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A Hausdorff HS-space which is not regular

A. LE DONNE

Riassunto: In questo lavoro si dimostra, costruendo un controesempio, che il
teorema di H.-J. Schmidt [6], che afferma che ogni HS-spazio di Hausdorff è regolare,
è falso. M. Paoli e E. Ripoli [4] avevano notato che la dimostrazione del teorema
non era corretta, ma avevano lasciato aperta la questione sulla verità dell’enunciato.

Abstract: In this paper I disprove, with a counterexample, a theorem of H.-
J. Schmidt [6], which states that each Hausdorff HS-space is regular.

M. Paoli and E. Ripoli [4] noted that the proof of this theorem is incorrect, but
they left the statement open.

1 – Introduction

A topological space X is called a HS-space if, for every subspace A

of X the map iA : C(A) −→ C(X), defined by iA(B) = clX(B), for each

B ∈ C(A), is a continuous map, where we denote with C(X) the set of

all non-empty closed subsets of X, with the Tychonoff topology, which is

generated by the sets C(X, U) = {F ∈ C(X) : F ⊂ U}, for each U open

subset of X.

In [6] H.-J.Schmidt gave it as a theorem that if a HS-space is Haus-

dorff then it is necessarily regular. M. Paoli and E. Ripoli in [4] and [5]
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noted that the proof of this theorem is incorrect, but the question of the

correctness of the statement remained open.

S. Barov, G. Dimov and St. Nedev in [1], [2] gave a partial proof

of the theorem, in particular they showed that the theorem of Schmidt is

true for all spaces with countable character. About HS-space see also [7]

and [3]. In this paper I show, by constructing a counterexample, that the

theorem of H.J. Schmidt is false.

2 – The construction of the space X

Our space X will be the set of all finite sequences p = (x0, x1, . . . , xn)

with xi ∈ ωi, where ωi is the (i + 1)-st infinite cardinal and n ∈ ω.

The topology of X will be defined in several steps.

Given p, q ∈ X we put p ≤ q if p is a restriction of q (i.e. p =

(x0, x1, . . . , xn) ≤ q = (y0, y1, . . . , ym) if n ≤ m and xi = yi ∀ i ≤ n).

If p ≤ q or q ≤ p, we say that p and q are comparable. The empty

sequence p0 is hence the initial point of X.

Note that X is a tree, each {x : x < a} for each a ∈ X is a finite

totally ordered set and hence each non empty set has minimal elements.

Given p ∈ X,

Notation 1. Xp = {q ∈ X : q ≥ p}.

Note that p and q are not comparable if and only if Xp ∩ Xq = ∅.

Put

Λ =
∏

n∈ω

ωn .

If λ ∈ Λ, n ∈ ω put λn ∈ ωn so that λ = (λ0, λ1, . . . , λn, . . . )

For each λ we define

Wλ = {p ∈ X : p = (x0, x1, . . . , xn) =⇒ (xi ≥ λi ∀ i ≤ n)} .

Notation 2. W = {Wλ : λ ∈ Λ}.

Note that the correspondence λ .−→ Wλ is one to one and that if

W ∈ W then

a) ∀ r ∈ W ∃ s ∈ W , s > r;

b) s ≤ r ∈ W =⇒ s ∈ W.
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Given p ∈ X,

Notation 3. Wp = {W ∩ Xp : p ∈ W ∈ W}.

Clearly Xp ∈ Wp.

Remark 1. W and Wp are closed under finite intersections.

Given Z ∈ Wp

Notation 4. Denote by Z∗ the biggest W ∈W such that W∩Xp =Z.

Note that if p=(x0, x1, . . . , xn) and Z∗ =Wλ then λ0 =λ1 = . . .=λn =0.

Notation 5. Denote by Vp the family of all sets V such that:

1) V =
⋃

r∈R

Xr for some R ⊂ X

2) q ∈ Xp, Z ∈ Wq =⇒ V ∩ Z )= ∅ .

(Note that we can say that V ∈ Vp if and only if V is open in the

topology generated by the Xq’s and V ∩ Xp is dense in Xp with the

topology generated by the traces on Xp of the elements of all Wq’s.)

Note also that

a) property 1 is equivalent to t ≥ s ∈ V =⇒ t ∈ V

b) Xp, Xp \ {p} ∈ Vp

c) the union in property 1 can be taken disjoint, (by taking the minimal

elements of V ).

Remark 2. V ∈ Vp, q ≥ p =⇒ V ∈ Vq.

Proposition 1. Vp is closed under finite intersections.

Proof. Let V1, V2 ∈ Vp and V = V1 ∩V2. Clearly V satisfies property

1. Let q ∈ Xp and Z ∈ Wq; as a consequence of property 2 for V1, there

exists s ∈ V1 ∩ Z. From s ∈ Z ∈ Wq it follows that Z ∩ Xs ∈ Ws; hence,

by property 2 for V2, there exists t ∈ V2 ∩ (Z ∩ Xs). By property 1 for V1

we infer that t ≥ s ∈ V1 =⇒ t ∈ V1 so t ∈ V ∩ Z.

Notation 6. Denote by F the family of all the sets F ⊂ X which

have only finite chains.

Notation 7. Let Up the family of all the sets U having the form:

U = Xp \
⋃

x∈F

(Xx \ Vx) with F ∈ F , Vx ∈ Vx for all x ∈ F .
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(Note also here that Xx \ Vx is closed in Xx in the topology generated by

the Xq’s and closed nowhere dense in the topology generated by the by

the traces on Xp of the elements of all Wq’s.)

Remark 3. U ∈ Up, q ≥ p =⇒ U ∩ Xq ∈ Uq.

Proposition 2. Up is closed under finite intersections.

Proof. Let

U1 = Xp \
⋃

x∈F1

(Xx \ V 1
x ) , U2 = Xp \

⋃

x∈F2

(Xx \ V 2
x ) .

It is enough to note that F1 ∪ F2 ∈ F and that if x ∈ F1 ∩ F2 then

(Xx \ V 1
x ) ∪ (Xx \ V 2

x ) = Xx \ (V 1
x ∩ V 2

x ).

Remark 4. U ∈ Up, F ∈ F =⇒ U \ F ∈ Up.

In fact it is enough to take Vx = Xx \ {x} for all x ∈ F to see that

Xp \ F ∈ Up and intersect it with U.

Notation 8. Let τp = the family of all the sets T having the form:

T = U ∩ Z with U ∈ Up, Z ∈ Wp.

Remark 5. τp is closed under finite intersections.

Proposition 3. If T = U ∩ Z with U ∈ Up, Z ∈ Wp, and if q ∈ Z

then T ∩ Xq ∈ τq.

Proof. By Remark 3 and Notation 3.

3 – The topology τ of X

Definition 1. Given p ∈ X, a neighborhood base of p will be given

by the sets having the form:

{p} ∪ T with T ∈ τp.

By Proposition 3, this gives really a topology τ on X and each {p}∪T

is open, in particular each element of Wp is open, (in fact clopen).
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Each
⋃

x∈F (Xx \ Vx) with F ∈ F , Vx ∈ Vx is a closed set in (X, τ)

and the topology τ is the coarsest one in which these sets are closed and

the elements of Wp are open. In particular the elements of F are closed.

4 – Clopen partition associated to an element of W
Let W = Wλ ∈ W. Given p = (x0, . . . , xn), let W (p) ∈ Wp be

defined by

Notation 9. W (p)={(y0, . . . , ym)∈Xp :yn+1 ≥λn+1, . . . , ym ≥λm}.

Notation 10. Denote by PW the family of all maximal (with respect

to the inclusion) elements of the set {W (p) : p ∈ X}.

Proposition 4. PW is a clopen partition.

Proof. Since PW is an open cover of X, it is enough to show that

its elements are disjoint.

Let p = (x0, x1, . . . , xn), q = (y0, y1, . . . , ym) and suppose that there

exists r ∈ W (p) ∩ W (q). Hence r ≥ p and r ≥ q, and so p and q are

comparable.

Suppose p ≤ q. Then n ≤ m and r ≥ q ≥ p. Hence yi ≥ λi, for all i

with n < i ≤ m. Hence W (q) ⊂ W (p).

Clearly

a) W1 ⊂ W2 =⇒ W1(p) ⊂ W2(p),

b) p ∈ W =⇒ W (p) = W ∩ Xp.

c) p ∈ W (q) =⇒ W (q) ∩ Xp = W (p).

5 – Some lemmas

Lemma 1. T ∈ τp =⇒ T )= ∅.

Proof. Let T = Z \ ⋃
x∈F (Xx \ Vx) with Z ∈ Wp, F ∈ F , Vx ∈ Vx,

Vx ⊂ Xx for all x ∈ F.

Since Z ⊂ Xp if x is not comparable with p, we can erase it from F ;

since, if x < p then (Xx \Vx)∩Xp = Xp \Vx and Vx ∈ Vp, we can assume

that F ⊂ Xp and even that F ⊂ Z.
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Let x1 < x2 < . . . < xn be a maximal chain of F . By Remark 2 we

have Vx1
, Vx2

, . . . , Vxn ∈ Vxn ; so

V =
n⋂

i=1

Vxi
∈ Vxn .

Being x1, . . . , xn the only elements of F comparable with xn we have

that, if x ∈ F is different from them, then Xx ∩ Xxn = ∅ and hence

V ∩ (
⋃

x∈F (Xx \ Vx)) = ∅, i.e. Z ∩ V ⊂ T .

Being Z∩Xxn ∈ Wxn and xn ∈ Xxn , by property 2 for V we conclude

that T ⊃ V ∩ Z )= ∅.

Lemma 2. Let Us ∈ Us, for all s ∈ S. Then {p} ∪ ⋃
s∈S Us is a

neighborhood of p in {p} ∪ ⋃
s∈S Xs.

Proof. We can suppose that S ⊂ Xp and p /∈ S. By taking the

minimal elements of S we can suppose that
⋃

s∈S Xs is a disjoint union.

Let Us = Xs\
⋃

x∈Fs
(Xx\Vx) with Fs ⊂ Xs. We have F =

⋃
s∈S Fs ∈F .

If we take U = Xp \ ⋃
x∈F (Xx \ Vx) ∈ Up it results that

(
U ∪ {p}) ∩ ({p} ∪

⋃

s∈S

Xs

)
= {p} ∪

⋃

s∈S

Us.

Lemma 3. Let Tp ∈ τp for all p ∈ A ⊂ X. There exists a clopen

partition P of X so that if p ∈ A, p ∈ M ∈ P, then there exists Up ∈ Up:

Tp ∩ M = Up ∩ M .

Proof. Let Tp = Up ∩ Zp with Up ∈ Up, Zp ∈ Wp.

Let, for each p ∈ A, λp = (λp
i )i∈ω ∈ Λ be such that Z∗

p = Wλp

(see Notation 4 for Z∗
p). Then Zp = Z∗

p ∩ Xp for each p ∈ A and if

p = (x0, . . . , xn) then λp
i = 0 for each i ≤ n.

Let

W =
⋂

p∈A

Z∗
p .

We have that W ∈ W, since supp∈A λp
i ∈ ωi because λp

i )= 0 =⇒ p =

(x0, . . . , xn) with n < i. (i.e. λp
i )= 0 for a number ≤ ωi−1 of p’s).
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Let PW be the clopen partition associated to W , hence PW ⊂ ⋃
p∈X

Wp; since W ⊂ Z∗
p we have that W (p) ⊂ Z∗

p(p) = Z∗
p ∩ Xp = Zp.

If p ∈ M ∩ A with M ∈ PW , there exists q so that M = Wq, then

Xp ∩ M = W (p) ⊂ Zp hence Zp ∩ M = Xp ∩ M, then

Tp ∩ M = Up ∩ Zp ∩ M = Up ∩ Xp ∩ M = Up ∩ M.

Lemma 4. H ∩ Xd ⊂ ⋃
r∈R Xr ⊂ Xd, and r /∈ cl(H) for all r ∈

R =⇒ d /∈ cl(H).

Proof. We can suppose d /∈ R.

For each r ∈ R, let Tr ∈ τr such that Tr ∩ H = ∅. Let Tr = Ur ∩ Zr =

Ur ∩ Z∗
r with Ur ∈ Ur, Zr ∈ Wr and Z∗

r ∈ W given by Notation 4. Since

d < r for all r ∈ R, d ∈ W =
⋂

r∈R Z∗
r ∈ W (as in Lemma 3). Hence

Ur ∩W ⊂ Tr. Since W is an open neighborhood of d, we have, by Lemma

2, that ({d} ∪ ⋃
r∈R Ur) ∩ W is a neighborhood of d in ({d} ∪ ⋃

r∈R Xr).

Hence d /∈ cl(H ∩ Xd), so d /∈ cl(H).

6 – Properties of the space X

Theorem 1. X is a Hausdorff, non-regular space.

Proof. Since all Xp’s are clopen, the space X is Hausdorff.

Let p0 be the first point of X and C = {(n) : n ∈ ω}, so that

X = {p0} ∪ ⋃
x∈C Xc.

Since C ∈ F , C is a closed set.

For each c ∈ C let {c}∪Tc be a neighborhood of c with Tc = Uc ∩Zc,

Uc ∈ Uc, Zc ∈ Wc.

Obviously, Z∗
c ⊃ C for each c ∈ C (see Notation 4 for Z∗

c ). Further,

as in the proof of Lemma 3, we have that

⋂

c∈C

Z∗
c = W ∈ W and Tc ⊃ Uc ∩ W .

By Lemma 2, {p0}∪⋃
x∈C Uc is a neighborhood of p0 in X and hence

({p0} ∪ ⋃
x∈C Uc) ∩ W is a neighborhood of p0 in X contained in {p0} ∪⋃

x∈C Tc. We infer that, to be separated from C, p0 must be isolated,

contrarily to Lemma 1.
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Theorem 2. X is a HS-space.

Proof. To show that X is a HS-space we need to show that if Y is

a subspace of X, C is a closed subset of Y and D is a closed subset of X

with D ∩ cl(C) = ∅, then there exists an open neighborhood U of C in Y

so that if K is a closed subset of U in Y then D ∩ cl(K) = ∅.

Since D is closed, for each c ∈ C there exists Tc ∈ τc not intersect-

ing D.

By Lemma 3 there is a clopen partition P of X so that, if c ∈ C, c ∈
M ∈ P, then there exists Uc ∈ Uc with Tc ∩ M = Uc ∩ M .

Since M is clopen we can assume that M ⊃ Y , so that Uc does not

intersect D for each c ∈ C.

Let C∗ be the set of all minimal elements of C. For each c ∈ C∗ let

Uc = Xc \
⋃

x∈Fc

(Xx \ Vx)

with Fc ∈ F , Vx ∈ Vx for all x ∈ Fc, c ∈ Fc ⊂ Xc.

For each x ∈ Fc consider the set Rx
c of all minimal elements of Xx ∩

Uc ∩ Y \ C. Put

Rc =
⋃

x∈Fc

Rx
c .

We have that Rc ∈ F . In fact if z1 ∈ Rx1
c , z2 ∈ Rx2

c , with z1 < z2,

then x1 ≤ z1 < z2, x2 ≤ z2. Hence x1 and x2 are comparable. We cannot

have x2 ≤ x1 ≤ z1 < z2, by the minimality of z2 and so x1 < x2.

Clearly R =
⋃

c∈C∗ Rc ∈ F . By Remark 4

Uc \ R ∈ Uc ,

and, by Remark 3, {p} ∪ (Uc \ R) is an open neighborhood of p for all

p ≥ c. Hence

U = C ∪
⋃

c∈C∗
(Uc ∩ Y \ R)

is an open neighborhood of C in Y , disjoint from D.

Note that

U \ C ⊂
⋃

r∈R

Xr .

Let K ⊂ U , K closed in Y . Call H = K \ C.
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We have H ⊂ U \ C ⊂ ⋃
r∈R Xr.

Since R ⊂ Y \ U , K ⊂ U and K is closed in Y , we have that

r /∈ clX(K) for all r ∈ R. Hence r /∈ clX(H) for all r ∈ R.

We will show that d /∈ clX(H) for each d ∈ D. This fact together

with the equality D ∩ clX(C) = ∅ will imply that D ∩ clX(K) = ∅. So,

let d ∈ D.

i) If there exists c ∈ C∗ with d < c, since

H ∩ Xd ⊂
⋃

r∈R∩Xd

Xr ⊂ Xd ,

we obtain, by Lemma 4, that d /∈ clX(H).

ii) If d is comparable with no c ∈ C∗, then Xd ∩ (
⋃

c∈C∗ Xc) = ∅, hence

Xd ∩ (
⋃

r∈R Xr) = ∅, therefore d /∈ clX(H).

iii) If there exists c ∈ C∗ with c < d, (i.e. d ∈ Xc), then H ∩ Xd ⊂
Uc ∩ Y \ R and also H ∩ Xd ⊂ Uc ∩ Y \ C.

Since

d /∈ Uc = Xc \
⋃

x∈Fc

(Xx \ Vx)

there is an x ∈ Fc with d ∈ Xx \ Vx, and so

H ∩ Xd ⊂ Xx ∩ (Uc ∩ Y \ C) .

We have that H ∩ Xd ⊂ Xd ∩ ∪{Xr : r ∈ Rx
c }. Let’s prove that

there exists no r ∈ Rx
c such that r < d. Indeed, we have that d /∈ Vx.

The set Vx is of the form Vx = ∪{Xs : s ∈ S}. Since Xx \ Vx )= ∅, we

obtain that s )≤ x for each s ∈ S. Hence d /∈ ∪{Xs : s ∈ S ∩ Xx}. Since

x ∈ Fc ⊂ Xc, we have that Rx
c ⊂ Xx ∩ Uc ⊂ Xx \ ∪{Xy \ Vy : y ∈ Fc} =

∩{(Xx \ Xy) ∪ (Xx ∩ Vy) : y ∈ Fc} ⊂ Xx ∩ Vx = ∪{Xs : s ∈ S ∩ Xx}.

Suppose that there exists r ∈ Rx
c such that r < d. Then there exsists

s′ ∈ S ∩Xx such that r ∈ Xs′ . Therefore, d ∈ Xs′ . This is a contradiction.

So there is no r ∈ Rx
c such that r < d. This imply that

H ∩ Xd ⊂
⋃

r∈Rx
c ∩Xd

Xr ⊂ Xd .

Again by Lemma 4, we have d /∈ cl(H).
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It remains open the

Question. Is there a regular HS-space which is not normal?

The reason of this question is Theorem 2.14 from [BD2N2] where it is

proved that Schmidt’s conjecture is equivalent to the following one: any

Hausdorff HS-space is normal. So, it is natural to ask whether a regular

HS-space is normal. This question is raised in the cited above paper [3]

and an approach to its solution is proposed there.
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