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Sharp integrability of nonnegative Jacobians

L. GRECO

Riassunto: Si mostra che i risultati di migliore sommabilità, noti per lo jacobiano
di una applicazione che conserva l’orientamento, sono conseguenza diretta delle stime
per l’operatore massimale. In questo modo si estendono alcuni risultati di [11]. Si
dimostra anche l’ottimalità dei risultati ottenuti.

Abstract: We show that improved integrability results for the jacobian of an ori-
entation preserving mapping can be obtained as a consequence of maximal inequalities.
With this approach, we extend some results of [11]. We also show sharpness of our
results.

1 – Introduction

Let Ω be an open subset of IRn, n ≥ 2. We shall consider mappings

f = (f1, . . . , fn) on Ω in Sobolev classes; the distributional gradient will

be denoted by ∇f . For such mappings, the Jacobian determinant

J = det∇f = det(∂f i/∂xj)

This paper has been written under the research program “Metodi di rilassamento e di
omogeneizzazione nello studio dei materiali compositi” which is part of the project ’95
“Matematica per la tecnologia e la società”.
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is defined almost everywhere on Ω. Our basic assumption will be J ≥ 0,

that is, f is an orientation preserving mapping.

When studying the Jacobian, the natural assumption is f ∈ W 1,n

(Ω, IRn), as it ensures obviously that J ∈ L1(Ω). Actually, the property

of the Jacobian we are mainly concerned with is expressed by the following

identity, which holds for any ϕ ∈ C∞
0 (Ω):

(1.1)

∫

Ω

det ∇(f1, . . . , fn−1, ϕ fn) dx = 0 .

This is easily proved for regular functions f by Stokes’ theorem, and then

by approximation for functions f ∈ W 1,n or, more generally, f ∈ W 1,p,

with p = (p1, . . . , pn) an n-tuple of Hölder conjugate exponents: pi ≥ 1,

1/p1 + · · · + 1/pn = 1.

In [17] S. Müller first stressed out the local L log L-integrability

of the Jacobian of an orientation preserving mapping, under the natural

assumption. This result can be deduced from (1.1). Indeed, choosing ϕ

a cut-off function we obtain the uniform estimate

(1.2)

∫

Q

J dx ≤ C(n)

(∫

2Q

|∇f | n2

n+1 dx

)n+1
n

,

for each cube Q such that the double cube 2Q is contained in Ω, with C(n)

independent of Q. Throughout the paper, the symbol
∫

denotes, as usual,

the integral mean over the domain of integration. Estimate (1.2) yields

a pointwise inequality between maximal functions of J and |∇f | n2

n+1 and

then Müller’s result follows by maximal inequalities, see e. g. [11].

Subsequently to the paper by Müller, in [13] for the first time the

natural assumption was relaxed. There, the following estimate was proved

for a mapping f ∈ W 1,n−ε(IRn, IRn), −∞ < ε ≤ 1 (with no conditions on

the sign of the Jacobian)

(1.3)

∫

IRn
|∇f1|−ε J dx ≤ C(n) |ε|

∫

IRn
|∇f |n−ε dx

and a local version of this for an orientation preserving mapping f ∈
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W 1,n−ε(Ω, IRn)

(1.4)

∫

Q

|∇f1|−ε J dx ≤ C(n)

(∫

2Q

|∇f |
n(n−ε)

n+1 dx

)n+1
n

+

+ C(n) |ε|
∫

2Q

|∇f |n−ε dx ,

for 2Q ⊂ Ω. From (1.4), an improved integrability result for the Jacobian,

dual to the Müller’s one, was deduced: if |∇f |n is in the Zygmund class

L1 log−1 L(Ω), then J ∈ L1
loc(Ω). Furthermore, estimate (1.2) is still valid.

The problem in relaxing the natural assumption is that, in general, the

Jacobian may not be integrable and (1.1) is meaningless. To prove (1.3),

the key ingredient in [13] for overcoming these difficulties was Hodge

decomposition to write

|∇f1|−ε∇f1 = ∇g + h ,

where g ∈ W 1, n−ε
1−ε (Ω) and h ∈ L

n−ε
1−ε (Ω, IRn) is a divergence free vector

field. Hence (1.1) can be used with ∇g = |∇f1|−ε∇f1 −h in place of ∇f1

and (1.3) follows by estimates for Hodge decomposition, see [12], and [14]

for a more recent presentation.

The approach of [13] was then carried on in many papers [3], [6], [7],

[9], [11], [18], [19]. In particular, in [11] the phenomenon of the improved

integrability of the Jacobian is deeply studied. Essentially, the result

of that paper can be stated as follows: for an orientation preserving

mapping f on Ω, if Φ
(|∇f |n) ∈ L1

loc(Ω), then Ψ(J) ∈ L1
loc(Ω), where

Ψ and Φ are suitably related Orlicz functions. To present in a clear

fashion the tools used there for the proofs, we consider separately the

integrability results for the Jacobian which are above L1-degree and the

results which are below L1-degree, i.e. the convex case and the concave

case, respectively, in the terminology of [11].

The convex case, essentially, was proved using (1.2) in conjunction

with maximal inequalities. We have to mention here that in the results

of [11] a gap was left, concerning the case t ≺ Ψ(t) ≺ t log log t. This gap

was filled then by [16] and [19].

The concave case was treated by a technique (first introduced in [7])

of averaging (1.4) with respect to ε, see also [19]. See [10] for further
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developments of this technique. The drawback of this method is that it

seems to yield the result for the Jacobian only for particular functions Φ

and Ψ, namely, functions which are somehow Laplace transforms; see [11]

for more details.

Our goal in this paper is to show that the results of [11] can be

obtained and to some extent generalized as a quite direct consequence of

maximal inequality, via the following classical approximation argument.

Lemma 1.1. There exists a constant C = C(n) > 0 with the

following property: for any u ∈ W 1,p(Ω, IRm), 1 ≤ p < ∞, and any t > 0,

there exists g = gt ∈ Lip(Ω, IRm) ∩ W 1,p(Ω, IRm) such that g(x) = u(x)

for a.e. x ∈ Ω verifying M |∇u|(x) ≤ t, and ‖∇g‖∞ ≤ C t.

Here Ω is a cube or the whole space IRn, and M denotes the (local

to Ω) Hardy-Littlewood maximal operator. A proof of Lemma 1.1 can

be inferred from some calculations in [1], see also [8].

To illustrate our approach, we consider a sample case: we derive (1.3)

with 0 < ε < 1 for a mapping f not necessarily orientation preserv-

ing. Notice that the essence of that inequality is the presence of the

factor ε, for ε small. To prove it, we apply Lemma 1.1 to the function

u = f1 and find g ∈ W 1,n−ε(IRn) ∩ Lip(IRn). Then, by Stokes’ theorem

det∇(g, f2, . . . , fn) has zero integral over IRn, and therefore
∫

M≤t

J dx ≤ C t

∫

M>t

|∇f |n−1 dx .

Now we multiply both sides by t−ε−1 and integrate over (0, ∞) with re-

spect to t; notice that it is legitimate to use Fubini theorem to change

the order of integration. So we get
∫

IRn
M−εJ dx ≤ C

ε

1 − ε

∫

IRn
M 1−ε|∇f |n−1 dx .

By Young and Hadamard inequalities we find that

|∇f1|−εJ ≤ (1 − ε) M−εJ + ε M 1−ε|∇f |n−1

Moreover, the integral of M 1−ε|∇f |n−1 can be estimated first using Hölder

inequality and then maximal theorem as follows

≤
( ∫

IRn
Mn−ε dx

) 1−ε
n−ε

( ∫

IRn
|∇f |n−ε dx

)n−1
n−ε ≤ C

∫

IRn
|∇f |n−ε dx .
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Hence we conclude with (1.3).

Now we come to present our results. We consider a nonnegative

increasing function Φ ∈ C1(0,∞). Even though some of our results can

be stated in greater generality, for simplicity we assume that

(1.5) t .→ Φ(t) t− n
n+1 is increasing.

Also, since we are interested in integrability properties of local character,

if necessary, we modify Φ in order to guarantee that Φ′(t)/t is integrable

near the origin.

First, we consider the convex case, that is,

(1.6)

∫ ∞

1

Φ′(τ)

τ
dτ = ∞ .

The following result fills the mentioned gap in [11].

Theorem 1. Let Q be a cube of IRn and f = (f1, . . . , fn): 2Q → IRn

be an orientation preserving mapping with Φ
(|∇f |n) ∈ L1(2Q). Then

J ∈ L1(Q) and

(1.7)

∫

Q

J dx ≤ C(n)

(∫

2Q

|∇f | n2

n+1 dx

)n+1
n

.

As already remarked, estimate (1.7) can be used in conjunction with

maximal inequalities, to obtain improved integrability results for the Ja-

cobian in Orlicz spaces. Here we do not examine this topic and refer

to [11] for more details.

Next, we consider the concave case:

(1.8)

∫ ∞

1

Φ′(τ)

τ
dτ < ∞ .

Now we define

(1.9) Ψ(t) = t

∫ ∞

t

Φ′(τ)

τ
dτ .
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The following result generalizes analogous results of [11] for the concave

case.

Theorem 2. Let Q be a cube and f : 2Q → IRn be an orientation

preserving mapping with Φ
(|∇f |n) ∈ L1(2Q). Then Ψ(J) ∈ L1(Q) and

(1.10)

∫

Q

Ψ(J) dx ≤ C(n, Φ)
(
1 +

∫

2Q

Φ(|∇f |n) dx
)n+1

n

In this paper we are mainly concerned with orientation preserving

mappings. It is however appropriate to mention here that regularity

properties of Jacobians and other non-linear quantity for general map-

pings are studied in [4], [15].

2 – Notation and preliminary results

We begin by introducing the (local) maximal operator. For simplicity,

we assume that Ω is a cube of IRn. For 0 ≤ h ∈ L1(Ω), the Hardy-

Littlewood maximal function of h is defined by

Mh(x) = sup
{∫

Q

h ; x ∈ Q ⊂ Ω
}

,

the supremum being taken over all subcubes of Ω containing the given

point x ∈ Ω. We recall the following result from [11].

Lemma 2.1. If Γ ∈ C1(0,∞) is a nonnegative function such

that Γ(t)/tp is increasing for some p > 1, then

(2.1)

∫

Ω

Γ(Mh) dx ≤ 3np

p − 1

∫

Ω

Γ(2h) dx

By (1.5), Γ(t) = Φ(tn) verifies assumptions of Lemma 2.1 with p =

n2/(n + 1).

In the sequel, we shall use the

Lemma 2.2. If u ∈ W 1,1(Ω), then for a. e. x ∈ Ω we have

∣∣∣u(x) −
∫

Ω

u(y) dy
∣∣∣ ≤ diam(Ω)M |∇u|(x) .
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Proof. The inequality is proved easily for a function of class C1(Ω),

and then for a general function in W 1,1(Ω) by approximation.

We shall need to study formula (1.9). For notational simplicity, we

introduce the operator

(2.2) FΦ(t) = t

∫ ∞

t

Φ′(τ)

τ
dτ

on the set L of nonnegative increasing functions Φ ∈ C1(0,∞) such that

Φ′(t)/t is integrable in a neighborhood of ∞. We collect some elementary

properties of F in the following lemma. These properties are intended

for t large.

Lemma 2.3. For Φ and Φ1 ∈ L, we have:

i) if Φ(t) = tα, with 0 < α < 1, then FΦ(t) = α
1−α

tα;

ii) the map Φ .→ FΦ is “monotonic”, in the sense that, if Φ1 = δ Φ with

δ decreasing, then FΦ1 ≤ δ FΦ;

iii) if t .→ Φ(t) t−α is decreasing, with 0 < α < 1, then FΦ(t) ≤ α
1−α

Φ(t);

if t .→ Φ(t) t−α is increasing, then FΦ(t) ≥ α
1−α

Φ(t).

Proof. Assertion i) is trivial. To prove ii), we see that Φ′
1 = δ′ Φ +

δ Φ′ ≤ δ Φ′ and hence FΦ1 ≤ δ FΦ. Finally, iii) is an easy consequence

of i) and ii).

Notice that iii) and (1.5) imply that Ψ = FΦ is “larger” than Φ,

hence Theorem 2 exhibits an integrability improvement for J .

We prove now another inequality relating Φ and Ψ.

Lemma 2.4. If (1.8) holds and Ψ is given by (1.9), then for any t,

s > 0 we have

(2.3) Ψ(t) ≤ t
Ψ(s)

s
+ Φ(s)
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Proof. As τ .→ Ψ(τ)/τ is decreasing, inequality (2.3) is trivial if

t > s. Assuming t ≤ s, we then compute

Ψ(t) = t

∫ ∞

t

Φ′(τ)

τ
dτ = t

∫ s

t

Φ′(τ)

τ
dτ + t

∫ ∞

s

Φ′(τ)

τ
dτ ≤

≤
∫ s

0

Φ′(τ) dτ + t

∫ ∞

s

Φ′(τ)

τ
dτ ≤ Φ(s) + t

Ψ(s)

s
.

3 – Proof of Theorem 1

Let R denote the edge of Q. We pick ϕ ∈ C∞
0 (2Q), 0 ≤ ϕ ≤ 1, ϕ ≡ 1

on Q and |∇ϕ| ≤ C(n)/R, and set F =
(
f1, . . . , fn−1, ϕ (fn − fn

2Q)
)
,

where fn
2Q is the integral mean of fn over the cube 2Q. On the other

hand, applying Lemma 1.1 to f ∈ W 1,1(2Q, IRn), for each t > 0 we find

g = gt ∈ Lip(2Q, IRn) such that g(x) = f(x) if M(x) := M |∇f |(x) ≤ t,

and |∇g| ≤ C t. We set G = Gt =
(
g1, . . . , gn−1, ϕ (gn−fn

2Q)
)
. Clearly, by

Stokes’ theorem det ∇G has zero integral on 2Q, that is, by the properties

of g

(3.1)

∫

M≤t

det ∇F dx = −
∫

M>t

det ∇G dx

Moreover

(3.2)

∫ ∞

0

Φ′((t/2)n
)

t

∣∣∣
∫

M>t

det ∇G dx
∣∣∣ dt < ∞

To not distract ourself from the main course of the proof, we postpone

the verification of (3.2) until the end of this Section. By (3.1) and (3.2),

we see that the function

t .→ Φ′((t/2)n
)

t

∫

M≤t

det ∇F dx

is integrable over (0,∞). As by assumption (1.6) the function Φ′((t/2)n
)
/t

is not integrable, then the limit

(3.3) lim
t→∞

∫

M≤t

det ∇F dx
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must to be zero, if it exists. Let us compute the limit. Obviously, we

have the following point-wise equality

(3.4) det∇F = ϕ det∇f + (fn − fn
2Q) det∇(f1, . . . , fn−1, ϕ) .

The integral of the second term in the right hand side is easily bounded

by Hölder and Sobolev-Poincaré inequalities

(3.5)

∫

2Q

∣∣(fn − fn
2Q) det∇(f1, . . . , fn−1, ϕ)

∣∣ dx ≤

≤ C(n)

R

∫

2Q

|fn − fn
2Q| |∇f |n−1 dx ≤

≤ C(n)

R

(∫

2Q

|fn − fn
2Q|n2

dx

) 1
n2

(∫

2Q

|∇f | n2

n+1 dx

)n2−1

n2

≤

≤ C(n)

(∫

2Q

|∇f | n2

n+1 dx

)n+1
n

≤

≤ C(n, Φ)

(
1 +

∫

2Q

Φ
(|∇f |n)

dx

)n+1
n

.

Last inequality is a consequence of (1.5), since this implies t
n

n+1 ≤ (
1 +

Φ(t)/Φ(1)
)
. As also J ≥ 0, it is now clear that we can pass to the limit

in (3.3) to get

(3.6)

∫

2Q

det ∇F dx = 0

which, in conjunction with (3.4) and (3.5), immediately implies (1.7).

Now we prove (3.2). First, notice that in (3.1) the integral in the

left hand side, and thus the one in the right hand side, is a measurable

function of t. Moreover, if M |∇f |(x) > t for a.e. x, then the integral

is zero. In the other case, we take x0 such that M |∇f |(x0) ≤ t and

gn(x0) = fn(x0) so that, by the properties of g and ϕ and also using

Lemma 2.2, we have

| det∇G| ≤ C(n) (tn+tn−1(|gn−gn(x0)|+|fn(x0)−fn
2Q|) |∇ϕ|) ≤ C(n) tn .
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Therefore, by maximal inequality (2.1)

(3.7)

∫ ∞

0

Φ′((t/2)n
)

t

∣∣∣
∫

M>t

det ∇G dx
∣∣∣ dt ≤

≤ C(n)

∫ ∞

0

Φ′((t/2)n
)
dtn

∫

M>t

dx ≤

≤ C(n)

∫

2Q

Φ((M/2)n) dx ≤ C(n)

∫

2Q

Φ
(|∇f |n)

dx

concluding the proof.

Remark. Equality (3.6) means that integration by parts can be

carried on, that is, distributional and point-wise determinants coincide,

see [2], [5]. This generalizes a result of [6].

4 – Proof of Theorem 2

We define F and G as in the proof of Theorem 1, thus we have (3.1),

(3.4) and hence

(4.1)

∫

M≤t

ϕ J dx ≤ C(n)

R

∫

M≤t

|fn − fn
2Q| |∇f |n−1 dx+

+
∣∣∣

∫

M>t

det ∇G dx
∣∣∣ .

Now we multiply both sides by Φ′((t/2)n
)
/t and integrate over (0,∞) with

respect to t; we examine each term of (4.1) in this process. Using Fubini

theorem to change the order of integration (J ≥ 0), by the definition of Ψ

we get

(4.2)

∫ ∞

0

Φ′((t/2)n
)

t
dt

∫

M≤t

ϕ J dx =
1

n

∫

2Q

ϕ J
Ψ

(
(M/2)n

)

(M/2)n
dx

and similarly

(4.3)

∫ ∞

0

Φ′((t/2)n)

t
dt

∫

M≤t

|fn − fn
2Q| |∇f |n−1 dx =

=
1

n

∫

2Q

|fn − fn
2Q| |∇f |n−1 Ψ((M/2)n)

(M/2)n
dx .
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Finally, the integral of last term is estimated in (3.7).

Recall that Ψ(t)/t is bounded, so the right hand side of (4.3) can be

controlled by

≤ C(n, Φ)

∫

2Q

|fn − fn
2Q| |∇f |n−1 dx

and then we can estimate further as in (3.5). On the other hand, inequal-

ity (2.3) yields

(4.4) Ψ(J) ≤ J
Ψ

(
(M/2)n

)

(M/2)n
+ Φ((M/2)n

)
.

Using (4.4), (4.1), (4.2), (4.3), (3.7), (3.5) and maximal inequality (2.1),

we prove (1.10).

5 – An example

We show now that Theorem 2 is optimal, in the sense that for any

function Θ growing faster than Ψ at infinity, there exists a mapping f

whose Jacobian J does not change sign and Φ(|∇f |n)∈L1, but Θ(|J |) )∈L1.

The results of this section complement Section 7 of [11].

We produce a mapping on the unit ball B =
{
x : r = |x| ≤ 1

}
,

which is locally Lipschitz on B\{0}. Precisely, we prove the following

Proposition 5.1. Under condition (1.8), let the function Ψ defined

by (1.9) verify Ψ(t) ≥ C t1/n, for large t. Then, for every function Θ ∈
C1(0,∞) such that

(5.1) lim
t→∞

Θ(t)

Ψ(t)
= ∞ ,

there exists a mapping f on B such that J ≤ 0, Φ
(|∇f |n) ∈ L1(B),

Ψ
(|J |) ∈ L1(B), but Θ

(|J |) )∈ L1
loc(B).
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We consider a mapping

f(x) = γ
(|x|) x ,

where γ ∈ Liploc(]0, 1]) is positive. The following point-wise equality

holds

(5.2) ∇f(x) = γ′(|x|) x ⊗ x

|x| + γ
(|x|) I

and so

(5.3)
|∇f |2 = (n − 1) γ2 + (γ + r γ′)2 ,

J = det∇f = γn−1(γ + r γ′) .

We assume J ≤ 0, that is γ + r γ′ ≤ 0. From (5.3) we get

(5.4) (r γ)n = γ(1)n − n

∫ 1

r

ρn−1J(ρ) dρ

Moreover, if the function r .→ −rpJ(r) is increasing for some p > n, then

γ(1) > 0 can be chosen so that

(5.5) 0 ≤ −γ + r γ′

γ
≤ p − n

n

and |∇f | ∼ γ.

Lemma 5.1. Under assumption (1.8), if Ψ is defined by (1.9) and

inequality (5.5) holds, then Ψ(−J) ∈ L1 =⇒ Φ
(|∇f |n) ∈ L1.

Proof. As t .→Ψ(t)/t is decreasing, (5.5) implies for any k>(p−n)/n

Ψ(−J) = Ψ
(

− γ + r γ′

γ
γn

)
≥ −γ + r γ′

γ

Ψ(k γn)

k

and thus, integrating by parts twice yields, for r > 0

n k

∫ 1

r

Ψ(−J) ρn−1 dρ ≥ −
∫ 1

r

Ψ(k γn)

γn

(
(ρ γ)n

)′
dρ ≥

≥ −Ψ
(
k γ(1)n

) −
∫ 1

r

(
Φ(k γn)

)′
ρn dρ ≥

≥−Ψ(k γ(1)n) − Φ(kγ(1)n)+n

∫ 1

r

Φ(kγn) ρn−1dρ .
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To conclude the proof, it suffices to let r go to 0.

To construct our example, for a given Θ verifying (5.1), we only need

to show a function J ≤ 0 such that r .→ −rp J is increasing and

∫ 1

0

Ψ(−J) rn−1 dr < ∞ , but

∫ 1

0

Θ(−J) rn−1 dr = ∞ .

The following lemma deals with the existence of such a function.

Lemma 5.2. Let Ψ, Θ be continuous functions on [0, ∞[ verify-

ing (5.1) and Ψ(0) = 0, Ψ(t) ≥ C tn/p, for t large. Then there exists an

increasing function g: ]0, 1] → [0,∞[ so that

∫ 1

0

Ψ
(
g(r) r−p

)
rn−1 dr < ∞ , but

∫ 1

0

Θ
(
g(r) r−p

)
rn−1 dr = ∞ .

Proof. We are going to construct g =
∑

gk χIk
, with gk constants

and Ik pair-wise disjoint subintervals of ]0, 1]. Let us pick up a se-

quence (bk) of positive numbers such that
∑

bk < ∞, but
∑

k bk = ∞.

By (5.1), for each k ∈ IN we can find Tk > 0 so that t > Tk =⇒
Θ(t)/Ψ(t) ≥ k + 1. If we define Mk = max

{
Ψ(t) , 0 ≤ t ≤ Tk

}
, then

Ψ(t) > Mk =⇒ t > Tk =⇒ Θ(t)

Ψ(t)
≥ k + 1

We want to define gk and Ik = ]ak+1, ak] recursively. Let us start with

a0 = 1, set b0 = 1 and consider the equation

(5.6)

∫ a0

a1

Ψ
(
g1 r−p

)
rn−1 dr = b0

in the two unknowns a1 ∈ (0, a0) and g1 > 0. For every fixed g1, we have

∫ a0

a0

Ψ
(
g1 r−p

)
rn−1 dr = 0 ,

∫ a0

0

Ψ
(
g1 r−p

)
rn−1 dr ≥ C g

n/p
1

∫ ã

0

dr

r
= ∞ .

Therefore we can solve (5.6). Moreover, as Ψ(0) = 0 and Ψ is continuous,

choosing g1 small enough, we can find a1 as close to 0 as we like. Then

we select a solution (a1, g1) to (5.6) so that

∫ a1

0

rn−1 dr =
an

1

n
<

b1

2M1

.
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It is clear that we can iterate the above argument, to construct (gk)

and (ak) decreasing sequences verifying ∀k ∈ IN
∫ ak

ak+1

Ψ
(
gk+1 r−p

)
rn−1 dr = bk and

∫ ak

0

rn−1 dr <
bk

(k + 1)Mk

.

Let us now show that

(5.7)

∫ ak

ak+1

Θ
(
gk+1 r−p

)
rn−1 dr > k bk .

Set Ak =
{
r ∈ (ak+1, ak) : Ψ

(
gk+1 r−p

)
> Mk

}
and Bk = (ak+1, ak)\Ak.

Then ∫

Bk

Ψ
(
gk+1 r−p

)
rn−1 dr ≤ Mk

∫ ak

0

rn−1 dr <
bk

k + 1

and hence
∫

Ak

Ψ
(
gk+1 r−p

)
rn−1 dr > bk − bk

k + 1
=

k

k + 1
bk .

From this, the definitions of Ak and Mk we get (5.7) and by the properties

of the sequence (bk) we conclude the proof.

Now we choose p = n2; we remark that condition Ψ(t) ≥ C t1/n of

Proposition 5.1 holds by iii) of Lemma 2.3 under the assumption that

t .→ Φ(t) t−1/n is increasing, which is weaker than (1.5).

In conclusion, we set −J = r−n2
g, with g increasing, and define γ

by means of (5.4). Notice that Φ
(|∇f |n) ∈ L1 =⇒ |∇f | ∼ γ ∈ L1(B).

Moreover by (5.4) we easily get f ∈ L
n

n−1 (B) and therefore equality (5.2)

holds also in the sense of distributions.

Proposition 5.1 shows also optimality of Theorem 1, in particular of

condition (1.6) for (1.7). Actually, if (1.6) is false, that is, (1.8) holds,

Ψ(t) given in (1.9) measures the best degree of integrability of J , for

general f , and it is essentially smaller than Θ(t) = t.

Concerning optimality of formula (1.9) and significance of Theorem 2

itself, the following remark is of some interest.

Remark. Let Φ∈L, that is, (1.8) holds, and let Ψ=FΦ. Lemma 2.3

implies that, if Φ(t) t−α is decreasing for some α ∈ (0, 1), e. g. α =

n/(n + 1), then Ψ(t) ≤ α Φ(t)/(1 − α) ∼ Φ(t). By Hadamard inequality,

Φ
(|∇f |n) ∈ L1 trivially implies Ψ

(|J |) ∈ L1 and this is optimal, as shown

by the above example.
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(1996).

[11] L. Greco – T. Iwaniec – G. Moscariello: Limits of the Improved integrability
of the Volume Forms, Indiana Univ. Math. J., 44 (1995), no. 2, 305-339.

[12] T. Iwaniec: p-Harmonic tensors and quasiregular mappings, Ann. Math. 136
(1992), 589-624.

[13] T. Iwaniec – C. Sbordone: On the integrability of the Jacobian under minimal
hypothesis, Arch. Rational Mech. Anal., 119 (1992), 129-143.

[14] T. Iwaniec – C. Sbordone: Weak minima of variational integrals, J. reine angew
Math., 454 (1994), 143-161.

[15] P.L. Lions: Jacobians and Hardy spaces, Ricerche di Mat. Suppl., 40 (1991).

[16] C. Li – K. Zhang: Higher Integrability of certain Bilinear Forms on Orlicz Spaces,
to appear.

[17] S. Müller: Higher integrability of determinants and weak convergence in L1, J.
reine angew Math., 412 (1990), 20-34.

[18] G. Moscariello: On the integrability of the Jacobian in Orlicz Spaces, Math.
Japonica, 40 (1992), no. 2, 323-329.



600 L. GRECO [16]

[19] S. Wu: On the higher integrability of nonnegative Jacobians, preprint.

Lavoro pervenuto alla redazione il 7 luglio 1997
ed accettato per la pubblicazione il 20 maggio 1998.

Bozze licenziate il 26 ottobre 1998

INDIRIZZO DELL’AUTORE:

L. Greco – Dipartimento di Matematica e Applicazioni “R. Caccioppoli” – Università degli
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