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Weighted norm inequalities

for the Hardy-Littlewood maximal operator

on radial and nonincreasing functions

Y. RAKOTONDRATSIMBA

Riassunto: Si assegna una condizione necessaria e sufficiente sulle funzioni peso
u(.) e v(.) affinché risulti limitato l’operatore massimale di Hardy-Littlewood M :
Lp(R.D., v(x)dx) −→ Lq(u(x)dx). Si intende che Lp(R.D., v(x)dx) sia l’insieme di
tutte le funzioni radiali non-decrescenti che appartengono allo spazio pesato di Lebe-
sgue Lp(v(x)dx).

Abstract: We give a necessary and sufficient condition on the weight functions
u(.) and v(.) for which the Hardy-Littlewood maximal operator M is bounded from
Lp(R.D., v(x)dx) into Lq(u(x)dx). Here Lp(R.D., v(x)dx) is the set of all radial and
nonincreasing functions which belong to the weighted Lebesgue space Lp(v(x)dx).

1 – Introduction and the Result

The Hardy-Littlewood maximal operator on IRn, n ∈ IN∗, is de-

fined as

(Mf)(x) = sup
{
|Q|−1

∫

Q

|f(y)|dy; Q a cube with Q 5 x
}
.

Here Q is a cube whose sides are parallel to the coordinates-axes.
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Many authors (see [1], [6], [9]) investigated conditions on weight func-

tions u(.) and v(.) for which M is bounded from Lp
v = Lp(IRn, v(x)dx)

into Lq
u = Lq(IRn, u(x)dx) i.e.

(1.1)
(∫

IRn
(Mf)q(x)u(x)dx

) 1
q ≤C

(∫

IRn
fp(x)v(x)dx

) 1
p

for all f(.)≥0,

with 1 < p, q < ∞. Here C > 0 is a fixed constant. Let us remind some

facts about (1.1).

i) A well known necessary condition for (1.1) with 1 < p < ∞, is

that v− 1
p−1 (.) ∈ L1

loc(IR
n, dx), (see [1] p. 390).

ii) By the Lebesgue differentiation theorem, the boundedness (1.1)

has only a nontrivial sense for q ≤ p.

iii) A characterization of weight functions u(.) and v(.) for which

(1.1) holds with p = q is due to Sawyer [6]. And the case q < p is solved

by Verbitsky [9].

iv) In general the characterizing condition found in [6] is not easy

to check since it is expressed in term of the operator M and arbitrary

cubes. The Verbitsky condition for (1.1) (with q < p) is more difficult to

handle than the Sawyer’s one.

v) The boundedness (1.1) does not hold (in general) for p = 1 (see

[1], p. 146) so usually a weak version of (1.1) is considered and the case

0 < p < 1 remains open.

If in (1.1) only functions f(x) = ϕ(|x|) ≥ 0, with ϕ(.) a nonincreasing

function, are considered then the corresponding inequality will be denoted

by M : Lp
v(R.D.) → Lq

u. Our purpose is to characterize the weight

functions u(.) and v(.) for which this boundedness holds.

The present work is first motivated by the fact that during these last

years the problem T : Lp
v(R.D.) → Lq

u, for linear operators, has been

considered and studied by many authors [7], [2], [3], [4]. So it is also

natural to investigate on the same question for the maximal function M

which is only a sublinear operator. The second motivation in writing

this note is to collect the observations that for the boundedness M :

Lp
v(R.D.) → Lq

u, the points i), ii), iv) and v) are in some way violated.

In other words the following remarks can be found:

– it is not required that v− 1
p−1 (.) ∈ L1

loc(IR
n, dx);
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– there are nontrivial weight functions u(.) and v(.) for which M :

Lp
v(R.D.) → Lq

u with p < q;

– a necessary and sufficient condition for the boundedness can be de-

rived when 0 < p ≤ 1 and p ≤ q;

– all of the characterizing conditions for M : Lp
v(R.D.) → Lq

u we will

introduce are not expressed in term of neither the maximal operator

M nor arbitrary cubes, so for many cases (as for instance for radial

weights), they are easy to check.

The main result reads as follows:

Theorem. Let 0 < p, q < ∞.

For p ≤ 1 and p ≤ q, then M : Lp
v(R.D.) → Lq

u if and only if for

some constant C > 0 these two inequalities hold for all R > 0:

(∫

|x|<R

u(x)dx

) 1
q

≤ C

(∫

|x|<R

v(x)dx

) 1
p

,(1.2)

Rn

(∫

R<|x|
|x|−nqu(x)dx

) 1
q

≤ C

(∫

|x|<R

v(x)dx

) 1
p

.(1.3)

For 1 < p ≤ q and p′ = p
p−1

, then M : Lp
v(R.D.) → Lq

u if and only if

both (1.2) and

(1.4)

(∫

R<|x|
|x|−nqu(x)dx

) 1
q
(∫

|x|<R

[∫

|y|<|x|
v(y)dy

]−p′

|x|np′
v(x)dx

) 1
p′

≤ C

are satisfied for all R > 0.

Let q < p with q )= 1, 1
θ

= 1
q
− 1

p
, q′ = q

q−1
, (so q′ < 0 if q < 1). Then

M : Lp
v(R.D.) → Lq

u if and only if the following inequalities hold:

∫

IRn

[(∫

|y|<|x|
u(y)dy

) 1
p
(∫

|z|<|x|
v(z)dz

)− 1
p
]θ

u(x)dx < ∞(1.5)

∫

IRn

[(∫

|x|<|y|
|y|−nqu(y)dy

) 1
q

×

×
(∫

|z|<|x|

[∫

|y|<|z|
v(y)dy

]−p′

|z|np′
v(z)dz

) 1
q′ ]θ

×(1.6)

×
[∫

|y|<|x|
v(y)dy

]−p′

|x|np′
v(x)dx < ∞.
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To justify the above claims in the introduction, examples would be

needed.

Corollary. Let 0 < p, q < ∞, u(x) = |x|β−n and v(x) = |x|γ−n.

A) For p ≤ q, 0 < β < nq and 0 < γ < np then M : Lp
v(R.D.) → Lq

u

if and only if β
q

= γ
p
.

B) If β
q

= γ
p

and q < p, then the boundedness M : Lp
v(R.D.) → Lq

u

does not hold.

C) Let w(x) = |x|β−n1I{|x|≤1}(x) + |x|δ−n1I{|x|>1}(x). For q < p with

q )= 1 then M : Lp
v(R.D.) → Lq

w whenever 0 < δ
q

< γ
p

< n < β
q
.

Remarks. For the following observations 1) to 3), the integer n is

taken equal to 1.

1) For u(x) = |x|− 1
2 (i.e. β = 1

2
) then M : Lp

u(R.D.) → Lp
u for all

1 < p < ∞. Better, it is well-known ([1], Corollary 1.13 p393) that (1.1)

is valid since u(.) satisfies the A1-Muckenhoupt condition. Part A leads

to state that for all p with 1
2

< p ≤ 1 the above boundedness also holds.

2) For u(x) = |x| 1
2 , v(x) = 1 (i.e. β = 3

2
, γ = 1), then by Part A,

M : L2
v(R.D.) → L4

u (i.e. p = 2 < q = 4).

3) Part B says that for power weight functions the boundedness M :

Lp
v(R.D.) → Lq

u is false when q < p. However nontrivial weights for

which this boundedness holds can be obtained by modifying power weight

functions as it is stated in Part C. Take for instance v1(x) = 1, u1(x) =

|x|21I|x|≤1(x) + |x|− 3
4 1I|x|>1(x), (i.e. β = 3, γ = 1, δ = 1

4
); then M :

L2
v1

(R.D.) → L
3
2
u1 . Also for v2(x) = 1, u2(x) = 1I|x|≤1(x)+ |x|− 7

8 1I|x|>1(x),

(i.e. β = 1, γ = 1, δ = 1
8
); then M : L2

v2
(R.D.) → L

1
2
u2 .

4) While this paper has been submitted, the author [5] has got a

characterization of inequality (1.1) for general functions f(.) and 0 < p =

q ≤ 1. It appears from this last work [5] that many usual weights must

be excluded contrary to the situation for M : Lp
v(R.D.) → Lq

u studied

above.

2 – Proof of results

Proof of The Theorem. The first key for the proof is
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Proposition 1. Let 0 < p, q < ∞. The following statements are

equivalent:

1) the boundedness M : Lp
v(R.D.) → Lq

u holds;

2) for some constant C > 0 and for all ψ(.) ≥ 0 with ψ(.) ↘

(2.1)
(∫ ∞

0

(Hψ)q(t)u(t)dt
) 1

q ≤ C
(∫ ∞

0

ψp(t)v(t)dt
) 1

p
.

Here (Hψ)(t) =
1

t

∫ t

0

ψ(s)ds, v(t) and u(t) are weight functions on ]0,∞[

defined by

v(t) = t
1
n [1−n]ṽ(t

1
n ), ṽ(r) = rn−1

∫

Sn−1

v(rω)dω

u(t) = t
1
n [1−n]ũ(t

1
n ), ũ(r) = rn−1

∫

Sn−1

u(rω)dω ;

and dω is the area-measure on the unit sphere Sn−1 of IRn−1.

The second key for the proof is a result about inequality (2.1).

Proposition 2. Let 0 < p, q < ∞.

A) For p ≤ 1 and p ≤ q, the Hardy inequality (2.1) holds if and only

if for some constant C > 0 the following two inequalities hold for all

R > 0:

(∫ R

0

u(t)dt

) 1
q

≤ C

(∫ R

0

v(t)dt

) 1
p

,(2.2)

R

(∫ ∞

R

t−qu(t)dt

) 1
q

≤ C

(∫ R

0

v(t)dt

) 1
p

.(2.3)

B) For 1 < p ≤ q and p′ = p
p−1

, inequality (2.1) holds if and only if

both (2.2) and

(2.4)

(∫ ∞

R

t−qu(t)dt

) 1
q
(∫ R

0

[∫ t

0

v(s)ds
]−p′

tp′
v(t)dt

) 1
p′
≤C

are satisfied for all R > 0.
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C) For q < p with q )= 1, 1
θ

= 1
q

− 1
p

and q′ = q
q−1

, inequality (2.1)

holds if and only if the following two inequalities hold:

∫ ∞

0

[(∫ r

0

u(t)dt
) 1

p
(∫ r

0

v(t)dt
)− 1

p
]θ

u(r)dr < ∞(2.5)

∫ ∞

0

[(∫ ∞

r

t−qu(t)dt

) 1
q
(∫ r

0

[∫ t

0

v(s)ds
]−p′

tp′
v(t)dt

) 1
q′ ]θ

(2.6)

×
[∫ r

0

v(s)ds
]−p′

rnp′
v(r)dr < ∞.

Part B and also Part C with 1 < q < p were first due to Sawyer ([7]

Theorem 2, p.148). Part C was proved by Stepanov ([8] Theorem 3, p.

175). Part A with p )= 1 is also contained in this last paper. The full case

of Part A, was found by Heinig and Maligranda ([3] Corollary 3.5, p.

150).

Assuming for the moment the validity of Proposition 1, the theorem

follows once we prove that conditions (2.2), (2.3), (2.4), (2.5) and (2.6)

are equivalent to (1.2), (1.3), (1.4), (1.5) and (1.6) respectively. The

conclusion is just based on the following computations:

∫ R

0

u(t)dt ≈
∫

|x|<R
1
n

u(x)dx,

∫ R

0

v(t)dt ≈
∫

|x|<R
1
n

v(x)dx,

∫ ∞

R

t−qu(t)dt ≈
∫

R
1
n <|x|

|x|−nqu(x)dx,

∫ R

0

[∫ t

0

v(s)ds
]−p′

tp′
v(t)dt ≈

∫

|x|<R
1
n

[∫

|y|<|x|
v(y)dy

]−p′

|x|np′
v(x)dx.

Proof of Proposition 1. In fact we will prove that the bounded-

ness M : Lp
v(R.D.) → Lq

u holds if and only if for all f(x) = ϕ(|x|) ≥ 0

with ϕ(.) ↘, the following is true:

(2.7)
(∫

IRn

[∫

|y|<|x|
f(y)dy

]q

|x|−nqu(x)dx
) 1

q ≤ C
(∫

IRn
fp(x)v(x)dx

) 1
p

.

And this last inequality is also equivalent to

(2.8)
(∫ ∞

0

[H(ϕ ◦ Φ)]q(t)u(t)dt
) 1

q ≤ C
(∫ ∞

0

(ϕ ◦ Φ)p(t)v(t)dt
) 1

p
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for all ϕ(.) ↘, where Φ(t) = t
1
n . So the conclusion will follow by the

immediate equivalence between (2.1) and (2.8).

The equivalence between (2.8) and (2.7) holds because
∫

IRn
fp(x)v(x)dx ≈

∫ ∞

0

(ϕ ◦ Φ)p(t)v(t)dt

∫

IRn

[∫

|y|<|x|
f(y)dy

]q

|x|−nqu(x)dx ≈
∫ ∞

0

[H(ϕ ◦ Φ)]q(t)u(t
1
n )dt.

Finally it remains to see the equivalence between inequality (2.7)

and M : Lp
v(R.D.) → Lq

u. Since |x|−n
∫

|y|<|x| f(y)dy ≤ c(Mf)(x) for all

f(.) ≥ 0, then clearly the boundedness implies (2.7). For the converse it

is sufficient to find a fixed constant C > 0 such that

(2.9)
(Mf)(x) ≤ C|x|−n

∫

|y|<|x|
ϕ(|y|)dy

for all f(x) = ϕ(|x|) ≥ 0 with ϕ(.) ↘.

We have just to bound the quantities I(x, r) = r−n
∫

|x−y|<r ϕ(|y|)dy,

r > 0, by the right member of (2.9). First consider |x| ≤ 2r. Then

I(x, r) ≤ c1|x|−n

∫

|y|<|x|
ϕ(|y|)dy + c2ϕ(|x|) since |x| ≤ 2r and ϕ(.) ↘

≤ c1|x|−n

∫

|y|<|x|
ϕ(|y|)dy + c3|x|−n

∫

1
2 |x|<|y|<|x|

ϕ(|x|)dy

≤ C|x|−n

∫

|y|<|x|
ϕ(|y|)dy.

Next take |x| > 2r. Then

I(x, r) ≤ r−n

∫

|x−y|<r; 12 |x|<|y|<|x|
ϕ(|y|)dy ≤ c2ϕ

(1

2
|x|

)

≤ C|x|−n

∫

1
4 |x|<|y|< 1

2 |x|
ϕ

(1

2
|x|

)
dy ≤ C|x|−n

∫

|y|<|x|
ϕ(|y|)dy.

Proof of the Corollary. Since 0 < β < nq, then
∫

|x|<R

u(x)dx ≈ Rβ for all R > 0(2.10)

∫

R<|x|
|x|−nqu(x)dx ≈ Rβ−nq for all R > 0.(2.11)
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The hypothesis 0 < γ < np implies for all R > 0

∫

|x|<R

v(x)dx ≈ Rγ(2.12)

∫

|x|<R

[∫

|y|<|x|
v(y)dy

]−p′

|x|np′
v(x)dx ≈ Rp′[n− γ

p ] .(2.13)

By (2.10) and (2.12), condition (1.2) is satisfied if and only if β
q

= γ
p
. And

by (2.11) and (2.12), condition (1.3) is equivalent to this last equality. It

is also the case for (1.4) in view of (2.11) and (2.13).

For q < p and β
q

= γ
p
, condition (1.5) is false since the integral

in (1.5) becomes equivalent to
∫ ∞
0 r[β θ

p −γ θ
p +β]r−1dr =

∫ ∞
0 r−1dr = ∞.

Consequently the boundedness M : Lp
v(R.D.) → Lq

u does not hold.

As in (2.10), then

∫

|x|<r

w(x)dx ≈ rβ for 0 < r ≤ 1(2.14)

∫

|x|<r

w(x)dx=

∫

|x|≤1

|x|β−1dx+

∫

1<|x|<r

|x|δ−1dx≤crδ for r>1.(2.15)

Calling I the integral in (1.5) [with u(.) = w(.)] and using (2.14), (2.15)

and (2.12) then

I ≤ c1

∫ 1

0

rβ θ
p −γ θ

p × rβ−1dr + c1

∫ ∞

1

rδ θ
p −γ θ

p × rδ−1dr =

= c1

∫ 1

0

rθ[
β
q − γ

p ] × r−1dr + c1

∫ ∞

1

rθ[ δ
q − γ

p ] × r−1dr.

This inequality leads to the finitness of I since β
q

− γ
p

> 0 and δ
q
− γ

p
< 0.

So condition (1.5) is satisfied. As in (2.11), for δ − nq < 0

(2.16)

∫

r<|y|
|y|−nqw(y)dy ≈ rδ−nq for all r > 1.

And δ − nq < 0 < β − nq implies, for 0 < r ≤ 1:

(2.17)

∫

r<|y|
|y|−nqw(y)dy =

∫

r<|y|≤1

|y|−nq+βdy +

∫

1<|y|
|y|−nq+δdy ≤ c2 .



[9] Weighted norm inequalities etc. 495

If J denotes the integral in (1.6) [with u(.) = w(.)] then J = J1 + J2,

where J1 is the integral corresponding to |x| ≤ 1 and J2 for |x| > 1.

Using (2.17), (2.12) and (2.13) then

J1 ≤ c3

∫ 1

0

r
p′ θ

q′ (n− γ
p ) × r−γp′+np′ × rγ−1dr =

= c3

∫ 1

0

rθ(n− γ
p ) × r−1dr < ∞ , since

(
n − γ

p

)
> 0.

From (2.16), (2.12) and (2.13) then

J2 ≤ c4

∫ ∞

1

r
θ
q (δ−nq) × r

p′ θ
q′ (n− γ

p ) × r−γp′+np′ × rγ−1dr =

= c4

∫ ∞

1

rθ[ δ
q − γ

p ] × r−1dr < ∞ , since
(δ

q
− γ

p

)
< 0.

These computations show that J < ∞. So the condition (1.6) is satisfied

and consequently M : Lp
v(R.D.) → Lq

w.
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