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The water bell: An attempt to derive it

D. BENEDETTO – E. CAGLIOTI

Riassunto: Il modello di “campana d’acqua”, ottenuto da Boussinesq in [6], e
risolto da Taylor in [19], è un getto cavo di fluido incomprimibile, non viscoso, nel
limite di spessore nullo dello strato di fluido. Discutiamo, attraverso una formulazione
variazionale, come si possa ottenere questo modello come limite di soluzioni stazionarie
dell’equazione di Eulero con tensione superficiale sui bordi liberi.

Abstract: We consider a cave jet of an incompressible non viscous fluid, in the
limit of vanishing thickness: the “water bell” model, as obtained by Boussinesq [6] and
solved by Taylor [19]. We discuss how to derive this model as a limit of stationary
solutions of Euler equation with surface tension on the free boundaries, via a variational
principle.

1 – Introduction

A water bell, i.e. a bell like shaped axially symmetric thin cave jet of

water, can be obtained by placing a disk shaped obstruction in the path

of a vertical cylindrical jet of water, as asserted by Savart in 1833 [18].

Boussinesq in 1869 [6] gave the mathematical description of it. In 1959

Taylor [19] solved the model in the case the effects of the gravity can be

neglected, and compared the solution with experimental results. The case
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of a rotating cave jet has been experimentally studied by Bark et al. [4],

and analytically solved, without gravity, by Gasser and Marty [9].

The current interest on this subject is in the applied Fluid Mechanics.

For example the nebulization of a fluid can be obtained by disintegration

of a liquid sheet (see Taylor [19], Yarin [20]). Thin sheets of fluid

appear also in the splashing of drops on solid surface; this phenomenon

appears in a wide variety of applications. For a complete survey on the

theory of water sheets and its applications see Yarin [20] and references

therein.

In this paper we approach the problem of deriving the water bell

model from the Euler equation for an incompressible, non viscous fluid.

More precisely we consider an axially symmetric cave jet, with surface

tension on the free boundaries, and without external forces. Our strategy

is the following. The water bell model is equivalent to a variational

principle. The stationary solution of the Euler equations may be obtained

formally as an extremum point of a suitable functional. In the limit of

vanishing thickness, this functional converges formally to the functional

describing the water bell. Our aim would be to find extremal points of

the functional for the Euler equations which converge, is some sense, to

the solution of water bell model. However, in this paper we are only able

to perform this program for a simplified version of the functional for the

Euler equation. In this case the problem turns out to be a relaxation

problem for a system of ODE.

In Section 2 we give a heuristic derivation of the water bell model. In

Section 3 we describe a variational approach for the stationary solution

for the Euler equation (which is a jet-cavity problem with surface tension)

and we discuss the difficulties that arise in achieving the full program.

In Section 4 we introduce a two surface approximation of it and prove

(Section 5) that, in the thin limit, it approaches to the model stated in

Section 2.

We remark that the problem of finding stationary solutions for the

Euler equation is, in this case, a free boundary problem. Many other

situation in Fluid Mechanics gives a free-boundary problem, and many

approaches are possible. For viscous fluids in an open channel of various

geometry see e.g. [13] and references therein. The formalism of variational

inequalities is used for the filtration problems (see [3] and [8]). The

variational approach also describes, in the nonviscous case without surface
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tension, jets, cavities, and fluids with potentials [8]). Also the case of a

fluid at rest with surface tension have a variational formulation: it is the

well known problem of minimal surfaces ([17], [11]; see also [7], [12], [1]).

2 – The water sheet limit

We consider an inviscid incompressible fluid in a region Λ on the

half-space {z > 0} of IR3, axially symmetric with respect to z−axis. We

indicate with Σ1, Σ2 the internal and external boundary of Λ respectively.

The velocity field u and the pressure P satisfy the stationary Euler

equations in the region Λ (see e.g. [15], [5],[14]):

(2.1)
u · ∇u = −∇P

µ
,

∇ · u = 0 ,

with the following conditions on the free-boundaries Σi, i = 1, 2:

(2.2)
u|Σi

· n = 0

P |Σi
= P0 + THi

where the constant µ is the density of the fluid, P0 is the atmospheric

pressure, T is the surface tension and Hi is the mean curvature of the

surface Σi with respect to n, the outer normal to Λ.

We suppose that the distance between Σ2 and Σ1 is small, so that we

can represent Σ2 in terms of Σ1 = Σ, given by the rotation around the

z − axis of a positive function R(z), and of the distance λ(z) between Σ2

and Σ:

(2.3)
Σ = {(R(z) cos θ, R(z) sin θ, z) : 0 ≤ z ≤ L, 0 ≤ θ < 2π} ,

Σ2 = {x + λn(x) : x ∈ Σ} ,

where n(x) is the outer normal to Σ in x.

In order to describe the water sheet limit, we make the ansatz that

the pressure varies linearly between Σ and Σ2 along n:

(2.4) ∇P =
2TH

λ
n + O(λ0) ;
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where H is the mean curvature of Σ.

Let us consider the Lagrangian picture: we consider a particle x ∈ IR3

on Σ. The Newton equation reads:

(2.5) ẍ = −∇P

µ
.

In this approximation the gradient of the pressure is orthogonal to the

surface Σ. Therefore

|ẋ| = v = constant(2.6)

ẍ = −v2

rc

n = −2TH
λµ

n(2.7)

where rc is the radius of curvature of the trajectory with respect to n.

Let us write ẋ as the sum of its component v2 on the tangent τ to the

curve (z, R(z)) and v1 on the orthogonal direction to τ on the tangent

plane to the surface Σ. From the Euler formula for the curvature of the

normal sections

(2.8) H =
1

R1

+
1

R2

,

where R1 and R2 are the principal radius of curvature, we obtain that:

(2.9)
1

rc

=
1

v2

( v2
1

R1

+
v2
2

R2

)
.

In order to close equations (2.7), (2.9) we need to know v1 and λ. From the

cylindrical symmetry, it follows that the z−component of the momentum

is conserved, i.e.

(2.10) v1R = β = constant ,

furthermore the rate of flow on the sections of Λ is constant:

(2.11) v2λR = γ = constant .
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Summarizing:

( v2
1

R1

+
v2
2

R2

)
=

2TR

γµ
v2

( 1

R1

+
1

R2

)
,(2.12)1

v2
1 =

β2

R2
,(2.12)2

v2
2 = v2 − v2

1 ,(2.12)3

1

R1

=
1

R(1 + R′2)
1
2

,(2.12)4

1

R2

= − R′′

(1 + R′2)
3
2

;(2.12)5

where ′ = d
dz

.

In the system (2.12) µ, T are physical parameters of the fluid, while

β, γ, v are dynamical parameter.

System (2.12) admits a first integral:

(2.13) I =
1 + R′2

(
2T

γµv
R −

(
1 − β2

v2R2

) 1
2

)2 ,

which allows us to find the solutions of (2.12), and to draw the shape

of Σ.

In the case β = 0 the level sets of I are hyperbola and two regimes

are possible. In the first, R(0) = R0 < γµv
2T

, the jet collapses on the axes

R = 0. If 2Rmax is the maximum diameter of the surface, the height h of

the shape (that is the distance along the z − axes between the point of

collapse and the point of maximum diameter) is given by

(2.14) h =
1

τ
(1 − τRmax) arccosh(1 − τRmax) ;

where

(2.15) τ =
2T

γµv
.

In the other case, R0 > γµv
2T

, the trajectories are unbounded.
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The case β )= 0 is a bit more complicate. In particular by varying β

it is possible to individuate different regimes. Here we consider the case

|β| < γµv2

4T
, that seems to be the most relevant for the applications (see [6],

[19],[20]). In this case the level sets of I show three different regimes

separated by R = R− = (
1−(1− 4τ2β2

v2 )
1
2

2τ2 )
1
2 , R = R+ = (

1+(1− 4τ2β2

v2 )
1
2

2τ2 )
1
2 .

The first, R < R−, and the third, R > R+ correspond qualitatively

to the regimes previously described for the case β = 0. Nevertheless,

in this case the conservation of the angular momentum implies that R

cannot reach the z − axis, and the trajectories for R < R− collapse at

R = |β|
v

.

In the intermediate case, R− < R < R+, the orbits are periodic;

this corresponds, in the real space, to z-periodic surfaces; in particular it

exists RC such that for R(z) ≡ RC the solution is a cylinder.

An extensive discussion of the case β )= 0 can be found in [9].

3 – The variational approach

After having considered, from a heuristic point of view the water

sheet limit, we now consider the original problem (2.1-2) in a variational

formalism.

Given Ri : [0, h] → IR+; i = 1, 2, let Λ = ΛR1,R2
be

(3.1)
Λ ≡ {(ρ cos θ, ρ sin θ, z) : 0 < R1(z) ≤ ρ ≤ R2(z),

0 ≤ θ ≤ 2π, 0 ≤ z ≤ h} ,

and let be Σ1, Σ2 defined as

(3.2)
Σi ≡ {(Ri(z) cos θ, Ri(z) sin θ, z) :

0 ≤ θ ≤ 2π, 0 ≤ z ≤ h} i = 1, 2 .

In order to solve the stationary Euler equation (2.1) in Λ, we remark that

(3.3) u · ∇u = u × (∇ × u) + ∇u2

2
,

then if u is an irrotational (∇ ×u = 0) divergence free field, u solves the

Euler equation, identifying the pressure P in equation (2.1) with −µu2

2

up to a constant.
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We can represent a rotating invariant divergence free field v without

swirl, in the plane ρ, z as

(3.4) v ≡ 1

ρ

(
− ∂Φ

∂z
,

∂Φ

∂ρ

)
.

The irrotational condition for v implies Φ solves the elliptic equation

(3.5) LΦ ≡ ρ ∇ ·
(∇Φ

ρ

)
=

( ∂2

∂ρ2
+

∂2

∂z2
− 1

ρ

∂

∂ρ

)
Φ = 0 .

On the free boundaries we impose:

(3.6)
Φ = 0 on Σ1,

Φ = Γ on Σ2,

which imply that the normal component of v to the surfaces Σ1,2 is 0,

and that the flux of v on the sections of Λ is Γ.

We impose also that Φ(z, ρ) is given at the fixed boundaries z = 0

and z = h, which correspond to give the z component of the velocity field

(also Neumann boundary conditions can be given, which correspond to

give the ρ component of v).

The corresponding kinetic energy is given by

(3.7) E[R1, R2] ≡ µ

2

∫

Λ

|v|2 =
µ

2

∫

Λ

|∇Φ|2
ρ2

.

We can consider a velocity field u given by the sum of v and a term

of rotation around the z−axis, of intensity B
ρ
. Such a field is a divergence

free field, and it is irrotational.

In this way we construct a solution of equation (2.1) satisfying only

the first boundary condition of (2.2) for u. Now we have to find R1,2(z)

such that also the second condition is satisfied.

Let us define the following functional on (R1( · ), R2( · )), with Ri(0)

and Ri(h) fixed:

(3.8) F [R1, R2] ≡ E[R1, R2] − µ

2

∫

Λ

B2

ρ2
+ P |Λ| − T (|Σ1| + |Σ2|) ;
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where P ( which will be identified with the atmospheric pressure) is the

Lagrange multiplier of the volume |Λ|, T is the surface tension, and |Σi|
is the area of the surface Σi. The kinetic term B2

ρ2 appear with the minus

sign since it plays the role of an effective potential.

The definition of the functional F [R1, R2] is motived by the following

theorem:

Theorem 3.1. If (R1( · ), R2( · )), with 0 < R1( · ) < R2( · ) is

an extremum point for F , in the space of the function C2,α([0, h]), with

α > 0, and R1,2(0) and R1,2(h) fixed, then the corresponding velocity

field u is a solution of problem (2.1), (2.2).

Proof. We have only to verify the condition (2.2) for the pressure

on the free boundaries. First we consider the variation on R2: let Rε
2(z) =

R2(z) + εδR(z), and let Λε, Σε
2, Φε be the corresponding region occupied

by the fluid, the external surface, and the solution of elliptic equation (3.5)

respectively.

By explicit calculations

(3.9)

d

dε

∣∣∣
ε=0

( ∫

Λε

(
− µ

2

B2

ρ2
+ P

)
− T (|Σ1| + |Σ2|)

)
=

= 2π

∫ h

0

dz
(

− µ

2

B2

R2(z)2
+ P − T H2

)
R2(z) δR(z) ,

where H2 is the mean curvature of the surface Σ2.

To perform the variation on the kinetic term E[R1, R2 + εδR], let us

introduce the function Φ̃ε:

(3.10) Φ̃ε(z, ρ) = Φ(z, ρε(z, ρ)) ,

where Φ is the solution of problem (3.5) in the inperturbed domain Λ,

and

(3.11) ρ − R1(z) = (ρε(z, ρ) − R1(z))
R2(z) − R1(z) + εδR(z)

R2(z) − R1(z)
.

The function Φ̃ε is a regular function in Λε and solves LΦ̃ε+εg(z, ρ, ε) = 0,

where g depends on the seconds derivatives of Φ, Ri, δR. Then g is
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uniformly bounded in Cα(Λε). The function Φε minimize the kinetic

energy in Λε and solves LΦε = 0, then, using the Poincaré inequality:

(3.12) 0 ≤
∫

Λε

|∇Φ̃ε|2
2ρ2

−
∫

Λε

|∇Φε|2
2ρ2

=

∫

Λε

|∇(Φε − Φ̃ε)|2
2ρ2

≤ cε2 .

Then

(3.13)
d

dε

∣∣∣
ε=0

µ

2

∫

Λε

|∇Φε|2
ρ2

=
d

dε

∣∣∣
ε=0

µ

2

∫

Λε

|∇Φ̃ε|2
ρ2

.

Performing this derivative we obtain:

(3.14)

d

dε

∣∣∣
ε=0

µ

2

∫

Λε

|∇Φ̃ε|2
ρ2

= πµ

∫ h

0

dz
|∇Φ|2(z, R2(z))

R2(z)
δR(z)+

+ µ

∫

Λ

∇Φ

ρ2
· ∇

( d

dε

∣∣∣
ε=0

Φ̃ε
)

Being

(3.15)
d

dε

∣∣∣
ε=0

Φ̃ε = −∂ρΦ δR
ρ − R1

R2 − R1

,

integrating by part, and taking into account that LΦ = 0 and that

δR(0) = δR(h) = 0, the second term of equation (3.14) is

(3.16) −2πµ

∫ h

0

dz
√

1 + R′
2(z)2

∇Φ(z, R2(z)) · n
R2(z)

∂ρΦ(z, R2(z))δR(z) ,

where n is the external normal to Σ2 on the plane (z, ρ).

Noting that Φ is constant on Σ2, and that |∇Φ|2(z, R2(z))=(∂ρΦ(z, R2(z)))
2

(1 + R′
2(z)2), from (3.14), (3.16) we obtain

(3.17)
d

dε

∣∣∣
ε=0

µ

2

∫

Λε

|∇Φ̃ε|2
ρ2

= −πµ

∫ h

0

dz
|∇Φ|2(z, R2(z))

R2(z)
δR(z) .

Finally, collecting (3.9) and (3.17), and noting that

(3.18) |u|2 =
|∇Φ|2

ρ2
+

B2

ρ2
,
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we have

(3.19) µ
|u(z, R2(z))|2

2
+ P − T H2 = 0 .

For the variation of R1 we proceed in the same way, obtaining

(3.20) µ
|u(z, R1(z))|2

2
− P − T H1 = 0 .

From equation (3.3), we can identify, up to a constant, the term −µ|u|2
2

with the pressure in the fluid. Then equations (3.19−20) are the boundary

condition (2.2) for the pressure.

Remark 1. We have fixed the value of Ri at the boundary z = 0

and z = h, and also the value of the z−component of the velocity field.

In this way we only interpret an irrotational steady solution of Euler

equation with surface tension on the free boundaries as extremum point

of a functional, and nothing we can say for the problem of finding how

the fluid leave the region z < 0, where we can assume there are fixed

boundaries. This kind of problem for jets and cavities has been considered

and solved in [8] in the case of T = 0.

Remark 2. The functional F is not bounded from below and from

above. In fact, but for non essential terms, it is given by the difference of

two unbounded from above functionals: the kinetic energy and the area of

the surfaces. Therefore we cannot look, as usual in studying this kind of

problems, for an absolute minimum of F (see [16], [2]). Furthermore it is

easy to realize that this functional cannot have local minima in functional

spaces that are not sufficiently regular. In particular it is possible to

increase the area of the surfaces with a H2 perturbation of the boundary,

maintaining the kinetic energy essentially constant. Nevertheless it is

possible to find maxima of F , at least for some choice of parameters, for

example the cylindrical solution and nearby solutions.

4 – The two surfaces model

In order to avoid the “ultraviolet” problem described above (see Re-

mark 2, at the end of the previous section), we propose an approximate

variational problem, for which we prove the existence of local minima.
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Let us notice that the functional F is given by the kinetic energy E

plus the integral, along z, of a function of R1, R1
′, R2, R2

′. So, neglecting

the energy, it appears as an extremum action problem. Our proposal is

to approximate the kinetic term E in such a way that this structure is

preserved. A way to do it is the following: given R1, R2 let us define Φ̃ as

(4.1) Φ̃ ≡ Γ
ρ2 − R2

1

R2
2 − R2

1

,

and Ẽ[R1, R2] as µ
2

∫
Λ

|∇Φ̃|2
ρ2 .

Let us notice that the above approximation is exact in the case in

which Λ is a cylinder. In general, it gives an estimate from above of the

true functional. Furthermore it seems reasonable that the approximation

is better and better when the domain Λ is thiner and thiner. With this

definitions the variational problem becomes that of finding an extremum

for A, where

(4.2)

A[R1, R2] ≡ 1

2π

(
Ẽ[R1, R2] −

∫

Λ

B2

ρ2
+ P |Λ| − T (|Σ1| + |Σ2|)

)
=

=

∫ h

0

dz L(R1, R
′
1, R2, R

′
2) .

In view of the applications we are interested in, it is convenient to

introduce the Lagrangian variables (notice that L has the role of a La-

grangian in an extremum action problem)

(4.3)
R : R2 ≡ R2

1 + R2
2

2
,

y : y2 ≡ R2
2 − R2

1 .

As we shall see in the sequel the thin limit is achieved by the following

scaling

(4.4) y = εx, P =
p

ε2
, B =

β

ε
, Γ = εγ, T = T ,

when ε → 0.
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It is convenient, to this aim, to introduce the scaled Lagrangian vari-

able x = y
ε
. With these choices and by computations, the Lagrangian

becomes:

(4.5) L = Lthin + L1 :

where

(4.6) Lthin = µγ2 1 + R′2

x2
− β2 x2

2R2
+

p

2
x2 − 2TR

√
1 + R′2 ,

and

L1 = Lγ + Lβ + LT ;(4.7)

Lγ = ε4µγ2 (xR′ − Rx′)2

R4

[ ln(1 + ε1) + ln(1 − ε1) − 2ε1

(2ε1)3

]
,

Lβ = −ε4β2 x6

2R6

[ ln(1 + ε1) + ln(1 − ε1) − 2ε1

(2ε1)3

]
,(4.8)

LT = TR

√
1 + R′2

[
2 −

√

1 +
(ε2

2 − 2ε2)R′2 − ε1

1 + R′2 +

−
√

1 +
(ε2

2 + 2ε2)R′2 + ε1

1 + R′2

]
;

where ε1 and ε2 are defined as

(4.9) ε1 =
x2

2R2
ε2, ε2 =

xx′

RR′ ε
2 .

Let us notice that, formally, L1 = O(ε4); therefore we expect that as

ε → 0, the system is described by Lthin. In the sequel we show that

as ε vanishes the extremum point of A converges in some sense to the

solutions of the variational problem associated to Lthin. Before to do

it we formulate precisely this variational problem and we show that it

is equivalent to the thin model discussed in Sections 2. In particular it

turns out to be an alternative (variational) formulation of the thin model.
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For sake of simplicity we shall consider the case β = 0; the general

case may be tackled in the same way.

Theorem 4.1. Let r = µγ
2T

√
2P
µ

,

M̃ = {(R( · ), x( · )) ∈ (C1[0, h] × C[0, h]) : R(0) = R0,

R(h) = Rh, R( · ) < r} ,

and let h be sufficiently small. Then, there exist a local minimum for

(4.10) Athin[R, x] =

∫ h

0

dz Lthin(R(z), R′(z), x(z))

in M̃. It is exactly the solution of the thin model described in Section 2.

Proof. We first minimize on x( · ), obtaining

x2(z) = γ
(2µ

p
(1 + R′(z)

2
)
) 1

2
,(4.11)

Ãthin[R] ≡ min
x( · )

Athin[R, x] = 2T

∫ h

0

dz (r − R(z))

√
1 + R′2 .(4.12)

The functional Ãthin is the area of the rotation surface {(ρ, z) : ρ = α(z)}
for α(z) = r − R(z). Its local minimum, which exists and is analytic if h

is sufficiently small (see e.g. [11]), is described by the first integral

(4.13) Ĩ =
r − R(z)√

1 + R′2
.

This quantity is exactly 1√
I
, where I, defined in (2.13), is the first integral

of the thin model, provided that v2 = 2p
µ

.

Remark. The condition R(z) < r in the definition of M̃ select the

collapsing solution of the equation of the water bell described in Section 2.

In the case R(z) > r the functional Athin have local maximum which is

the unbounded solution of the water bell equation.

The main result of this section is the following theorem, which is

proven in the next section.
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Theorem 4.2. In the hypothesis of Theorem 4.1, for ε sufficiently

small, there exist (Rε( · ), xε( · )) ∈ M̃, regular local minimum for the

action (4.2). As ε → 0 this minimum converges uniformly to the solution

of the thin problem.

5 – The relaxation result

In this section we prove Theorem 4.2, which is a relaxation result. In

fact, in the Lagrangian L (see (4.5)) the terms containing x′ are multiplied

by ε4, which vanishes in the limit. The proof is based on the fact that

A[R, x] is a convex functional of the first derivatives, for all small value

of ε, in a neighborhood of the minimum of Athin. We avoid the boundary

layer problem in z = 0 and z = h preparing the boundary conditions

for x( · ) according to the behavior of the limit (see definition (5.13) and

Theorem 4.1).

Let us call R the minimum of the action Ãthin in (4.12) and x̄ the

corresponding thickness of Λ, via (4.11).

In the sequel, we need an estimate of the difference Ãthin[R]−Ãthin[R].

Lemma 5.1. Let R(0) = R(0), R(h) = R(h), δ = R − R, and let

(5.1) N (δ) =

∫ h

0

dz (
√

1 + δ′(z)2 − 1) .

If h and N (δ) are sufficiently small then

(5.2) Ãthin[R] − Ãthin[R] ≥ cN (δ) .

Proof. N (δ) is not a norm, but, nevertheless, it satisfies the follow-

ing estimates:

(5.3) N (δ) ≤ min
( ∫ h

0

|δ′|,
∫ h

0

|δ′|2
2

,

∫

|δ′|≤1

|δ′|2
2

+

∫

|δ′|>1

|δ′|
)

,

and

(5.4)

∫ h

0

|
√

1 + R′2 −
√

1 + R′2| ≤
∫ h

0

|δ′|≤
(
h

∫

|δ′|≤1

|δ′|2
) 1

2
+

+

∫

|δ′|>1

|δ′| ≤ c
√

h
√

N (δ) + c N (δ) .
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(5.3) follows from
√

1 + b2−1 ≤ min
(
|b|, b2

2

)
, (5.4) from

√
1 + b2−1 ≥ c b2

if |b| ≤ 1 and
√

1 + b2 − 1 ≥ c |b| if |b| > 1.

By the Lagrange formula, taking into account that the first derivative

of Ãthin in R vanishes, it is

(5.5)

Ãthin[R] − Ãthin[R] =

∫ 1

0

dξ

∫ h

0

dz(1 − ξ)
2δδ′(α′ + ξδ′)√
1 + (α′ + ξδ′)2

+

+

∫ 1

0

dξ

∫ h

0

dz (1 − ξ)
(α + ξδ) δ′2

(1 + (α′ + ξδ′)2)
3
2

,

where α(z) = r − R(z). Moreover

(5.6)

∫ 1

0

dξ

∫ h

0

dz (1 − ξ)
2δδ′(α′ + ξδ′)√
1 + (α′ + ξδ′)2

≥ −2‖δ‖∞

∫ h

0

|δ′| ≥

≥ −2
( ∫ h

0

|δ′|
)2

.

In order to estimate the second term of (5.6) from below, we first observe

that if h and N (δ) are sufficiently small, then, because of (5.4), ‖δ‖∞ is

small in such a way that (α(z) + ξδ(z)) ≥ c. By consider separately the

contributes |δ′| ≤ 1 and |δ′| > 1 we find, respectively,

(5.7)

∫ 1

0

dξ

∫

|δ′|≤1

dz
(1 − ξ) δ′2

(1 + (α′ + ξδ′)2)
3
2

≥
∫ 1

0

dξ

∫

|δ′|≤1

×

× dz
(1 − ξ) δ′2

(1 + (|α′| + 1)2)
3
2

= c

∫

|δ′|≤1

|δ′|2,

(5.8)

∫ 1

0

dξ

∫

|δ′|>1

dz
(1 − ξ) δ′2

(1 + (α′ + ξδ′)2)
3
2

≥
∫

|δ′|>1

dz

∫ 1
|δ′|

0

×

× dξ
(1 − ξ)δ′2

(1 + (|α′| + 1)2)
3
2

=c

∫

|δ′|>1

dz

(
|δ′| − 1

2

)
≥

≥ c

∫

|δ′|>1

dz |δ′| .
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Finally, by (5.6) − (5.8), using (5.3), (5.4), we find

(5.9) Ãthin[R] − Ãthin[R] ≥ (c − c h) N (δ) − c N (δ)2 ,

that, for h and N (δ) sufficiently small implies the thesis.

Now we shall prove that also the full functional A[R, x] has a local

minimum, at least in a neighborhood of the minimum of Athin. To do

this, we need some estimate on the residual part of the functional. Let

us define A1[R, x] =
∫ h

0 L1(R, R′, x, x′).

Lemma 5.2. Let a = µγ2

12T
, if x2 R < a

2
, ε2x2 < 2R2, R(z) > minz R(z)

2

and N (δ) bounded (where δ and N are defined as in Lemma 5.1), then

(5.10) A1[R, x] ≥ −cε4 ;

where c depends on T, a,R, R
′
, N (δ).

Proof. First we give an estimate of L1. Using 1 −
√

1 + b ≥ − b
2

in the expression (4.8) for LT , and noting that the term on ε1 in Lγ is

positive and increasing on ε1 ≥ 0, with some tedious calculations it is

possible to obtain

(5.11) L1 ≥ ε4 T

R4

(
a(xR′ − Rx′)2 − R3x2x′2

√
1 + R′2

)
.

Taking the minimum of (5.11) in x′, and imposing x2 R < a
2
, we have

(5.12) L1 ≥ −ε4 a2T

8

√
1 + R′2

R5
.

Using the hypothesis R ≥ min R
2

and that (5.4), we obtain (5.10).

Now, let us define the space of motions:

(5.13)

M ={(R( · ), x( · )) ∈ (
C1[0, h] × C1[0, h]

)
:

R(0) = R0, R(h) = Rh, x(0) = x̄(0), x(h) = x̄(h),

x2 R <
a

2
, x2 < 2R2, N (δ) < N} .
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where ε < 1, and h, N are small in the sense of Lemma 5.1, and in such

a way that R(z) > min R
2

.

On M, from Lemma 5.1 and Lemma 5.2, we have

(5.14) A[R, x] = Athin[R, x] + A1[R, x] ≥ Ãthin[R] − cε4 .

Then let us consider a minimizing sequence (Rn, xn) for A on M.

Lemma 5.3.

∫ h

0

(R′
n)2 ≤ c(5.15)

∫ h

0

(d

dz
x3

n

)2

≤ c(5.16)

Proof. Without loss of generality we can consider A bounded from

above on the minimizing sequence, then, from (5.10)

(5.17) c + cε4 ≥ Athin[Rn, xn] ≥
∫ h

0

(
µγ2 1 + R′

n
2

x2
n

− 2TRn

√
1 + R′

n
2
)

.

Being N (δn) bounded, because of (5.13), we have the uniform control

of the minimum and the maximum in z of Rn, moreover x2
n < a

2Rn
.

From (5.17), estimating the term in
√

1 + R′
n

2 with the corresponding

term in R and N via (5.4) we obtain (5.15).

From (5.11) we have

(5.18)

L1 ≥ ε4 T

R4
m

(a(xnR′
n − Rnx′

n) − R3
nx2

nx′
n

2
) ≥

≥ ε4 aT

R4
n

(x′
n

2Rn
2

4
− 3xn

2R′
n

2
)

.

Using x2
nRn < a

2
and (5.15)

(5.19) cε4

∫ h

0

(d

dz
x3

n

)2

≤ A1[Rn, xn] + cε4 .
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Observing that A1[R, x̄] is of order ε4, that Athin takes minimum in R, x̄

and that for large n

(5.20) A[Rn, xn] ≤ Athin[R, x̄] + A1[R, x̄] ,

we have

(5.21) A1[Rn, xn] ≤ A1[R, x̄] ≤ cε4 .

Finally collecting (5.19) and (5.21) we obtain (5.16).

Proof of Theorem 4.2. If h and ε are sufficiently small, then,

Rn, x3
n converge weakly in H1[0, h] to a local minimum of A; namely

from (5.15) and (5.16), Rn and x3
n are compact in H1; then Rn and xn

converge uniformly to Rε, xε ∈ C[0, h], respectively. By direct calcula-

tion, if R and x verify (5.13) the functional A is convex in R′, x′; then it

is lower semi-continuous. If h is small enough, from (5.15), (5.16) it fol-

lows that the bounds (5.13) are strictly verified by Rε, xε. Using (5.20),

(5.10), and (5.21)

(5.22)
Ãthin[Rn] − Ãthin[R] ≤ Athin[Rn, xn] − Athin[R, x̄] ≤

≤ A1[R, x̄] − A1[Rn, xn] ≤ cε4 .

Furthermore, using Lemma 5.1, and the fact that N (δ) is convex, we have

(5.23) N (R − Rε) ≤ cε4 < N

if ε is small. To conclude the proof of the existence we observe that M,

defined in (5.13), is not empty since (R, x̄) ∈ M, if we choose opportunely

R0, R
′
0.

The uniform convergence of Rε to R follows from (5.23). For the

convergence of xε we proceed as follow. Let us denote with wε the function

which minimizes on x( · ) Athin[Rε, x] with Rε fixed (see (4.11)). From

the positivity of Ãthin[Rε] − Ãthin[R], the estimate (5.22), and an explicit

calculation:

(5.24)
p

2

∫ h

0

|xε − wε|2 ≤ cε4 .
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We observe that, from (4.11), (5.4), (5.23)

(5.25)

∫ h

0

|x2
ε − w2

ε | ≤ cε2 .

From (5.24), (5.25) and the compactness in H1[0, h] of x3
ε, it follows

that xε converges uniformly to x̄.

Remark 1. It is not difficult to see that the minimum of A is a weak

solution of the associated Lagrange equation, and, by an usual procedure,

that it is also a C2 solution.

Remark 2. In our opinion it could be possible to prove the ex-

istence of extremum points of the functional (3.7) near the minima of

the approximate functional, by working in a sufficiently regular space

(see also Remark 2 of Section 3). Namely if R1, R2 ∈ C2 the difference

between the true functional (3.7) and the approximate functional (4.2)

vanishes as ε4 when ε goes to 0.

Another possible approach is to construct solutions of the Euler equa-

tion (2.1-2) using a fixed point for the free boundary. Namely the inverse

of the mean curvature operator is regularizing (see e.g. [10]). But in this

case the thin limit seems to be a very delicate relaxation problem, in

which compactness properties can disappear.
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