Rendiconti di Matematica, Serie VII Volume 18, Roma (1998), 575-584

A Hausdorff HS-space which is not regular

A. LE DONNE

RIASSUNTO: In questo lavoro si dimostra, costruendo un controesempio, che il teorema di H.-J. SCHMIDT [6], che afferma che ogni HS-spazio di Hausdorff è regolare, è falso. M. PAOLI e E. RIPOLI [4] avevano notato che la dimostrazione del teorema non era corretta, ma avevano lasciato aperta la questione sulla verità dell'enunciato.

ABSTRACT: In this paper I disprove, with a counterexample, a theorem of H.-J. SCHMIDT [6], which states that each Hausdorff HS-space is regular.

M. PAOLI and E. RIPOLI [4] noted that the proof of this theorem is incorrect, but they left the statement open.

1 – Introduction

A topological space X is called a HS-space if, for every subspace A of X the map $i_A : \mathcal{C}(A) \longrightarrow \mathcal{C}(X)$, defined by $i_A(B) = \operatorname{cl}_X(B)$, for each $B \in \mathcal{C}(A)$, is a continuous map, where we denote with $\mathcal{C}(X)$ the set of all non-empty closed subsets of X, with the Tychonoff topology, which is generated by the sets $\mathcal{C}(X, U) = \{F \in \mathcal{C}(X) : F \subset U\}$, for each U open subset of X.

In [6] H.-J.SCHMIDT gave it as a theorem that if a HS-space is Hausdorff then it is necessarily regular. M. PAOLI and E. RIPOLI in [4] and [5]

The result of this paper was reported at the Prague Topological Symposium, August 1996

KEY WORDS AND PHRASES: Hausdorff and regular spaces – Closed sets. A.M.S. CLASSIFICATION: 54B20 – 54G20

noted that the proof of this theorem is incorrect, but the question of the correctness of the statement remained open.

S. BAROV, G. DIMOV and ST. NEDEV in [1], [2] gave a partial proof of the theorem, in particular they showed that the theorem of Schmidt is true for all spaces with countable character. About HS-space see also [7] and [3]. In this paper I show, by constructing a counterexample, that the theorem of H.J. Schmidt is false.

$\mathbf{2}$ – The construction of the space X

Our space X will be the set of all finite sequences $p = (x_0, x_1, \dots, x_n)$ with $x_i \in \omega_i$, where ω_i is the (i + 1)-st infinite cardinal and $n \in \omega$.

The topology of X will be defined in several steps.

Given $p,q \in X$ we put $p \leq q$ if p is a restriction of q (i.e. $p = (x_0, x_1, \ldots, x_n) \leq q = (y_0, y_1, \ldots, y_m)$ if $n \leq m$ and $x_i = y_i \forall i \leq n$). If $p \leq q$ or $q \leq p$, we say that p and q are comparable. The empty sequence p_0 is hence the initial point of X.

Note that X is a tree, each $\{x : x < a\}$ for each $a \in X$ is a finite totally ordered set and hence each non empty set has minimal elements.

Given $p \in X$,

NOTATION 1. $X_p = \{q \in X : q \ge p\}.$

Note that p and q are not comparable if and only if $X_p \cap X_q = \emptyset$. Put

$$\Lambda = \prod_{n \in \omega} \omega_n$$

If $\lambda \in \Lambda, n \in \omega$ put $\lambda_n \in \omega_n$ so that $\lambda = (\lambda_0, \lambda_1, \dots, \lambda_n, \dots)$ For each λ we define

$$W_{\lambda} = \{ p \in X : p = (x_0, x_1, \dots, x_n) \Longrightarrow (x_i \ge \lambda_i \ \forall i \le n) \}.$$

NOTATION 2. $\mathcal{W} = \{W_{\lambda} : \lambda \in \Lambda\}.$

Note that the correspondence $\lambda \mapsto W_{\lambda}$ is one to one and that if $W \in \mathcal{W}$ then

- a) $\forall r \in W \exists s \in W, s > r;$
- b) $s \leq r \in W \Longrightarrow s \in W$.

Given $p \in X$, NOTATION 3. $\mathcal{W}_p = \{W \cap X_p : p \in W \in \mathcal{W}\}.$ Clearly $X_p \in \mathcal{W}_p$. REMARK 1. \mathcal{W} and \mathcal{W}_p are closed under finite intersections. Given $Z \in \mathcal{W}_p$ NOTATION 4. Denote by Z^* the biggest $W \in \mathcal{W}$ such that $W \cap X_p = Z$.

Note that if $p = (x_0, x_1, ..., x_n)$ and $Z^* = W_\lambda$ then $\lambda_0 = \lambda_1 = ... = \lambda_n = 0$.

NOTATION 5. Denote by \mathcal{V}_p the family of all sets V such that:

1)
$$V = \bigcup_{r \in R} X_r$$
 for some $R \subset X$
2) $q \in X_p, \ Z \in \mathcal{W}_q \Longrightarrow V \cap Z \neq \emptyset$

(Note that we can say that $V \in \mathcal{V}_p$ if and only if V is open in the topology generated by the X_q 's and $V \cap X_p$ is dense in X_p with the topology generated by the traces on X_p of the elements of all \mathcal{W}_q 's.)

Note also that

- a) property 1 is equivalent to $t \ge s \in V \Longrightarrow t \in V$
- b) $X_p, X_p \setminus \{p\} \in \mathcal{V}_p$
- c) the union in property 1 can be taken disjoint, (by taking the minimal elements of V).

Remark 2. $V \in \mathcal{V}_p, q \ge p \Longrightarrow V \in \mathcal{V}_q.$

PROPOSITION 1. \mathcal{V}_p is closed under finite intersections.

PROOF. Let $V_1, V_2 \in \mathcal{V}_p$ and $V = V_1 \cap V_2$. Clearly V satisfies property 1. Let $q \in X_p$ and $Z \in \mathcal{W}_q$; as a consequence of property 2 for V_1 , there exists $s \in V_1 \cap Z$. From $s \in Z \in \mathcal{W}_q$ it follows that $Z \cap X_s \in \mathcal{W}_s$; hence, by property 2 for V_2 , there exists $t \in V_2 \cap (Z \cap X_s)$. By property 1 for V_1 we infer that $t \ge s \in V_1 \implies t \in V_1$ so $t \in V \cap Z$.

NOTATION 6. Denote by \mathcal{F} the family of all the sets $F \subset X$ which have only finite chains.

NOTATION 7. Let \mathcal{U}_p the family of all the sets U having the form:

$$U = X_p \setminus \bigcup_{x \in F} (X_x \setminus V_x)$$
 with $F \in \mathcal{F}, V_x \in \mathcal{V}_x$ for all $x \in F$.

(Note also here that $X_x \setminus V_x$ is closed in X_x in the topology generated by the X_q 's and closed nowhere dense in the topology generated by the by the traces on X_p of the elements of all W_q 's.)

REMARK 3. $U \in \mathcal{U}_p, q \ge p \Longrightarrow U \cap X_q \in \mathcal{U}_q.$

PROPOSITION 2. U_p is closed under finite intersections.

PROOF. Let

$$U_1 = X_p \setminus \bigcup_{x \in F_1} (X_x \setminus V_x^1) \quad , \quad U_2 = X_p \setminus \bigcup_{x \in F_2} (X_x \setminus V_x^2) \, .$$

It is enough to note that $F_1 \cup F_2 \in \mathcal{F}$ and that if $x \in F_1 \cap F_2$ then

$$(X_x \setminus V_x^1) \cup (X_x \setminus V_x^2) = X_x \setminus (V_x^1 \cap V_x^2).$$

REMARK 4. $U \in \mathcal{U}_p, F \in \mathcal{F} \Longrightarrow U \setminus F \in \mathcal{U}_p$.

In fact it is enough to take $V_x = X_x \setminus \{x\}$ for all $x \in F$ to see that $X_p \setminus F \in \mathcal{U}_p$ and intersect it with U.

NOTATION 8. Let τ_p = the family of all the sets T having the form: $T = U \cap Z$ with $U \in \mathcal{U}_p, Z \in \mathcal{W}_p$.

REMARK 5. τ_p is closed under finite intersections.

PROPOSITION 3. If $T = U \cap Z$ with $U \in \mathcal{U}_p$, $Z \in \mathcal{W}_p$, and if $q \in Z$ then $T \cap X_q \in \tau_q$.

PROOF. By Remark 3 and Notation 3.

3 – The topology τ of X

DEFINITION 1. Given $p \in X$, a neighborhood base of p will be given by the sets having the form:

$$\{p\} \cup T$$
 with $T \in \tau_p$.

By Proposition 3, this gives really a topology τ on X and each $\{p\} \cup T$ is open, in particular each element of \mathcal{W}_p is open, (in fact clopen).

Each $\bigcup_{x \in F} (X_x \setminus V_x)$ with $F \in \mathcal{F}, V_x \in \mathcal{V}_x$ is a closed set in (X, τ) and the topology τ is the coarsest one in which these sets are closed and the elements of \mathcal{W}_p are open. In particular the elements of \mathcal{F} are closed.

4 – Clopen partition associated to an element of W

Let $W = W_{\lambda} \in \mathcal{W}$. Given $p = (x_0, \ldots, x_n)$, let $W(p) \in \mathcal{W}_p$ be defined by

NOTATION 9. $W(p) = \{(y_0, \ldots, y_m) \in X_p : y_{n+1} \ge \lambda_{n+1}, \ldots, y_m \ge \lambda_m\}.$

NOTATION 10. Denote by \mathcal{P}_W the family of all maximal (with respect to the inclusion) elements of the set $\{W(p) : p \in X\}$.

PROPOSITION 4. \mathcal{P}_W is a clopen partition.

PROOF. Since \mathcal{P}_W is an open cover of X, it is enough to show that its elements are disjoint.

Let $p = (x_0, x_1, \ldots, x_n)$, $q = (y_0, y_1, \ldots, y_m)$ and suppose that there exists $r \in W(p) \cap W(q)$. Hence $r \ge p$ and $r \ge q$, and so p and q are comparable.

Suppose $p \leq q$. Then $n \leq m$ and $r \geq q \geq p$. Hence $y_i \geq \lambda_i$, for all i with $n < i \leq m$. Hence $W(q) \subset W(p)$.

Clearly

a) $W_1 \subset W_2 \Longrightarrow W_1(p) \subset W_2(p)$,

b) $p \in W \Longrightarrow W(p) = W \cap X_p$.

c) $p \in W(q) \Longrightarrow W(q) \cap X_p = W(p)$.

5 – Some lemmas

LEMMA 1. $T \in \tau_p \Longrightarrow T \neq \emptyset$.

PROOF. Let $T = Z \setminus \bigcup_{x \in F} (X_x \setminus V_x)$ with $Z \in \mathcal{W}_p$, $F \in \mathcal{F}$, $V_x \in \mathcal{V}_x$, $V_x \subset X_x$ for all $x \in F$.

Since $Z \subset X_p$ if x is not comparable with p, we can erase it from F; since, if x < p then $(X_x \setminus V_x) \cap X_p = X_p \setminus V_x$ and $V_x \in \mathcal{V}_p$, we can assume that $F \subset X_p$ and even that $F \subset Z$. Let $x_1 < x_2 < \ldots < x_n$ be a maximal chain of F. By Remark 2 we have $V_{x_1}, V_{x_2}, \ldots, V_{x_n} \in \mathcal{V}_{x_n}$; so

$$V = \bigcap_{i=1}^n V_{x_i} \in \mathcal{V}_{x_n} \,.$$

Being x_1, \ldots, x_n the only elements of F comparable with x_n we have that, if $x \in F$ is different from them, then $X_x \cap X_{x_n} = \emptyset$ and hence $V \cap (\bigcup_{x \in F} (X_x \setminus V_x)) = \emptyset$, i.e. $Z \cap V \subset T$.

Being $Z \cap X_{x_n} \in \mathcal{W}_{x_n}$ and $x_n \in X_{x_n}$, by property 2 for V we conclude that $T \supset V \cap Z \neq \emptyset$.

LEMMA 2. Let $U_s \in \mathcal{U}_s$, for all $s \in S$. Then $\{p\} \cup \bigcup_{s \in S} U_s$ is a neighborhood of p in $\{p\} \cup \bigcup_{s \in S} X_s$.

PROOF. We can suppose that $S \subset X_p$ and $p \notin S$. By taking the minimal elements of S we can suppose that $\bigcup_{s \in S} X_s$ is a disjoint union.

Let $U_s = X_s \setminus \bigcup_{x \in F_s} (X_x \setminus V_x)$ with $F_s \subset X_s$. We have $F = \bigcup_{s \in S} F_s \in \mathcal{F}$. If we take $U = X_p \setminus \bigcup_{x \in F} (X_x \setminus V_x) \in \mathcal{U}_p$ it results that

$$\left(U \cup \{p\}\right) \cap \left(\{p\} \cup \bigcup_{s \in S} X_s\right) = \{p\} \cup \bigcup_{s \in S} U_s.$$

LEMMA 3. Let $T_p \in \tau_p$ for all $p \in A \subset X$. There exists a clopen partition \mathcal{P} of X so that if $p \in A$, $p \in M \in \mathcal{P}$, then there exists $U_p \in \mathcal{U}_p$:

$$T_p \cap M = U_p \cap M$$
.

PROOF. Let $T_p = U_p \cap Z_p$ with $U_p \in \mathcal{U}_p, Z_p \in \mathcal{W}_p$.

Let, for each $p \in A$, $\lambda^p = (\lambda_i^p)_{i \in \omega} \in \Lambda$ be such that $Z_p^* = W_{\lambda_p}$ (see Notation 4 for Z_p^*). Then $Z_p = Z_p^* \cap X_p$ for each $p \in A$ and if $p = (x_0, \ldots, x_n)$ then $\lambda_i^p = 0$ for each $i \leq n$.

Let

$$W = \bigcap_{p \in A} Z_p^* \,.$$

We have that $W \in \mathcal{W}$, since $\sup_{p \in A} \lambda_i^p \in \omega_i$ because $\lambda_i^p \neq 0 \Longrightarrow p = (x_0, \ldots, x_n)$ with n < i. (i.e. $\lambda_i^p \neq 0$ for a number $\leq \omega_{i-1}$ of p's).

Let \mathcal{P}_W be the clopen partition associated to W, hence $\mathcal{P}_W \subset \bigcup_{p \in X} \mathcal{W}_p$; since $W \subset Z_p^*$ we have that $W(p) \subset Z_p^*(p) = Z_p^* \cap X_p = Z_p$.

If $p \in M \cap A$ with $M \in \mathcal{P}_W$, there exists q so that $M = W_q$, then $X_p \cap M = W(p) \subset Z_p$ hence $Z_p \cap M = X_p \cap M$, then

$$T_p \cap M = U_p \cap Z_p \cap M = U_p \cap X_p \cap M = U_p \cap M.$$

LEMMA 4. $H \cap X_d \subset \bigcup_{r \in R} X_r \subset X_d$, and $r \notin cl(H)$ for all $r \in R \Longrightarrow d \notin cl(H)$.

PROOF. We can suppose $d \notin R$.

For each $r \in R$, let $T_r \in \tau_r$ such that $T_r \cap H = \emptyset$. Let $T_r = U_r \cap Z_r = U_r \cap Z_r^*$ with $U_r \in \mathcal{U}_r, Z_r \in W_r$ and $Z_r^* \in \mathcal{W}$ given by Notation 4. Since d < r for all $r \in R$, $d \in W = \bigcap_{r \in R} Z_r^* \in \mathcal{W}$ (as in Lemma 3). Hence $U_r \cap W \subset T_r$. Since W is an open neighborhood of d, we have, by Lemma 2, that $(\{d\} \cup \bigcup_{r \in R} U_r) \cap W$ is a neighborhood of d in $(\{d\} \cup \bigcup_{r \in R} X_r)$. Hence $d \notin \operatorname{cl}(H \cap X_d)$, so $d \notin \operatorname{cl}(H)$.

6- Properties of the space X

THEOREM 1. X is a Hausdorff, non-regular space.

PROOF. Since all X_p 's are clopen, the space X is Hausdorff.

Let p_0 be the first point of X and $C = \{(n) : n \in \omega\}$, so that $X = \{p_0\} \cup \bigcup_{x \in C} X_c$.

Since $C \in \mathcal{F}$, C is a closed set.

For each $c \in C$ let $\{c\} \cup T_c$ be a neighborhood of c with $T_c = U_c \cap Z_c$, $U_c \in \mathcal{U}_c, Z_c \in \mathcal{W}_c$.

Obviously, $Z_c^* \supset C$ for each $c \in C$ (see Notation 4 for Z_c^*). Further, as in the proof of Lemma 3, we have that

$$\bigcap_{c \in C} Z_c^* = W \in \mathcal{W} \quad \text{and} \quad T_c \supset U_c \cap W \,.$$

By Lemma 2, $\{p_0\} \cup \bigcup_{x \in C} U_c$ is a neighborhood of p_0 in X and hence $(\{p_0\} \cup \bigcup_{x \in C} U_c) \cap W$ is a neighborhood of p_0 in X contained in $\{p_0\} \cup \bigcup_{x \in C} T_c$. We infer that, to be separated from C, p_0 must be isolated, contrarily to Lemma 1.

THEOREM 2. X is a HS-space.

PROOF. To show that X is a HS-space we need to show that if Y is a subspace of X, C is a closed subset of Y and D is a closed subset of X with $D \cap \operatorname{cl}(C) = \emptyset$, then there exists an open neighborhood U of C in Y so that if K is a closed subset of U in Y then $D \cap \operatorname{cl}(K) = \emptyset$.

Since D is closed, for each $c \in C$ there exists $T_c \in \tau_c$ not intersecting D.

By Lemma 3 there is a clopen partition \mathcal{P} of X so that, if $c \in C, c \in M \in \mathcal{P}$, then there exists $U_c \in \mathcal{U}_c$ with $T_c \cap M = U_c \cap M$.

Since M is clopen we can assume that $M \supset Y$, so that U_c does not intersect D for each $c \in C$.

Let C^* be the set of all minimal elements of C. For each $c \in C^*$ let

$$U_c = X_c \setminus \bigcup_{x \in F_c} (X_x \setminus V_x)$$

with $F_c \in \mathcal{F}, V_x \in \mathcal{V}_x$ for all $x \in F_c, c \in F_c \subset X_c$.

For each $x \in F_c$ consider the set R_c^x of all minimal elements of $X_x \cap U_c \cap Y \setminus C$. Put

$$R_c = \bigcup_{x \in F_c} R_c^x \,.$$

We have that $R_c \in \mathcal{F}$. In fact if $z_1 \in R_c^{x_1}$, $z_2 \in R_c^{x_2}$, with $z_1 < z_2$, then $x_1 \leq z_1 < z_2$, $x_2 \leq z_2$. Hence x_1 and x_2 are comparable. We cannot have $x_2 \leq x_1 \leq z_1 < z_2$, by the minimality of z_2 and so $x_1 < x_2$.

Clearly $R = \bigcup_{c \in C^*} R_c \in \mathcal{F}$. By Remark 4

$$U_c \setminus R \in \mathcal{U}_c$$
,

and, by Remark 3, $\{p\} \cup (U_c \setminus R)$ is an open neighborhood of p for all $p \ge c$. Hence

$$U = C \cup \bigcup_{c \in C^*} (U_c \cap Y \setminus R)$$

is an open neighborhood of C in Y, disjoint from D.

Note that

$$U \setminus C \subset \bigcup_{r \in R} X_r$$
.

Let $K \subset U$, K closed in Y. Call $H = K \setminus C$.

We have $H \subset U \setminus C \subset \bigcup_{r \in \mathbb{R}} X_r$.

Since $R \subset Y \setminus U$, $K \subset U$ and K is closed in Y, we have that $r \notin \operatorname{cl}_X(K)$ for all $r \in R$. Hence $r \notin \operatorname{cl}_X(H)$ for all $r \in R$.

We will show that $d \notin \operatorname{cl}_X(H)$ for each $d \in D$. This fact together with the equality $D \cap \operatorname{cl}_X(C) = \emptyset$ will imply that $D \cap \operatorname{cl}_X(K) = \emptyset$. So, let $d \in D$.

i) If there exists $c \in C^*$ with d < c, since

$$H \cap X_d \subset \bigcup_{r \in R \cap X_d} X_r \subset X_d \,,$$

we obtain, by Lemma 4, that $d \notin cl_X(H)$.

- ii) If d is comparable with no $c \in C^*$, then $X_d \cap (\bigcup_{c \in C^*} X_c) = \emptyset$, hence $X_d \cap (\bigcup_{r \in R} X_r) = \emptyset$, therefore $d \notin cl_X(H)$.
- iii) If there exists $c \in C^*$ with c < d, (i.e. $d \in X_c$), then $H \cap X_d \subset U_c \cap Y \setminus R$ and also $H \cap X_d \subset U_c \cap Y \setminus C$. Since

$$d \notin U_c = X_c \setminus \bigcup_{x \in F_c} (X_x \setminus V_x)$$

there is an $x \in F_c$ with $d \in X_x \setminus V_x$, and so

$$H \cap X_d \subset X_x \cap (U_c \cap Y \setminus C).$$

We have that $H \cap X_d \subset X_d \cap \bigcup \{X_r : r \in R_c^x\}$. Let's prove that there exists no $r \in R_c^x$ such that r < d. Indeed, we have that $d \notin V_x$. The set V_x is of the form $V_x = \bigcup \{X_s : s \in S\}$. Since $X_x \setminus V_x \neq \emptyset$, we obtain that $s \not\leq x$ for each $s \in S$. Hence $d \notin \bigcup \{X_s : s \in S \cap X_x\}$. Since $x \in F_c \subset X_c$, we have that $R_c^x \subset X_x \cap U_c \subset X_x \setminus \bigcup \{X_y \setminus V_y : y \in F_c\} =$ $\cap \{(X_x \setminus X_y) \cup (X_x \cap V_y) : y \in F_c\} \subset X_x \cap V_x = \bigcup \{X_s : s \in S \cap X_x\}$. Suppose that there exists $r \in R_c^x$ such that r < d. Then there exists $s' \in S \cap X_x$ such that $r \in X_{s'}$. Therefore, $d \in X_{s'}$. This is a contradiction. So there is no $r \in R_c^x$ such that r < d. This imply that

$$H \cap X_d \subset \bigcup_{r \in R^x_c \cap X_d} X_r \subset X_d.$$

Again by Lemma 4, we have $d \notin cl(H)$.

[9]

It remains open the

QUESTION. Is there a regular HS-space which is not normal?

The reason of this question is Theorem 2.14 from [BD2N2] where it is proved that Schmidt's conjecture is equivalent to the following one: any Hausdorff HS-space is normal. So, it is natural to ask whether a regular HS-space is normal. This question is raised in the cited above paper [3] and an approach to its solution is proposed there.

REFERENCES

- S. BAROV G. DIMOV ST. NEDEV: On a theorem of H.-J. Schmidt, C.R.Acad. Bulgare Sci., 46 (1993), 9-11.
- [2] S. BAROV G. DIMOV ST. NEDEV: On a Question of M. Paoli and E. Ripoli, Boll. Un. Mat. Ital. A, (7) 10 (1996), 127-141.
- [3] G. DIMOV: On the commutability between hyperspaces and subspaces, and on Schmidt's conjecture, Rend. Istituto Matem. Univ. Trieste, 25 (I-II) (1993), 175-194.
- [4] M. PAOLI E. RIPOLI: Su un'immersione in topologie su spazi di sottoinsiemi, Boll. Un. Mat. Ital. A (6), 4 (1985), 111-118.
- [5] M. PAOLI E. RIPOLI: Ulteriori proprietà di una particolare immersione in spazi di sottoinsiemi, Boll. Un. Mat. Ital. A (6), 5 (1986), 345-347.
- [6] H.-J. SCHMIDT: Hyperspaces of quotient and subspaces. I. Hausdorff topological spaces, Math. Nachr., 104 (1981), 271-280.
- [7] M. SEKANINA: Topologies on system of subsets, Proc. of the Fourth Prague Top. Symp., 1976, Part.B.Contributed Papers, Prague, 1977, pp. 420-424.

Lavoro pervenuto alla redazione il 3 dicembre 1997 ed accettato per la pubblicazione il 20 maggio 1998. Bozze licenziate il 21 ottobre 1998

INDIRIZZO DELL'AUTORE:

A. Le Donne – Department of Mathematics "G.Castelnuovo" – University of Roma "La Sapienza" – p.le A. Moro – 00185 Roma E-mail:ledonne@mat.uniroma1.it