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Refinement masks of Hurwitz type in the

cardinal interpolation problem

F. PITOLLI

Riassunto: Si studiano le proprietà di una particolare classe di funzioni di raf-
finamento simmetriche, a supporto compatto e totalmente positive. Si dimostra che
tali funzioni di raffinamento possono essere usate nel problema dell’interpolazione car-
dinale generalizzata poiché esiste un unico valore eccezionale che viene qui calcolato
esattamente. Vengono presentati alcuni esempi numerici riguardanti l’interpolazione e
la costruzione di wavelets semi-ortogonali tramite tali funzioni di raffinamento.

Abstract: We analyse the properties of a particular class of symmetric, compactly
supported, totally positive refinable functions. We show that these refinable functions
can be used in the generalized cardinal interpolation problem for which there exists
a unique exceptional value which can be evaluated exactly. Some numerical examples
concerning interpolation and construction of semi-orthogonal wavelets by means of these
refinable functions are displayed.

1 – Cardinal interpolation by refinable functions

In relation with the cardinal splines Mn(x), of order n, Schoenberg

proposed [12], [13] the cardinal interpolation problem consisting of seeking

a function S ∈ span{Mn(· − k)}, i.e.

(1.1) S(x) =
∑

k∈ZZ

bkMn(x − k) ,
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satisfying the interpolation conditions

(1.1′) S(α + j) = yj, j ∈ ZZ

where y = {yj}j∈ZZ, yj ∈ IR, is a given sequence and 0 ≤ α < 1.

This problem was solved under various conditions on y; in particular,

it was proved that, if y ∈ l1(ZZ), the cardinal interpolation problem has a

unique solution for each α ∈ [0, 1) different from an exceptional value α0.

The value of α0 depends on the order of the cardinal splines in con-

sideration; in particular, α0 = 0 for the cardinal splines of odd order and

α0 = 1
2

for the cardinal splines of even order.

The observation that the cardinal splines are refinable functions [1],

has suggested the following Generalized Cardinal Interpolation Problem

(GCIP) [7].

Let ϕ be a solution (called a refinable function) of the refinement

equation

(1.2) ϕ(x) =
∑

j∈ZZ

ajϕ(2x − j), x ∈ IR

where the mask a = {aj}j∈ZZ satisfies the condition

(1.3)
∑

j∈ZZ

a2j+1 =
∑

j∈ZZ

a2j = 1 ,

and let y = {yj} ∈ l1(ZZ) be a sequence of real data. We seek a function

F ∈ span{ϕ(· − k)}, i.e.

(1.4) F (x) =
∑

k∈ZZ

ckϕ(x − k) ,

interpolating the data yj at the points α+ j, with α fixed in [0, 1), that is

(1.5) F (α + j) = yj, j ∈ ZZ .

The property of total positivity of the B-splines plays a crucial role in

interpolation problems, thus it is important to construct refinable func-

tions enjoying the same property.



[3] Refinement masks of Hurwitz type in the etc. 551

Let us introduce the discrete Fourier transform A(z) of the mask,

also termed the symbol of the sequence {aj}j∈ZZ:

(1.6) A(z) =
∑

j∈ZZ

ajz
j, z = eiω .

In the B-splines case, which corresponds to the mask




aj =
1

2n−1

(
n

j

)
j = 0, . . . , n

aj = 0 otherwise

(n ∈ IN fixed), the symbol is a left-half plane stable polynomial (Hurwitz

polynomial) having the form:

Bn(z) =
1

2n−1
(z + 1)n, z = eiω .

In [4] it has been proved that if the symbol is a Hurwitz polynomial,

the corresponding ϕ is a ripplet, that is, ϕ is totally positive:

(1.7)
det

l,j=1,... ,r
ϕ(xl − ij) ≥ 0 ∀ x1 < . . . < xr, i1 < . . . < ir

xl ∈ IR, ij ∈ ZZ

with strict positivity holding if and only if il < xl < il+n−1, l = 1, . . . , r.

Moreover, in this case, ϕ enjoys the variation diminishing property

(1.8) S−
( ∑

cjϕ
(l)(· − j)

)
≤ S−(∆(l)c) ,

where S−(b) denotes the number of (strict) sign changes in the sequence

b = {bj}j∈ZZ, and

(∆lc)j = (∆l−1c)j+1 − (∆l−1c)j

and (∆0c)j = cj, as usual.

In [13, Lecture 4] Schoenberg proved that the solution of the cardi-

nal interpolation problem exists and is unique provided that the Euler-

Frobenius polynomial

Π(z;α) =
∑

j∈ZZ

Mn(α + j)zj

does not vanish on the unit circle |z| = 1.
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The proof of Schoenberg is mainly based on the total positivity of

the B-splines. Because the ϕ we are considering are ripplets, the line

of reasoning developed in [13] can be extended to show that also the

solution of the generalized cardinal interpolation problem exists and is

unique provided that the Euler-Frobenius polynomial

(1.9) Π(z;α) =
∑

j∈ZZ

ϕ(α + j)zj

does not vanish on the unit circle |z| = 1.

In Section 2 we analyze the properties of a particular class of symmet-

ric refinable functions totally positive and compactly supported on [0, n].

In Section 3 we study its behaviour in the cardinal interpolation show-

ing that there exists a unique value α0 such that Π(z;α0) = 0 on |z| = 1.

We display also some numerical examples.

In Section 4 we construct the semi-orthogonal wavelets, here called

pre-wavelets, associated with these refinable functions.

2 – A particular class of symmetric masks

In [5] the following class of positive symmetric masks compactly sup-

ported on [0, n], n ≥ 3, depending on the real parameter h > n − 2, has

been introduced:

(2.1) a
(h)
j,n =

1

2h

[(
n

j

)
+ 4(2h−n+1 − 1)

(
n − 2

j − 1

)]
, j = 0, 1, . . . , n

(assume
(l
i

)
= 0 for i < 0 or i > l). The masks (2.1) satisfy also the

conditions (1.3).

Note that any sequence a(h,n) = {a
(h)
j,n} is bell-shaped, because it sat-

isfies the relations

(2.2) a
(h)
j,n < a

(h)
j+1,n, j = 0, 1, . . . , [n/2] .

The function ϕh,n, solution to the refinement equation

(2.3) ϕh,n(x) =
n∑

j=0

a
(h)
j,nϕh,n(2x − j) ,
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is positive, compactly supported on [0, n], centrally symmetric, that is

(2.4) ϕh,n(x) = ϕh,n(n − x), ∀x ∈ (0, n) ,

and such that

(2.5)
∑

j∈ZZ

ϕh,n(x − j) = 1, ∀x ∈ IR

(see [11, Corollary 5.1]). For the sake of simplicity, in the following we

shall use symmetric instead of centrally symmetric.

Let us denote by Φ the set

Φ := {ϕh,n : n ≥ 3, h > n − 2, n ∈ IN, h ∈ IR} .

The symbol of the masks (2.1) has the form

(2.6) Ah,n(z) =
n∑

j=0

a
(h)
j,nzj = (z + 1)n−2 1

2h
[z2 + 2(2h−n+2 − 1)z + 1]

from which it immediately follows that, for h > n−2, Ah,n(z) is a Hurwitz

polynomial, thus ϕh,n is a ripplet and (1.7) and (1.8) hold. Moreover,

ϕh,n ∈ Cn−3 (see [4, Theorem 4.2]).

As a consequence of (2.2) and (1.8), ϕh,n is bell-shaped, in the sense

that it is increasing on [0, n/2) and decreasing on (n/2, n].

Remark. We observe that choosing h = n − 1 in (2.1), we obtain

the mask of the B-spline of order n.

Let us write the symbol Ah,n(z) as the product of B1(z), the sym-

bol associated to the B-spline of order 1, and Ah−1,n−1(z), the symbol

associated to ϕh−1,n−1, that is

(2.7) Ah,n(z) = B1(z)
1

2
Ah−1,n−1(z).

Denoting by f̂(ω) the Fourier transform of a function f(x), i.e.

f̂(ω) =

∫

R

f(x)e−iωxdx ,
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and taking the Fourier transform of the refinement equation (2.3), we have

(2.8)
ϕ̂h,n(ω) =

1

2
Ah,n(z)ϕ̂h,n

(ω

2

)
=

=
1

2
B1(z)

1

2
Ah−1,n−1(z)ϕ̂h,n

(ω

2

)
, z = eiω

from which it follows

(2.9) ϕ̂h,n(ω) = M̂1(ω)ϕ̂h−1,n−1(ω) .

In [4, proof of Theorem 4.2] it has been shown that the convolution

between a refinable function corresponding to a symbol of Hurwitz type

and the B-spline Ml is a refinable function corresponding to a symbol of

Hurwitz type, too.

It is worth noting that (2.9) gives us an additional information. In

fact, we have the following proposition, which can be proved by a recursive

procedure.

Proposition 2.1. If ϕ ∈ Φ, then also the convolution ϕ ∗ Ml ∈ Φ;

in particular,

(2.10) ϕh,n(x) = (ϕh−l,n−l ∗ Ml)(x) .

From (2.6) and some results in [4] it follows that the effect of the con-

volution with M1 is to increase the smoothness of the refinable functions.

This is also true in the case of the well known Daubechies refinable func-

tions of compact support [3] whose symbol is not a Hurwitz polynomial.

From (2.10) it is easy to prove, by induction, the following corollary.

Corollary 2.2. The derivatives of order m of ϕh,n(x) can be

expressed as

(2.11) ϕ
(m)
h,n (x) =

m∑

j=0

(−1)j

(
m

j

)
ϕh−m,n−m(x − j), m ≤ n − 3 .
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3 – The exceptional value for the GCIP

Here we are interested in finding the value of α for which the Euler-

Frobenius polynomial Π(z;α) vanishes on |z| = 1, when ϕ ∈ Φ.

Due to the compact support of ϕ, Π(z;α) is a polynomial of de-

gree n − 1.

We recall that when the sequence of the coefficients of a polynomial

is totally positive, the polynomial has only real negative zeros [6], thus

the exceptional values of the generalized cardinal interpolation problem

are the roots of the equation

(3.1) Π(−1;α) =
n−1∑

j=0

ϕ(α + j)(−1)j = 0 .

It is worth noting that such a value of α depends only on the refinable

function ϕ. In [7] we have shown that in the case n = 3 the exceptional

value is unique and its value is 0 if and only if the refinable functions are

symmetric. In the case n ≥ 3 the following theorem holds.

Theorem 3.1. If ϕ is a totally positive, compactly supported, sym-

metric refinable function whose support is [0, n], then the values α0 = 0

for n odd and α0 = 1
2

for n even are exceptional values with respect to

the generalized cardinal interpolation problem.

Proof. Consider the case n odd.

Due to (3.1), we are interested in finding the roots of the equation

(3.2)
n−1∑

j=0

ϕ(α + j)(−1)j = 0 .

For α = 0 (3.2) reduces to

Π(−1; 0) =
n−1∑

j=0

ϕ(j)(−1)j = ϕ(0)+

+
(n−1)/2∑

j=1

ϕ(j)(−1)j +
n−1∑

j=(n−1)/2+1

ϕ(j)(−1)j .
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Observing that the first term is zero and using the symmetry property

ϕ(x) = ϕ(n − x), ∀x ∈ IR, in the last sum, we obtain

Π(−1; 0) =
(n−1)/2∑

j=1

ϕ(j)(−1)j +
(n−1)/2∑

j=1

ϕ(j)(−1)n−j = 0 .

The case n even can be proved in a similar way.

Remark. This result generalizes the analogous one concerning the

L-splines [9].

In the proof of Theorem 3.1 we used only the symmetry of ϕ on the

integers. On the other hand, the symmetry on the integers implies that

ϕ is symmetric for any x ∈ IR, as proved in the following theorem.

Theorem 3.2. The conditions

(3.3) ϕ(i) = ϕ(n − i), ∀ i ∈ IN

hold if and only if ϕ is symmetric ∀x ∈ IR.

Proof. If ϕ is symmetric, then (3.3) holds. Suppose now that (3.3)

holds.

Using the refinement equation (1.2) with j ∈ [0, n], and (3.3), we

obtain
n∑

j=0

ajϕ(2i − j) =
n∑

j=0

an−jϕ(2i − j), ∀ i ∈ IN

from which it follows that aj = an−j, which implies that ϕ is symmetric

∀x ∈ IR (see [11, p. 207]).

From the previous theorems we conjecture that the only refinable

functions having exceptional values





α0 = 0 for n odd

α0 =
1

2
for n even

are the symmetric ones. For instance, in fig. 1 we display the zeros l1(α),

l2(α), l3(α) of the Euler-Frobenius polynomial in a non-symmetric case,
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0.2 0.4 0.6 0.8 1

-8

-6

-4

-2

-1
α0

λ1(α)

λ2(α)

λ3(α)

α

Fig. 1. – Zeros of the Euler-Frobenius polynomial in a non-symmetric case: a0 = 1
12

,

a1 = 11
24

, a2 = 19
24

, a3 = 13
24

, a4 = 1
8
.

corresponding to the mask a0 = 1
12

, a1 = 11
24

, a2 = 19
24

, a3 = 13
24

, a4 = 1
8

whose symbol is still a Hurwitz polynomial. The graph shows that, in

this case, the unique exceptional value is near 0.6.

On the other hand, total positivity enables us to prove that the ex-

ceptional value is unique.

First of all we need the following results.

Lemma 3.3. Let t ∈ IR be fixed. If t < 0, the Euler-Frobenius

polynomial Π(t; α) has exactly one simple zero for any α ∈ [0, 1).

Proof. It is easy to prove that

(3.4) Π(t; α + k) = t−kΠ(t;α) .

For α = 0 and k = 1 one has

(3.5) Π(t; 1) = t−1Π(t; 0) ,

thus, if t < 0, Π(t; 1)Π(t; 0) < 0.
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Now, suppose that Π(t; α) has 2l + 1, l > 0, sign changes in [0, 1).

Then, from (3.4) it follows that g(x) = Π(t; x), x ∈ IR, has at least

(2l + 1)L sign changes in the interval [0, L]. On the other hand, since ϕ

is compactly supported, we have

g(x) = Π(t; x) =
∑

j∈ZZ

ϕ(x + j)tj =
n∑

j=−L

ϕ(x + j)tj

and, due to the total positivity of ϕ,

Z
(
g(x), [0, L)

) ≤ n + L + 1 ,

where Z denotes the number of zeros of g(x) counting their multiplicities.

Thus, we have the inequality (2l + 1)L ≤ n + L + 1 that is false for L

large. It follows that Π(t;α) has a unique simple zero for α ∈ [0, 1).

Let us label the zeros of Π(t; α) as λ1(α) ≥ . . . ≥ λn−1(α). Now,

following the line of reasoning outlined in [9] and [14] in the case of L-

splines, we can prove the following lemma.

Lemma 3.4. The functions λ1(α), . . . , λn−1(α) are continuous and

strictly decreasing for α ∈ [0, 1), and Π(t; 0) has exactly n − 1 negative

zeros. Moreover,

lim
α→1−

λi(α) = lim
α→0+

λi+1(α) i = 1, . . . , n − 2

and

lim
α→0+

λ1(α) = 0, lim
α→1−

λn−1(α) = −∞ .

Proof. The continuity of λi(α), i = 1, . . . , n − 1, is an immediate

consequence of the continuity of ϕ(j + α) (recall (1.9)).

Suppose that there exist two different values of α ∈ [0, 1), say α

and α̃, such that

λi(α) = λj(α̃)

for some indices i and j (which can be also equal) and let us reach a

contradiction.
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In this case Π(λi(α);α) = Π(λj(α̃); α̃) = 0 and the function g(α) =

Π(t;α) with t=λi(α)=λj(α̃) has two zeros, which contradicts Lemma 3.3.

Thus, λ1(α), . . . , λn−1(α) are strictly monotonous functions of α ∈ [0, 1).

Let us denote by Λ(0) and Λ(1) the sets of the values

λµ(0+) = lim
α→0+

λµ(α), λµ(1−) = lim
α→1−

λµ(α), µ = 1, . . . , n − 1 ,

respectively.

Due to Lemma 3.3, all the values in each set are distinct, that is

λµ(0+) )= λν(0
+) and λµ(1−) )= λν(1

−) for all µ )= ν. In particular, each

set can contain the values 0 and −∞ only once. Thus, the two sets Λ(0)

and Λ(1) have at least n − 2 distinct elements, whose values are finite.

It is easy to show, by direct evaluation, that the value 0 belongs to

Λ(0) and the value −∞ belongs to Λ(1). Moreover, from (3.5), it follows

that the n − 2 zeros of Π(t; 1) and Π(t; 0) are equal, thus

Λ(0) = {λ1(0
+) = 0, λ2(0

+), . . . , λn−1(0
+)} ,

Λ(1) = {λ1(1
−) = λ2(0

+), . . . , λn−2(1
−) = λn−1(0

+), λn−1(1
−)} ,

and the claim follows.

As a consequence of the previous lemma, it easily follows:

Theorem 3.5. Let ϕ ∈ Φ having support [0, n]. Then the unique

exceptional value α0 ∈ [0, 1) with respect to the generalized cardinal in-

terpolation problem is

(3.6)





α0 = 0 for n odd

α0 =
1

2
for n even .

The behaviour of the zeros of Π(z;α) are displayed in fig. 2 in the

case n = 3, h = 4 and in fig. 3 in the case n = 4, h = 5.

A procedure to construct the interpolating function F (x) can be

found in [7]. Here this procedure has been used to construct the func-

tion F (x) interpolating the following test functions:

f1(x) =

{
1 x ∈ [−3.5, 3.5]

0 otherwise
f2(x) =

{
sin2

(π

5
x
)

x ∈ [0, 10]

0 otherwise
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α0

Fig. 2. – Zeros of the Euler-Frobenius polynomial corresponding to the choise n = 4
and h = 5 in the mask (2.1) (the values of λ1(α) are very near to 0).
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Fig. 3. – Zeros of the Euler-Frobenius polynomial corresponding to the choise n = 3
and h = 4 in the mask (2.1).
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Fig. 4. – Graphs of f1(x) and F6,3(x) for α = 1
2
.

In fig. 4 the graphs of f1(x) and of the interpolating function F6,3(x),

belonging to span{ϕ6,3(· − k)}, are displayed. We observe that the use

of a refinable function with a high value of h enables us to smooth the

oscillations due to the Gibbs phenomenon.

In fig. 5 the graphs of f2(x) and of the interpolating function F5,4(x),

belonging to span{ϕ5,4(· − k)}, are displayed. They differ slightly only

near the zeros of f2(x).

2 4 6 8 10 12

0.2

0.4

0.6

0.8

1

x

Fig. 5. – Graphs of f2(x) and F5,4(x) for α = 0.
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4 – Wavelets and dual bases

As a consequence of the fact that ϕh,n is a ripplet, the integer trans-

lates of ϕh,n(x) form a Riesz basis [5], thus the function

(4.1) ψh,n(x) =
∑

j∈ZZ

(−1)jµ
(h)
j−1,nϕh,n(2x − j)

where

(4.2) µ
(h)
j,n =

∫

R

ϕh,n(x)ϕh,n(2x + j)dx, j ∈ ZZ

is a pre-wavelet, that is ψh,n(2rx − l) is orthogonal to ψh,n(2sx − m) for

all m, l, r, s ∈ ZZ, with r )= s [10].

Moreover, ψh,n form a Riesz basis too and can be used in the wavelet

decompositon.

Remark. For h = n − 1, ψh,n is the same as the semi-orthogonal

wavelet constructed in [2].

To give an idea of the behaviour of the pre-wavelets, the graph of

ψ5,4(x) is displayed in fig. 6.

It is known that in the wavelet decomposition one needs also the dual

bases of both the refinable functions and the wavelets. The dual bases of

ϕh,n and ψh,n have been constructed in [8], following the procedure given

in [1].

-3 -2 -1 1 2 3 4

-0.1

-0.05

0.05

0.1

x

Fig. 6. – Graph of ψ5,4(x).
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F. Pitolli – Dip. Me.Mo.Mat. – Università di Roma “La Sapienza” – via A. Scarpa 10 – I-00161
Rome, Italy
E-mail: pitolli @ dmmm.uniroma1.it


