

expressed by (3.21) above (for a general k ≥ 1). In other words, we

require that (we are writing below the result again for a general k ∈ N)

(3.22)

exp(−HMnew(D̃)) = exp(−HM(D̃))+

+
∑

{D1,...,Dk}
exp(−HM(D̃ ∪ D1 ∪ · · · ∪ Dk)) =

= exp(−HM(D̃))+

+
∑

{D1,...,Dk}
exp


−

∑

T :dist(T,(∪i int Di)c)≤1

& dist(T,∪i supp Di)≤1

kq
T


 ×

× exp(−HM(D̃))
k∏

i=1

exp(−FM(Di))

where FM = FMold
denotes the contour functional (3.17). Write

(3.23) wq
D =

∑

D′:supp D′=D

exp(−FM(D))
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where q denotes the external colour of D and the sum is over all removable

D′ which have the same support suppD′ = D and the same external

colour as D(43).

This expression can be written as follows. Let us first ignore, just for

the clarity of the exposition below, the appearance of the cluster terms

kq
T above i.e. write (3.22) in a simplified form

(3.24)

exp(−HMnew(D̃)) = exp(−HMold
(D̃))+

+
∑

{D1,...,Dk}
exp(−HMold

(D̃))
k∏

i=1

exp(−FM(Di)).

See (4.22) (and below it) for the errata concerning this simplification

of the formula (3.22). Using (3.23), the relation (3.24) can be written as

(3.25) exp(−HMnew(D̃)) = exp(−HMold
(D̃))Zout D̃

where (the partition function ZM below will be expanded below; see

(4.19))

(3.26) ZM =
∑

{Di}

∏

i

wq
Di

is the polymer partition function and the weights wq
D are given by (3.23).

The set out D̃ here is just the collection of all points of the given volume

Λ which are outside supp D̃ and whose colour in (supp D̃)c is the same as

the external colour of the subsystems Di which were just recolored.

4 – Elements of the Cluster Expansion Method.

(Conclusion of the proof of Main Theorem)

Now, to finish the proof of Recoloring Lemma we have to expand

the polymer partition function Zout D̃ : This is essentially the polymer

partition function for polymers which are just shifts of points of Zν with

(43)The terms exp(−FM(D)) will be thus “glued together”, into one term kq
D. We are

“sweeping out” all the D with the same support and the same external colour at once.
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some translation invariant compatibility relation ≈ between them. No-

tice, however, that different polymer models live in regions of D̃ marked

by different colours q ∈ Q.

Maybe it is useful to expose in some detail, in this section, the stan-

dard way how polymer partition functions of such a type are expanded:

Write the weights wq
D+t (where D + t are various possible, mutually com-

patible shifts of D = suppD) simply as wt and consider them as complex

variables indexed by points of Zν . The exposition below was motivated

by the paper [25], however we use a slightly different approach here, not

using Cauchy formulas and giving instead a more emphasis on the Kirk-

wood Salsburg equations (which were traditionally used in these studies).

We develop first the simplified (according to the simplifications made in

(3.22) → (3.26)) case when the polymers “are” just points of the lat-

tice. This is also for the “pedagogical reasons” (to obtain a maximal

possible clarity of the formulation of the assumptions imposed on the

contour weights). The general case is briefly commented at the end of

the section, together with the necessary comments needed to clarify the

omissions made in (3.24).

Main Lemma for (point) polymer models. Let ≈ be some

compatibility pair relation between points of Zν, such that t ≈ s whenever

t and s are sufficiently distant:|t−s| > r. (The actual choice of r depends

on the size of the contours above; recall that the points t ∈ Zν actually

represent various shifts of possible recolorable systems with a given support

suppD). Assume the validity of the Peierls condition

(4.0) |wt| ≤ ε

for each t ∈ Zν, where ε ≤ ε(≈) for some ε(≈) which is sufficiently small

(see Note below). Then the partition function over all compatible families

{ti} (the analogy of (2.8))

(4.1) ZΛ = 1 +

ti≈tj∑

{t1,...,tk}:ti⊂⊂Λ

∏

i

wti

is nonzero and it can be expanded into a convergent sum

(4.2) log ZΛ =
∑

nT

(−1)n

nT !
αnT

wnT
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where the summation is over special multiindices nT = {nt, t ∈ T} namely

those indexed by “indecomposable” collections (“clusters”) T ⊂⊂ Λ of

points. Here we denote by

(4.3) wnT
=

∏

t∈T

(wt)
nt , n =

∑

t

nt, nT ! =
∏

t

nt!

for any multiindex nT whose support {t : nt )= 0} is a cluster T =

{t1, . . . , tk}. The indecomposability of T is meant in the following sense:

T cannot be splitted into two mutually compatible parts T1, T2 such that

t ≈ s whenever t ∈ T1 and s ∈ T2.

The coefficients αnT
satisfy the bound, with a constant C = C(≈)

giving an upper bound for the number of incompatible neighbours to a

given point of Zν ,

(4.4) 0 ≤ αnT
≤ Cn

for any nT . The series (4.2) quickly converge, e.g. we have

(4.4′)
∑

nT :nt>0 for all t∈S

|αnT
wnT

| ≤ (C ′ε)|S|

with another constant C ′ = C ′(≈).

Note. The statement “ε(≈) is sufficiently small” depends therefore

on the dimension ν and also on the value r (more precisely it depends on

the properties of the relation ≈). For example, for ν = 2 and r = 1 one

can take ε(≈) something like 1/8.

The proof of the lemma is given by taking the Taylor expansion

of log ZΛ with respect to the variables wt. One has to show first that

the terms αnT
with decomposable T = T1 ∪ T2 disappear i.e. that the

derivative of log ZΛ at the point {wt = 0}, with respect to the quantities

{wt, t ∈ T1} and {ws, s ∈ T2} such that s ≈ t for each t ∈ T1 and s ∈ T2

is zero. To understand this notice that the part of the infinite Taylor

sum for log ZΛ which does not disappear by taking the derivative above

can be written as the logarithm of the product of the corresponding two

quantities ZT1
and ZT2

! Noticing that one of these two variables depends

only on {s ∈ T1} and analogously, the other only on {t ∈ T2} we conclude
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that the derivative of the logarithm of the product ZT1
ZT2

, being the sum

of two terms each depending on the corresponding group of variables,

disappears.

It remains to prove the bound (4.4) for multiindices nT with indecom-

posable T . There are several ways how to estimate the multindices αnT
.

The most standard one (see [24]) is perhaps the method based on the

following expression of the integer αnT
, which we write for the simplicity

of notations for the special case {nt = 1, t ∈ suppnT } only :

(4.5) αnT
=

∑

G

(−1)l

where the sum is over all graphs G having the support T which are

connected subgraphs of the graph G "≈, defined as the collection of all

incompatible pairs of points in T , and where l = |G| denotes the number

of bonds in G.

Namely, one can compute the term nT in the expansion of log ZΛ

from the following expression.(44) Notice that (by the same argument as

used above) it is sufficient to investigate the expansion of ZT only: the

sum below is over all subgraphs of G "≈

ZT = 1 +
∑

G

(−1)l
∏

t∈T\supp G

(1 + wt)
∏

t∈supp G

wt i.e.(4.6)

ZT =
∏

t∈T

(1 + wt)
(
1 +

∑

G

(−1)l
∏

t∈supp G

wt(1 + wt)
−1

)
.

Now take the logarithm of the product and expand log(1 + z) = z + . . .

We get the expression

(4.6′)

log ZT =
i=1,2,...,n∑

n,{Gi}

(−1)
∑

i
li

n

∏

t∈∪i supp Gi

(
wt

1 + wt

) + · · · =

=
∑

G

(−1)l
∏

t∈supp G

wt + . . .

(44)The validity of such an expression is checked by usual inclusion – exclusion formulas.
Namely, by the binomial theorem, the terms from

∏
t ∈ T (1 + wt) − ZT disappear

from the right hand side of the equation (4.6). Any term contributing to ZT is counted
exactly once on the right hand side of (4.6) while the terms from

∏
t∈supp G

wtZT\supp G

are counted (1 − 1)|G| = 0 times !
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where the first resp. second sum is taken over all collections of graphs

{Gi} resp. all graphs G on T . (In the first case the sum is even over

graphs with multiple bonds resp. multiple vertices; however these terms

obviously do not affect our value of αnT
and so we do not write them yet

in the second expression.) The dots denote remaining terms irrelevant

for the determination of the coefficient (4.5). Notice that the graphs

G in (4.6′) which can be splitted into mutually disconnected pairs G =

G1 ∪ G2 also do not contribute to the value of αnT
because (and this is

a similar argument as above) these contributions can be computed from

the logarithm of the product of suitable functions of {wt : t ∈ suppGi}
for i = 1 resp. for i = 2.

Thus, the sum in (4.6′) can be considered only over all the connected

subgraphs G of G "≈ on T (in principle even over those with a smaller

support than T ; however, the latter terms are again obviously irrelevant

for the determination of the value (4.5) of αnT
).

We will not investigate here appropriate estimates of nT implied by

(4.5) i.e. best possible bounds for the sum of (−1)|G| over all connected

graphs G with suppG = T in (4.5). It seems to us that the estimate

of αnT
thus obtained is not better (apparently, it is of the same order)

than the estimate of αT given by another, more “traditional” method (see

[22], [8]) which is based on the study of the “correlation functions” of the

polymer model and which we present in detail below, just for comparison

with (4.5).

Let us start with the study of the first order derivatives of log ZΛ:

Given t ∈ Λ the first derivative of log ZΛ with respect to wt is equal to

∂ log ZΛ

∂wt

=
ZΛ\t

ZΛ

:= ρΛ
t .

This is the “correlation function” of t(45). For the estimate of the right

hand side of this equation we will use the Kirkwood Salsburg equations

(see [22] for example): Assume that we have some selection rule { A .→
tA } for any finite set A ⊂ Zν . Such a selection rule induces also some

partial ordering ≺ on the family of all finite sets A from Zν extending the

(45)To see this notice that nonzero terms of the derivative of ZΛ appear only from the
products of the type wt

∏
ws where all s are compatible with t.
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relation A = A and

A \ tA ≺ A .

Write now the partition functions ZΛ\A , using the notation Â = (A ∪
{t̂A}) \ {tA} as

(4.7) ZΛ\A = Z(Λ\A)∪tA −
∑

t̂A

wt̂A
ZΛ\Â

where the sum is over all t̂A incompatible with tA. Iterate this equation

sufficiently many times for all the terms of the type ZΛ\B appearing on

the right hand side such that B )= ∅. We get the following relation. First

write down the result of the iterative (|A| times) substitution of (4.7) into

the first term on its right hand side:

(4.7B) ZΛ\A = ZΛ −
∑

B≺A;B "=∅

∑

t̂B

wt̂B
ZΛ\B̂.

Now substitute (4.7B) iteratively n − 1 times into the each term on its

right hand side which does not already contain the term ZΛ :

(4.8) ZΛ\A = ZΛ (1 +
n∑

k=1

(−1)k

B1≺A∑

(B1,...,Bk):Bi≺B̂i−1

k∏

i=1

wt̂Bi
) + Rn+1

where the summation is over collections of nonempty sets Bi and the

remainder Rn+1 is

(4.8R) Rn+1 = (−1)n+1

B1≺A∑

(B1,...,Bn+1):Bi≺B̂i−1

n+1∏

i=1

wt̂Bi
ZΛ\B̂n+1

.

Below we will see that Rn → 0 for n → ∞. This will yield the expression

of the quantity ρΛ
A = ZΛ\A/ZΛ by the infinite sum

(4.9) ρΛ
A = 1 +

∞∑

k=1

(−1)k

B1≺A∑

(B1,...,Bk):Bi≺B̂i−1

∏

i

wt̂Bi
.

Investigate the convergence of this sum. Let us first denote by N(k)

the number of possible chains of integers (|B1|, . . . , |Bk|), k ≥ 1 (i.e. the
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number of possible sequences of substitutions of the first resp. the second

term on the right hand side of (4.7) again into (4.7)). We have to make

exactly |A| consequent substitutions of the left hand side of the equation

(4.7) interrupted somewhere by k substitutions of the right hand side of

(4.7)(46).

Let us concentrate on the case A = {t}. Then obviously N(k) = 1

and this must be multiplied by the factor Ck estimating the number of

various choices of the sequence (t̂A1
, . . . , t̂Ak

) where C = C(≈) denotes(47)

the maximal possible number of points which are incompatible with a

given point t ∈ Λ. Therefore, (C)kεk is an upper bound for the contribu-

tion of all these chains to the sum (4.9). This proves the convergence of

(4.9) and therefore also the relation Rk → 0 for ε sufficiently small. The

relation ZΛ )= 0 follows from (4.9) by induction over the volume, if we

use the obvious relation

(4.10) Z−1
Λ =

∏

M≺Λ

ρM
tM

and the fact (established by induction over volume from (4.9)) that ρΛ
t is

nonzero (and in fact close to 1). The conclusion of all these estimates is

the following bound (which is useful for the sets A of a small cardinality;

the term
∑

t∈A

∑
t̂ wt̂ below corresponds to all chains of the length k = 1,

and the remainder is the estimate of the contribution of all the longer

chains):

(4.11) |ρΛ
A − 1 +

∑

t∈A

∑

t̂

wt̂| ≤ C ′(ε)2

where C ′ is a suitable new constant. This proves, considering the special

case A = {t} a stronger form of the desired relation (4.4) for all the

multiindices of the special type (with lowest possible cardinality) {nt =

1 if t = t0 ; ns = 0 otherwise }.

Note. For |A| * 1 it is advisable to substitute (4.11) with |A| = 1

into an equation (generalization of (4.10))

ρΛ
A =

∏

B≺A

ρ
Λ\B
tB

(46)The argument above leading to (4.9) can be formulated by using only (4.7) instead

of (4.7B).
(47)There are at most C(≈) terms in the sum at the right hand side of (4.7).
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to obtain a bound

(4.12) | log ρΛ
A +

∑

t∈A

∑

t̂

wt̂| ≤ C ′(ε)2|A|.

For higher multiindices, a most convenient way to establish suitable

bound for the (integer!) coefficients αnT
is apparently to derive (4.9)

with respect to the remaining variables wt: Given a multiindex nT , select

a point t0 with nt0 > 0 and denote by mT the new multiindex {mt =

nt if t )= t0; mt0 = nt0 − 1}. Put m =
∑

t mt, n =
∑

t nt.

Write
∂n log ZΛ∏

t ∂(wt)nt
(0) =

∂mρΛ
t0∏

t ∂(wt)mt
(0).

We get, for m ≥ 1, the following consequence of (4.9):

(4.13) αnT
=

∂mρt0∏
t ∂(wt)mt

(0) = (−1)m

B1=t0∑

(B1,...,Bm):Bi=B̂i−1

1

where the summation runs over those chains (B1, . . . , Bm) only which

contain any point t ∈ T exactly mt times in the list of the successive

choices of t̂B1
, . . . , t̂Bk

and where we use again the notation B̂ = (B ∪
{t̂B}) \ {tB}. Therefore we have the inequality

(4.14) |αnT
| ≤ M(m)

where M(m) denotes the number of such chains (B1, . . . , Bm)) and this

is (4.4), if we take into account the already established bound M(m) ≤
(C)m, C = C(ν,≈).

Note. The coefficients αnT
can be computed also from the Cauchy

formulas (like in [25]) but the estimates of these contour integrals do

not seem to give better bounds for αnT
than what is obtained above by

combinatorial methods.

Cluster expansion of general polymer models. Now we

shortly mention the modifications needed to extend the results above
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to the case of general polymer models. Consider now a general polymer

partition function

(4.15) ZΛ =
∑

{Si}

∏

i

wSi

where Si are some connected “polymers” with some compatibility relation

≈ between them. Below, we will have S ≈ S′ if and only if S and S′ do

not “touch’; this phrase will have the meaning dist(S, S′) > 1. There is

almost nothing requiring a nontrivial change in the formulation and the

proof of a corresponding analogy of Main polymer lemma: Assume that

the polymers S are connected sets and their weights wS satisfy a bound

(4.16) |wS| ≤ ε|S|.

We have the following equation which is an appropriate generalization of

(4.9) :

(4.17) ρΛ
A = 1 +

∞∑

k=1

(−1)k

B1≺A∑

(B1,S1,...,Bk,Sk):
Bi≺Bi−1∪Si−1& dist(tBi

,Si)≤1

∏

i

wSi
.

The contribution of all such chains of the total length k and with
∑ |Si| =

K is estimated (roughly) for |A| = 1 as

(4.18)

(
K

k

)
(Cε)K

where C = C(ν) is suitable geometrical constant. This proves the quick

convergence, for small ε, of the series (4.17). (We do not try here to

obtain a best possible generalization of the bounds outlined below (4.9).)

Corollary. Under (4.16), the polymer partition sum (4.15) can

be expanded as

(4.19) log ZΛ =
∑

N⊂⊂Λ

αN wN
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where for any “cluster” of polymers N = {Si;ni}, ni > 0 is the mul-

tiplicity of the polymer Si and the statement “ N is a cluster ⊂⊂ Λ ”

has the meaning that ∪Si is connected and suppN ⊂⊂ Λ”. We write

wN =
∏

i(wSi
)ni. The coefficients αN satisfy the bound

(4.20) |αN | ≤ C
∑

i
ni|Si|

with suitable C = C(ν) and the series (2.39) quickly converges. In partic-

ular we have, with another small ε′, the following bounds which are valid

for any finite set S:

(4.20′)
∑

N∈S′
|αN wN | ≤ (ε′)|S|

resp.

(4.20′′)
∑

N∈S′′
|αN wN | ≤ (ε′)|S|

where S ′ resp. S ′′ denote the family of clusters whose support contains

resp. intersects S.

4.1 – Recoloring. Conclusion

Return now to (3.24). Using Corollary of the preceding section we

can finally write (3.25) as (the set out D̃ was defined in (3.26))

(4.21)

exp(−HMnew(D̃)) = exp(−HMold
(D̃))Zout D̃ =

= exp(−HMold
(D̃)) exp


 ∑

T ⊂⊂out D̃
kT




where T are the new clusters formed by indecomposable collections of

shifts of D. This essentially completes our recoloring procedure; however

the simplification made at (3.24) must be supplemented now by a more

complete discussion: Actually, instead of (3.24) one has a more precise
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relation (3.22):

(4.22)

exp(−HMnew(D̃)) = exp(−HMold
(D̃))+

+
∑

{D1,...,Dk}
exp


−

∑

T : dist(T,(∪i int Di)c≤1

& dist(T,∪i supp Di)≤1

kq
T


 ×

× exp(−HMold
(D̃))

k∏

i=1

exp(−FM(Di))

where the last sum is over all “old” clusters T whose supports are not

contained (⊂⊂) in a suitable shift int(Di) of int(D) = int(D) but which

“touch” the union of these shifts (which are all recolored at once):

∪i intDi ∩ T )= ∅. The modification which must be made here is the

following one: writing

(4.23) exp(kq
T ) = 1 + k̃q

T

one obtains in fact the following more precise relation :

(4.24) exp(−HMnew(D̃)) = exp(−HMold
(D̃))Z̃out D̃

where the new polymers acting in the definition of the partition functions

Z̃out D̃ are some connected “conglomerates” C of the shifts of suppD and

sets T from (4.22). The weights wC are

(4.25) wC =
∏

i

wDi

∏

j

k̃q
Tj

for any such conglomerate C = {Di&Tj} of shifts Di (of D = suppD)

and of clusters Tj. Let us finally note that the convergence of the cluster

series with terms decaying like (3.14) is studied in more detail in [9] (but

this is essentially the type of convergence obtained already in classical

Mayer expansions).

Conclusion of the proof of Main Theorem. Investigation

of the notion of a smallness. The skeleton of a residual sys-

tem D. Let us return to the notion of a smallness already introduced
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in (3.6). In fact, this notion will be discussed in more detail only now

where we have at our disposal the notion of a mixed model – which is as-

sumed to be the result of a partial expansion of the original Pirogov-Sinai

model. More precisely the contours which are left in such a mixed model

are either nonrecolorable or bigger than a certain size. If we are inquiring

now the removability of a given D (of the latter type; nonrecolorable con-

tours resp. admissible systems will be left “for ever” – except of the cases

when they are finally swallowed by some bigger, external system making

the whole collection recolorable) we have already defined the metastable

model whose all contours have a size smaller than that of D. Expanding

this we obtain the appropriate mixed model suitable for the discussion

of the recolorability of D. We define the quantities hq and aq in (3.5) as

in (3.15h) and thus we have the precise meaning of (3.4), expressed by

(3.18) or, more suitably by (3.18′).

Thus, we rather take now, in (3.6), some “temporary” value of hq,

not the final value of hq which is used in the Main Theorem. A question

arises how much is changed if we do not take in (3.6) the final value

of aq (which is not yet constructed !). (More generally one could ask

what happens if we take in (3.6) some other value of hq, obtained for

some other, “not so carefully chosen” variant of the mixed model.) The

answer is that the discussion of the notion of smallness is not seriously

affected by such subtlety of the choice of hq. The difference between the

two above candidates for hq is of the order εdiam !, really a negligible

quantity in formulas (3.6) compared to our freedom in the choice of C.

Thus, take suitably smaller (than in (3.6)) constant C namely take C = 1

now (and remember that one should take slightly bigger C > 1 in the

original formulation of (3.6)) – to assure that the smallness in the original

sense (3.6) would guarantee also the smallness in the modified sense now

discussed.

So, let Dq be a residual admissible system in a cube ! which is q

– small in the temporary mixed model constructed up to now. We will

show that such a system is recolorable. In particular, such a situation

therefore cannot happen in the context of Main Theorem where total

expansion – with no recolorable systems left in the expanded model –

can be considered. The sense of the recoloring procedure formulated

above was that for any mixed model with some remaining recolorable

systems, we can define an equivalent model on a smaller configuration



474 M. ZAHRADNÍK [64]

space. Thus, applying such a procedure sufficiently many times, we may

assume that an expansion of the model considered in Main Theorem

was already found yielding no removable (no recolorable) contours in the

corresponding mixed model. The core of the proof of Main Theorem lies

then in establishing of the fact that there are also no small contours resp.

admissible systems in such an expanded model. Namely this is proven in

this last section.

So, consider a residual system D with an external colour q and assume

that it is small i.e. there is some q –small cube !̃ packing D : V (D) ⊂ !̃.

Let us show that D is recolorable.

Take successively some nonsmall (in their colour induced by D; of

course this interior colour is already different from q !) cubes !i which

are disjoint from suppD∪ (!̃)c and which are also mutually disjoint. The

skeleton of D will be defined as a maximal possible collection {!i} of

such cubes, giving no room for additional nonsmall cubes not intersecting

suppD ∪ (!̃)c and the cubes !i already constructed. Writing

(4.26) E(!i) = τ diam !i

one can treat the cubes of the skeleton as some “additional contours”.(48)

If a new, best possible colour q′′ (minimizing hq′′) is assigned to a cube

!i = ! living, say, in a q′ regime i.e. having the colour q′ at the boundary

of the complement of ! then we have, using the nonsmallness of !, the

inequality(49)

(4.27) log Zq′′
(!) − log Zq′

(!) ≥ aq′ |!| − ε|∂!| ≥ τ diam !.

Imagine the new “admissible system” D∗ which is defined as the original

system D enriched by all the cubes !i of the skeleton. Imagine that the

configuration determined by D∗ “jumps into the best possible q′′ inside

any cube of the skeleton” and the energy of any !i from the skeleton is

(48)This is a suitable convention to be used below; imagine that we define the new,
artificial “contours” !i and assign the energy E(!i) to them.
(49)This is the consequence of the fact that the cubes of the skeleton are not small i.e.
the condition (3.6) does not hold for them. The constant C from (3.6) should be taken

such that (4.27) is fulfilled: take C (slightly) bigger than 1 such that C(τ − ε) > τ .
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given by (4.26).(50) Then we have from (4.27) the inequality

(4.28) F (D∗) ≤ F (D).

Really, from (2.4) we have, inserting into it the relation (4.27), the in-

equality

F (D∗) − F (D) +
∑

i

(τ diam !i − aqi
|!i| + ε|∂!i|) ≤ F (D)

where qi denotes the colour of the square !i. This is, by (3.6), the desired

bound (4.28).

On the other hand, the smallness of D (which we assume) implies

even the smallness of the enriched system D∗! Namely, D∗ still belongs to

!̃. (This “minor” observation shows the advantage of our very definition

of smallness, through the smallness of the covering cubes !.(51) Noticing

that we have the bound, say

| suppΓ| − diamΓ > 1/2| suppΓ|

we have the relation, from the smallness of D∗

(4.29) F (D∗) ≥ τ

2
| suppD∗|.

Concerning the relation between |D∗| and conD∗ we will now have the

following important bound (see the topological section below, concluding

the Section 4):

(4.30) conD∗ ≤ 6ν| suppD∗|.

(50)This is just a play with values τ | diam!| versus aq′ |!|; it is not at all necessary to
interpret the cubes !i as some “real” contours. One could not replace diam! by the
more “physical” quantity |∂!| in this play without substantial changes in the notion

of smallness.
(51)In connection with rather subtle considerations used here, when discussing the rela-
tion between the notions of smallness and recolorability, one should make one general
“philosophical” remark: Sometimes, one is fighting severe technical problems in the
Pirogov-Sinai theory which however start to be relevant only in volumes which are
really astronomically large. For example the problem discussed above i.e. establishing
of the fact that residual implies recolorable seems to be much simpler for volumes of a
“moderate” size (like 1027)!
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It is clear that (4.29) and (4.30) would conclude the proof of the fact

that a residual small D is recolorable. More precisely, noticing that the

enrichened system of contours D∗ is “tight” (see the next section), we

obtain the bound

(4.31) F (D) ≥ F (D∗) ≥ τ

2
| suppD∗| ≥ τ

12ν
con D∗ ≥ τ

12ν
con D

i.e. D really is recolorable. This would, however, contradict the notion

of residuality. Thus, there are no small residual systems and our Main

Theorem is proven.

It remains to say something about the differentiability of the mapping

(3.11). Look on the formulas (3.8), (3.10) and notice that the only source

of nondifferentiability (even noncontinuity) in the formulas like (3.10) is

the fact that the property “to be recolorable” defined by (3.4) is of course

not continuous as the function of the Hamiltonian. Thus hq defined by

(3.4) are even not continuous for q nonstable!

However, this obstacle does not appear for stable q. To prove the

best possible smoothness properties of the quantities hq (and hence of

the mapping (3.11)) it is advisable to modify somehow the notion of re-

colorability; namely to define some (infinitely) smooth (as a function of

the Hamiltonian) alternative to the “yes or no” condition (3.4). One pos-

sibility is to multiply exp(−F (Γ) in formulas like (3.10) by some smooth

“weight” – which is equal exactly to one if (3.4) is satisfied with a large τ

and which goes quickly to zero otherwise. This gives an infinitely smooth

alternative to the constructions given above. See e.g. [11] for more de-

tails.

Note. The local analyticity (of the manifolds where the collection

of stable q is fixed, and of the value h) is a much more subtle problem.

It can be solved by a more careful study of the equations determining

F (Γ) ; variants of the quantities hq which are analytic can be found. See

[11]; the method is (one can not of course find a decision alternative to

(3.4) which would be constantly “yes” for sufficiently large τ and analytic

at the same time) to fix (independently of the Hamiltonian) the notion

of recolorability (and metastability) for nonstable q, locally in λ, µ, and

then to use an approach which combines the original, Pirogov-Sinai ,

“fixed point” method of Section 2 – applied for stable q only– with our
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“physical”treatment of F (Γq) applies to nonstable q(52). See [11] for more

details.

4.2 – A topological appendix: tight sets

For any set T ⊂ Zν denote by !(T ) the smallest cube containing T .

Say that a set S ⊂ T is isolated in T if

(4.32) dist(!(S), T \ S) ≥ diam !(S).

Say that a set T ⊂ Λ is tight if it has no isolated subsets.

Lemma. If T is tight then

(4.33) conT ≤ 6ν|T |.

The proof of this topological statement can be found in [8](53).

When applying this result to the enrichened collections D∗ one has

to identify the “supports” of cubes of D∗ as suitable subsets of Zν of

cardinality diam !. (Contours of D have supports already defined as

connected subsets of Zν .) Let us assume e.g. that any square is identified

with its “diagonal”. Then clearly suppD∗ is tight in the sense of the

definition above.

4.3 – Bounds for diluted partition functions

The bounds stated below summarize some of the main consequences

of our Main Theorem. Such bounds were always important in the

(52)There is, of course, a big freedom in the choice of the constant “τ” in the definition
of recolorability. Thus, if we fix this notion with respect to one particular choice of
H(λ0, µ0) we know that the inequality (3.4) will survive also for Hamiltonians which
are sufficiently close to H(λ0, µ0), for all contours which have a uniformly bounded size.

Studying any fixed phase picture i.e. family Q̃ of stable q containing some H(λ, µ) we
can take a sufficiently small region of parameters where the notion of recolorability can
be kept fixed for all nonstable values q /∈ Q̃. Then we consider the relations (4.38),

below (see the next section) as the integral relations for the “unknowns”{F (Γq), q ∈ Q̃}
while for the analytic functions {F (Γq), q ∈ Q \ Q̃} we use the “physical” prescription

(3.2). The rest of the argument is analogous to that of Section 2.
(53)The constant 6ν can be probably considerably improved.
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Pirogov-Sinai theory (see [2],[17], [7]). They can be, however, formulated

now in a sharper form than before:

Corollary. The partition functions Zq(Λ) and the metastable

partition functions Zq
meta(Λ) can be estimated as follows (compare (3.8)-

(3.10)):

1) The metastable partition functions are expressed as

(4.35) Zq
meta(Λ) = exp(−hq|Λ| + ∆q(Λ))

where the boundary terms defined as (we define inn Λ = {t : dist(t, Λc) ≥
2})

(4.36) ∆q(Λ) = −
∑

T : dist(T,Λc)≤1

∑

T : supp T =T

αT wT
|T \ inn Λ|

|T |

satisfy the obvious bound, with some small ε′ :

(4.37) |∆q(Λ)| ≤ ε′|∂Λc|.

2) The general diluted partition functions differ from the metastable ones

by factors

(4.38) Zq(Λ) − Zq
meta(Λ) = Zq

residual(Λ)

where the difference Zq
residual(Λ) is expressed as the sum over all possible

residual D

Zq
residual(Λ)=

∑

D
Zq

meta(ext D) exp(−E(D)−e| suppD|)
∏

q′∈Q

Zq′
meta(intq′ D).

This is equal, when using (4.35) for the expression of both the exterior and

the interior partition(54) partition functions Zq
meta(ext) and Zq′

meta(intq′ D),

to the following expression :

(4.39) Zq
residual(Λ)=exp(−h|Λ|)

∑

D
exp(−aq| ext | − Eq(D)) exp(∆′(Λ,D))

(54)metastable functions, by the very definition of residuality
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using the notation ∆′(Λ,D) = ∆q(ext D)+
∑

q′(∆q′
(intq′ D)−aq′ | intq′ D|).

The quantity Zq
residual(Λ) (it is nonzero only if the above sum over D is

nonvoid) satisfies the bound

(4.40) Zq
residual(Λ) ≤ exp(−h|Λ| + ∆q(Λ)) exp(−Aq

τ (Λ))

where Aq
τ (Λ) is defined as follows:

(4.41) Aq
τ (Λ) = min

T
{Aq

T (Λ)}

with Aq
T (Λ) being defined (not using the notion of contour anymore) as

Aq
T (Λ) = aq| ext T ∩ Λc| + (τ − ε)|T |

the minimum in (4.41) being taken over all connected T ⊂ Λ whose di-

ameter is greater or equal to τ/aq. By ext T we denote the external com-

ponent of T c. If there is no such T then we put Aq
τ = ∞. In particular,

for volumes of a size ≈ τ/aq we get

(4.42) Zq
residual(Λ) ≤ exp(−h|Λ|) exp(−C

τ 2

aq

)

with a suitable constant C = C(ν), whereas for volumes of the size * τ/aq

the bound (4.40) can be written as

Zq
residual(Λ) ≤ exp(−h|Λ|) exp(−(1 − ε′)τ |DΛ|)

where DΛ is the smallest set “swallowing (in its interior) most of Λ”.

The proofs of this statements follow from (3.8) and (3.10) (from which

(4.36) follows just by resummation) and also from the fact – proven in

the last section – namely that any residual (therefore nonsmall!) system

D has a size(55) at least τ/aq. Therefore we have the inequality, for any

(55)More precisely one could argue that even the ratio between V (D) and | supp D| for
really “dangerous” (nonrecolorable) systems should be at least so big. However, such
a stronger statement does not follow immediately from our definition of smallness.
Apparently, to improve the bound (4.42) (and, therefore, to achieve the quantity of
the order τν/(aq)

ν−1 or so in the exponent a suitable modification of the notion of

smallness is desirable.
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nonsmall D,

(4.43) E(D) ≥ τ | suppD| ≥ τ 2

aq

.

It is easy to see that (for τ sufficiently large) with the help of this bound,

the summation over all possible residual D gives the bound (4.42).

These bounds say, roughly speaking, that in the volumes of the size ≈
τ/aq (or smaller) there is no noticeable difference between the behaviour

of the stable phases and the q – th “phase”. Therefore, the presence of

the large “bubbles” of the stable phases (inside of the residual contours)

starts to be decisive (concerning the relative contribution, through these

configurations, of Zq
residual(Λ) to the partition function Zq(Λ)) only when

the quantity Aq
τ (Λ) starts to be “considerably smaller than aq|Λ|”.

Note. This opens a way to the estimates of “finite size effects” for

realistic boundary conditions (not only the “weak” ones like in [30]). To

do this, one of course needs a more precise evaluation of the quantities

Zq
residual(Λ) – through the quantities of the type Aq

τ (Λ).

Some bounds of this type were already obtained in [11]. They can

be apparently made more sharp now, using the expressions (4.38),(4.39)

above.

Surface tension. It is the characteristic feature of the Pirogov-

Sinai theory that quantities like the free energy but also the surface ten-

sion around a rigid interface (and other, less dimensional “tensions”, see

below) can be computed by quickly converging cluster expansion formulas

(and not only by limit procedures using logarithms of partition functions

– which is far less flexible and often suspect if more delicate quantities

than the “bulk” ones are considered). It can be even said that the very

control over all these delicate quantities (like various surface tensions) is

one of the most characteristic features of the Pirogov-Sinai theory, thus

distinguishing it from the other, less detailed theories.

Simply speaking, all these quantities are defined by suitable resum-

mation of the cluster expansion formulas. This resummation uses formu-

las of the type

(4.44)
∑

T

kT =
∑

t

kt where kt =
∑

T : t∈T

kT

|T |
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which were already used in many parts of these lectures, starting from

the definition (1.1). We will not go into details of the computation of

quantities like the surface tension around a rigid interface (see [9]) but

mention here only the most basic question: what are possible more precise

variants of the formula (4.35), taking in account the parts of ∂Λ which

are flat? In a more detailed expression we could consider also the “ν − 2

dimensional parts of ∂Λ” (the collection of all “edges of quadrants sticked

to ∂Λ”) etc.

Obviously, the formulas (4.36), (4.37) can be apparently made more

precise for volumes whose boundary is sufficiently regular, containing flat

pieces having a significant area: Consider the dimension ν = 3 for the

brevity, write (3.8) as

(4.45) log Zq
meta(Λ̃) = −eq|Λ̃| +

∑

T⊂Λ

kq
T

where Λ = Λ̃ \ ∂Λ̃ and introduce the following six resp. fifteen quantities

(which can be called the “plane” surface tensions, the “edge” surface

tensions): Put, for example(56)

σ3+ = −
∑

T :0∈T

n3
+

n3
0

kq
T

|T |

σ{2+,3+} = −
∑

T :0∈T

1

n2,3
0,0

(n2,3
+,+ − n3

+n2,3
+,0

n3
0

− n2
+n2,3

0,+

n2
0

)
kq

T

|T |(4.46)

where the quantities n3
+, n3

0, n
2,3
+,+, n2,3

+,0, n
2,3
0,0 etc. are defined as follows:

n3
+ = |Z3

+ ∩ T | ; n3
0 = |Z3

0 ∩ T | ;

n2,3
+,+ = |Z2,3

+,+ ∩ T | ; n2,3
0,0 = |Z2,3

0,0 ∩ T |
n2,3

+,0 = |Z2,3
+,0 ∩ T | etc.(4.47)

(56)Formally, the sum
∑

kT (over T ⊂ Z3
+) can be written as (eq − hq)|Z3

+ + σ3+|Z3
0|.

Analogously σ{2+,3+}|Z2,3
0,0| compensates the “edge error”

∑
kT (over T ⊂⊂ Z2,3

+,+)

−σ3+|Z2,3
+,0| − σ2+|Z2,3

0,+|.
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where

Z3
+ = {t ∈ Z3 : t3 ≥ 0} ; Z3

0 = {t ∈ Z3 : t3 = 0}
Z2,3

+,+ = {t ∈ Z3 : t3 ≥ 0 & t2 ≥ 0} ; Z2,3
0,0 = {t ∈ Z3 : t3 = 0 & t2 = 0}

Z2,3
+,0 = {t ∈ Z3 : t3 ≥ 0 & t2 = 0} etc.

Of course, if the Hamiltonian of the given model is symmetric with respect

to permutations and reflections of coordinates then we have the relations

like σ3± = σ1±, σ{2±,3±} = σ{1±,2±} etc. Then (4.45) can be written as

(4.48)
log Zq

meta(Λ̃) = −eq|∂Λ̃| − hq|Λ| + σ3+ |∂3
+Λ| + · · ·+

+ σ{2+,3+}|∂2,3
+,+Λ| + · · · + ∆(|∂extrΛ|)

where e.g. |∂3
+Λ| denotes the overall cardinality of the flat part of ∂Λ

which is “of the type Z3
+” (including its boundary) i.e. the cardinality

of that area of ∂Λ where Λ “sticks to a halfspace parallel to Z3
+” and,

analogously e.g. |∂2,3
+,+Λ| denotes the overall length of all the segments

of ∂Λ which correspond to the “edges of quadrants parallel to Z3
{2+,3+}

sticked (in the given segment) to Λ”. The second resp. the third term

on the right hand side of (4.46) thus represent, together with the other

terms of this type, the “flat” resp. the “edge” part of the surface ∂Λ.

(Of course, in higher dimensions there are more quantities of this type.)

The last term in (4.48) corresponds to the sum, over T touching ∂extrΛ,

of the “rests of kT ” and it can be estimated, at least in the case when the

mutual distances of the various “flat” and “edge” parts of Λ are bigger

than the logarithms of their diameters, as

(4.49) |∆(∂extrΛ)| ≤ ε′|∂extrΛ|

where ∂extrΛ denotes the collection of all the extremal points of Λ i.e.the

collection of points which do not belong to any segment of ∂Λ of notrivial

length.

I plan, in future, to add some additional chapters to this text deal-

ing briefly with other aspects of the theory and with other models not

covered by the basic setting of Sections 3 and 4: 1) Description of some

details of the more general method of [9] which gives in particular the rig-

orous description of the phenomenon of a “rigid interface”, appearing in
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a wide class of “stratified” (depending on one coordinate only) phases of

the Dobrushin type (with one or several rigid interfaces). Such stratified

phases emerge in many translation invariant Ising type models (and, of

course, also in more general, “stratified” versions of these models, where

also the Hamiltonian depends on the last coordinate). It seems that this

method has a wider application for situations where “noncrusted” con-

tours (with not so clear a meaning of what should be intΓ) appear. 2)

Short description of some other aspects of the theory like the smoothness

and local analyticity properties of the phase diagram, and the complete-

ness of the phase picture described by our Main Theorem. 3) Finally,

I plan to mention some other applications (either already made or with

the investigation in progress) to more complicated models like the mod-

els with continuous spin [50], models with random impurities, long range

models of Kac type etc.
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[9] P. Holický – M. Zahradńık: Stratified Low Temperature Phases of Stratified
Spin Models. A general P.S. Approach, submitted to JSP.
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[11] M. Zahradńık: Analyticity of Low-Temperature Phase Diagrams of Lattice Spin
Models, Journ. Stat. Phys., 47 (1988), 725-755.

[12] F. Koukiou – D. Petritis – M. Zahradńık: Low temperature phase transitions
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