Intersections of Riemannian submanifolds. Variations on a theme by T. J. Frankel

T. Q. BINH - L. ORNEA - L. TAMÁSSY

Riassunto: Sia M^{n} una varietà riemanniana completa e connessa di dimensione n e siano $V^{r} e W^{s}$ due sottovarietà compatte e totalmente geodetiche di dimensione r ed s. T. Frankel nel 1961 ha dimostrato che le due varietà si intersecano se è: $r+s \geq n$. Risultati analoghi sono stati ottenuti successivamente da S. I. Goldberg e S. Kobayashi per le varietà kähleriane, da A. Gray per quelle quasi-kähleriane, da S. Marchiafava per le varietà quaternioniche, da L. Ornea per quelle localmente conformi, da S. Tanno e Y. -B. Baik per le varietà sasakiane regolari e compatte. Recentemente K. Kenmotsu e C. Xia hanno ottenuto risultati simili per le varietà con curvatura positiva.

In questo articolo si dimostrano dapprima risultati dello stesso tipo per le ipersuperficie minimali di una varietà riemanniana. Si presenta poi un metodo per costruire varietà sasakiane con curvatura k-positiva e, sulla falsariga del caso kähleriano, si costruisce un sistema ortonormale di vettori tangenti, invarianti per parallelismo lungo una geodetica di uno spazio sasakiano. Utilizzando questo sistema di vettori si riconosce la validità di un teorema del tipo di Frankel, in uno spazio sasakiano, per due sottovarietà compatte invarianti con curvatura bisezionale positiva.

Abstract: Let M^{n} be an n-dimensional complete connected Riemannian manifold with positive sectional curvature, and let V^{r} and W^{s} be two compact, totally geodesic submanifolds of dimensions r and s. In 1961 T. Frankel proved that V^{r} and W^{s} are always intersecting provided $r+s \geq n$. Later a number of analogous results were achieved: for Kähler manifolds by S. I. Goldberg and S. Kobayashi, for nearly Kähler ones by A. Gray, for quaternionic Kähler manifolds by S. Marchiafava, for locally conformal Kähler manifolds by L. Ornea and for compact regular Sasakian manifolds by S. Tanno and Y. -B. Baik. Recently K. Kenmotsu and C. Xia, have obtained similar results on manifolds with partially positive curvature.

In this paper we prove results of similar type in a Riemannian space for two minimal hypersurfaces. We present a construction of Sasakian manifolds with k-positive
bisectional curvature. In analogy to the Kähler case, an orthonormal vector system is obtained in a Sasakian manifold, which is parallel along a geodesic. Using this vector system, we prove an intersection theorem of Frankel type for two compact invariant submanifolds of a Sasakian space with k-positive bisectional curvature.

1 - Introduction

Consider an n-dimensional complete, connected Riemannian manifold M^{n} and two complete totally geodesic submanifolds V^{r} and W^{s} of dimensions r and s, respectively. These submanifolds need not intersect, even if $r+s \geq n$, for example two parallel hypersurfaces of a euclidean space or two deviating hyperplanes in a hyperbolic M^{n}. However, if moreover M^{n} has positive sectional curvature K and V^{r} and $W^{s}(r+s \geq n)$ are compact, then $V^{r} \cap W^{s} \neq 0$, as it was shown by T. Frankel [3]. (The statement is clear on the sphere S^{n}.)

Later a number of analogous results were achieved by different authors using basically the same method of which we will make use too. This method is the following: Assume on the contrary that $V^{r} \cap W^{s}=\emptyset$. Because of the compactness there exists a minimal geodesic between V^{r} and W^{s}, such that its second variation $L^{\prime \prime}$ is positive. Then using an integral formula for $L^{\prime \prime}$ which involves the positive sectional curvature K one arrives to a contradiction proving that $V^{r} \cap W^{s} \neq \emptyset$. We mention here, only a few among these results. S. I. Goldberg and S. Kobayashi [5] proved that the compact complex submanifolds V^{r} and $W^{s}(r+s \geq n)$ of a compact connected Kähler manifold M^{n} with positive bisectional curvature (the definition of this notion appears at the beginning of Section 3) have nonempty intersection. A. Gray [4] extended these results on nearly Kähler ambient spaces. S. Marchiafava [9] obtained similar results on quaternionic Kähler manifolds. L. Ornea [11] investigated the problem on locally conformal Kähler manifolds. S. Tanno and Y.-B. BAIK [13] proved intersection theorems for two compact invariant submanifolds with positive special bisectional curvature of a regular compact Sasakian space. Recently K. Kenmotsu and C. Xia [7], [8] have achieved similar results on manifolds with partially positive curvature (or in other words, with k-positive sectional curvature), a weaker condi-

[^0]tion than positive sectional curvature. (This notion is explained at the beginning of the next section.)

In this paper we prove results of similar type in Riemannian and Sasakian spaces. We present a construction of Sasakian manifolds with k-positive bisectional curvature and we construct a special orthonormal vector system in this space which is parallel along a geodesic.

2 - Intersection of minimal hypersurfaces in a Riemannian manifold

Let $M^{n}=(M, g)$ be a Riemannian manifold of dimension $n, \quad p \in$ M^{n} and $e, e_{1}, \ldots, e_{k} \in \mathfrak{X}\left(U_{p}\right),(k \leq n-1)$ a system of orthonormal tangent vectors of M in a neighbourhood $U_{p} \subset M . K\left(e \wedge e_{i}\right) \quad i=1,2, \ldots, k$ denotes the sectional curvature of M^{n} belonging to the plane spanned by e and e_{i}. If

$$
\begin{equation*}
\operatorname{Ric}_{(k)}(p):=\sum_{i=1}^{k} K\left(e \wedge e_{i}\right)>0 \quad(\text { respectively } \geq 0) \tag{1}
\end{equation*}
$$

for any orthonormal e, e_{1}, \ldots, e_{k} and for every $p \in M$, then M^{n} is said to be of k-positive (k-nonnegative) Ricci curvature (see [7], p. 130). It is clear that for $k=1$ (1) means positive (nonnegative) sectional curvature, for $k=n-1$ it means positive (nonnegative) Ricci curvature $\operatorname{Ric}\left(M^{n}\right)$; and that $\operatorname{Ric}_{(k)}\left(M^{n}\right) \geq 0 \Rightarrow \operatorname{Ric}_{(k+1)}\left(M^{n}\right) \geq 0 \quad(k \leq n-2)$.

THEOREM 1. Let $M^{n}=(M, g)$ be a complete, connected Riemannian manifold with $\operatorname{Ric}\left(M^{n}\right) \geq 0, V$ and W two complete minimal hypersurfaces of M^{n} immersed as closed submanifolds into M. Let one of V and W be compact and $\operatorname{Ric}\left(M^{n}\right)>0$ either at all points of V or at all points of W.

Then V and W are intersecting: $V \cap W \neq \emptyset$.

This theorem is analogous to Theorem 2.1 of [7] and to Theorem 1 of [8]. There V and W are two totally geodesic submanifolds V^{r} and W^{s} with dimensions r and s, respectively, of an M^{n} with k-positive Ricci curvature, such that $r+s \geq n+k-1$. In [8] also an example is given showing that the positivity of Ric_{k} on V or W is necessary (Example 2
on page 248). The proof of our Theorem 1 runs similar to that of Theorem 2.1 in [7]. However, the fact that $\operatorname{dim} V=\operatorname{dim} W=n-1$ and that V and W are not totally geodesic, but minimal surfaces only, makes throughout certain differences.

Proof. Our proof is indirect. Assume that $V \cap W=\emptyset$. Since V and W are closed and one of them is compact, there is a pair of points $p \in V$ and $q \in W$ such that the distance $d(p, q)$ is a smallest among $\{d(a, b) \mid a \in V, b \in W\}$. Since M^{n} is complete there exists a geodesic $\gamma:[0, l] \rightarrow M$ such that $L(\gamma)=d(p, q)=l$, where $L(\gamma)$ is the length of γ. We choose the parametrization $\gamma(t)$ of γ in such a way that the length $\|\dot{\gamma}(t)\|=1$ (i.e. that $\gamma(t)$ is a normal geodesic). We know that γ meets both V and W orthogonally. Now consider an orthonormal basis $E_{1}, E_{2}, \ldots, E_{n-1}$ of $T_{p} V$ and translate it parallel along $\gamma(t)$ to $\gamma(l)=q \in W$. The resulting vector fields $E_{i}(t) i=1,2, \ldots, n-1$ are perpendicular to $\dot{\gamma}(t)$ and hence $E_{i}(l) \in T_{q} W$.

Then (see [12] Chap. III., §2, p. 88-91) there exists to each vector field $E_{i}(t)$ a variation $\alpha_{i}:[0, l] \times(-\varepsilon, \varepsilon) \rightarrow M$ of γ with curves in the variation $\alpha_{i}(t, s)$, such that $\alpha_{i}(0, s) \subset V, \alpha_{i}(l, s) \subset W$ and $E_{i}(t)$ is the variational field $\frac{\partial \alpha_{i}}{\partial s}(t, 0)=E_{i}(t)$ of α_{i}. Moreover, $\frac{\partial \alpha_{i}}{\partial s}(t, s)=: E_{i}(t, s)$ is an extension of $E_{i}(t)=E_{i}(t, 0)$ to the range of α_{i}. By fixing $s \in(-\varepsilon, \varepsilon)$ we obtain the curves ${ }_{i} c_{s}(t):=\alpha_{i}(t, s)$ whose arc length is denoted by $L_{E_{i}}(s)$ or simply by $L_{i}(s)$. So $\left.\frac{d}{d s} L_{i}\right|_{s=0} \equiv L_{i}^{\prime}(0)=0$, for $\gamma(t)={ }_{i} c_{0}(t)$ is a shortest curve between V and W, and hence also among the curves in the variation α_{i}.

According to the second variational formula for L (see e.g. [12], p. 91 formula (2.9)) we have

$$
\begin{align*}
\left.\frac{d^{2}}{d s^{2}}\right|_{s=0} L(s)= & \frac{1}{l}\left[\int _ { 0 } ^ { l } \left(\left\langle\nabla_{\dot{\gamma}} X^{\perp}, \nabla_{\dot{\gamma}} X^{\perp}\right\rangle+\right.\right. \tag{2}\\
& \left.\left.-\left\langle R\left(X^{\perp}, \dot{\gamma}\right) \dot{\gamma}, X^{\perp}\right\rangle\right) d t+\left.\left\langle A_{\dot{\gamma}} X, X\right\rangle\right|_{p} ^{q}\right]
\end{align*}
$$

where $X(t)$ is the variational field along the variational curve $\gamma(t)$, and A is the shape operator of V, respectively W, with respect to the corresponding normal vectors $\dot{\gamma}(0), \dot{\gamma}(l)$. $X^{\perp}(t)$ denotes the vertical component of $X(t)$ with respect to $\dot{\gamma}(t): X^{\perp}=X-\langle X, \dot{\gamma}\rangle \dot{\gamma} . \nabla$ is the Riemannian
connection in M^{n}, R is the curvature tensor and \langle,$\rangle denotes scalar prod-$ uct in M^{n}. We apply this for $X(t)=E_{i}(t)$. Then $E_{i}^{\perp}(t)=E_{i}(t)$, for the parallel translated $E_{i}(t) \quad \nabla_{\dot{\gamma}} E_{i}=0,\left.\left\langle A_{\dot{\gamma}} E_{i}, E_{i}\right\rangle\right|_{p} ^{q}=\left.\left\langle\nabla_{E_{i}} E_{i}, \dot{\gamma}\right\rangle\right|_{p} ^{q}$, and $\left\langle R\left(E_{i}, \dot{\gamma}\right) \dot{\gamma}, E_{i}\right\rangle=K\left(\dot{\gamma} \wedge E_{i}\right)$. Thus we obtain

$$
\begin{equation*}
\left.\frac{d^{2}}{d s^{2}}\right|_{s=0} L_{i}(s) \equiv L_{i}^{\prime \prime}(0)=\frac{1}{l}\left[\left.\left\langle\nabla_{E_{i}} E_{i}, \dot{\gamma}\right\rangle\right|_{p} ^{q}-\int_{0}^{l} K\left(\dot{\gamma} \wedge E_{i}\right) d t\right] \tag{3}
\end{equation*}
$$

Since the E_{i} restricted to the transversal curve $\alpha_{i}(0, s)$ through p are tangent to V, we can apply the relation

$$
\left(\nabla_{E_{i}} E_{i}\right)(p)=\left(\bar{\nabla}_{E_{i}} E_{i}+\sigma_{V}\left(E_{i}, E_{i}\right)\right)(p)
$$

where $\bar{\nabla}_{E_{i}} E_{i}$ means the component of $\nabla_{E_{i}} E_{i}$ tangent to V, and σ_{V} denotes the second fundamental form of the imbedded V. We have a similar formula for $\left(\nabla_{E_{i}} E_{i}\right)(q)$ with the second fundamental form σ_{W} of W. Substituting these into the right-hand side of $L_{i}^{\prime \prime}(0)$, taking into consideration that $\bar{\nabla}_{E_{i}} E_{i}$ as tangential component is perpendicular to $\dot{\gamma}$, and summing up on i, we obtain

$$
\begin{aligned}
l \sum_{i=1}^{n-1} L_{i}^{\prime \prime}(0)= & \left\langle\sum_{i} \sigma_{V}\left(E_{i}, E_{i}\right)(p), \dot{\gamma}(0)\right\rangle+ \\
& -\left\langle\sum_{i} \sigma_{W}\left(E_{i}, E_{i}\right)(q), \dot{\gamma}(l)\right\rangle-\int_{0}^{l} \sum_{i=1}^{n-1} K\left(\dot{\gamma} \wedge E_{i}\right) d t
\end{aligned}
$$

Now, since V and W are minimal hypersurfaces, $\sum_{i=1}^{n-1} \sigma_{V}\left(E_{i}, E_{i}\right)(p)$ $=\sum_{i=1}^{n-1} \sigma_{W}\left(E_{i}, E_{i}\right)(q)=0$. Further $\sum_{i=1}^{n-1} K\left(\dot{\gamma}(t) \wedge E_{i}(t)\right)=\operatorname{Ric}(\gamma(t)) \geq 0$ and at the endpoints of $\gamma \operatorname{Ric}(p)$ or $\operatorname{Ric}(q)$ is positive according to the assumption of our Theorem. So we obtain $l \sum_{i=1}^{n-1} L_{i}^{\prime \prime}(0)<0$. However $L_{i}^{\prime \prime}(0) \geq 0$, for γ is a shortest curve between p and q. This contradiction shows that $V \cap W=\emptyset$ cannot hold.

3 - Construction of Sasakian manifolds with k-positive bisectional curvature

Let $M^{2 n+1}=(M, \varphi, \xi, \eta, G)$ be a $2 n+1$ dimensional Sasakian manifold, where φ is a vector-valued 1 -form, ξ is the structure field, η is
a 1-form and G is a Riemannian metric. They satisfy the relations (see e.g. [1])
(a) $\left(\nabla_{X} \varphi\right) Y=\langle X, Y\rangle \xi-\eta(Y) X$
(b) $\eta \circ \varphi=0$
(c) $\varphi^{2}=-\mathrm{id}+\eta \otimes \xi$
(d) $\varphi(\xi)=0$
(e) $\langle\varphi X, \varphi Y\rangle=\langle X, Y\rangle-\eta(X) \eta(Y)$
(f) $\nabla_{Y} \xi=\varphi Y$
(g) $\langle\varphi X, Y\rangle+\langle X, \varphi Y\rangle=0$.

The bisectional curvature of a Kähler manifold $M^{n}=(P, J, g)$ of complex dimension n with the complex structure J is defined on a plane spanned by X and Y as (see [5], [7])

$$
H(X, Y):=\frac{R(X, J X, Y, J Y)}{\langle X, X\rangle\langle Y, Y\rangle}=\frac{R(X, Y, X, Y)+R(X, J Y, X, J Y)}{\langle X, X\rangle\langle Y, Y\rangle}
$$

where

$$
R(X, Y, Z, V)=\left\langle\nabla_{X} \nabla_{Y} Z-\nabla_{Y} \nabla_{X} Z-\nabla_{[X, Y]} Z, V\right\rangle
$$

Hence

$$
H(X, Y)=K(X \wedge Y)+K(X \wedge J Y)
$$

where $X, J X, Y, J Y$ is an orthonormal system. M^{n} is said to be of k positive (respectively, k-nonnegative) bisectional curvature ($1 \leq k \leq n$) (see [7], p. 133) if for any orthonormal system $X, e_{1}, J e_{1}, \ldots, e_{k}, J e_{k} \in$ $T_{p} P$

$$
\sum_{i=1}^{k} H\left(X, e_{i}\right)>0 \quad(\text { respectively } \geq 0)
$$

at every $p \in P$.
Similarly we call a Sasakian manifold $M^{2 n+1}$ of k-positive (k-nonnegative) bisectional curvature $(k \leq n)$ if
$\sum_{i=1}^{k} H\left(X \wedge E_{i}\right):=\sum_{i=1}^{k}\left(K\left(X \wedge E_{i}\right)+K\left(X \wedge \varphi E_{i}\right)\right)>0 \quad($ respectively $\geq 0)$,
for any orthonormal system $X, E_{1}, \varphi E_{1}, \ldots, E_{k}, \varphi E_{k} \in T_{p} M$.

First we want to give examples for Sasakian manifolds with k-positive bisectional curvature. These examples show at the same time the existence of manifolds of this kind. To this end let us consider the BoothbyWang fibration (see [2]) of a compact regular Sasakian manifold $(M, \varphi, \xi, \eta, G)$ on the Kähler manifold $(P=M / \xi, J, g)$ with fiber S^{1} identified with an orbit of ξ (cf. Blair's book [1], for instance). It is known that the construction is reversible (see Y. Hatakeyama [6]). In other words if one starts with a compact Kähler manifold whose fundamental 2-form Ω defines an integral cocycle (this is called a Hodge manifold) then the Sasakian manifold can be constructed. (K. Yano and M. Kon [14] p. 291).

The above Boothby-Wang fibration $\pi: M \rightarrow P$ is, moreover, a Riemannian submersion with totally geodesic fiber S^{1}. Denoting with A and T the O'Neill tensors of the submersion (see O'Neill [10]) we have $T=0$, because the fibers are totally geodesic. Let \mathcal{H}, V be the horizontal, respectively vertical distributions of the submersion, and h, v the corresponding projectors. Obviously, V is locally spanned by ξ. We recall that $A_{X} Y=v \nabla_{X}^{M} Y, A_{X} U=h \nabla_{X}^{M} U, A_{U} X=0, \quad X, Y, U \in \mathfrak{X}(M)$ for any horizontal X, Y and vertical U.

Let X^{*} be the horizontal lift on M of a vector field X on P. Then one can easily prove the following relations (see [14] page 456):

$$
\begin{aligned}
(J X)^{*} & =\varphi X^{*}, \quad G\left(X^{*}, Y^{*}\right)=g(X, Y) \\
\left(\nabla_{X} Y\right)^{*} & =-\nabla_{X}^{M} Y+G\left(Y^{*}, \varphi X^{*}\right) \xi
\end{aligned}
$$

(the superscripts M, respectively P, denote notions in the Sasakian manifold M, respectively in the Kähler manifold P). Thus one deduces

$$
\begin{aligned}
\left(R^{P}(X, Y, Z)\right)^{*}= & R^{M}\left(X^{*}, Y^{*}\right) Z^{*}+G\left(Z^{*}, \varphi Y^{*}\right) \varphi X^{*}+ \\
& -2 G\left(Y^{*}, \varphi X^{*}\right) \varphi Z^{*}-G\left(Z^{*}, \varphi X^{*}\right) \varphi Y^{*}
\end{aligned}
$$

and consequently, for the sectional curvature (X, Y orthonormal) one obtains:

$$
K^{P}(X \wedge Y)=K^{M}\left(X^{*} \wedge Y^{*}\right)+3 G\left(X^{*}, \varphi Y^{*}\right)^{2}
$$

Note that $G\left(X^{*}, \varphi Y^{*}\right)^{2}=\left\|A_{X} Y\right\|^{2}$. As for an other type of a 2-plane in M, using the O'Neill formulae for the curvature, we have:

$$
K^{M}\left(X^{*} \wedge \xi\right)=\left\|A_{X} \xi\right\|^{2}
$$

Consider now a local orthonormal system of vector fields
$E_{1}, \varphi E_{1}, \ldots, E_{k}, \varphi E_{k}$ on M as in the definition of the k-positive bisectional curvature. Three possibilities may arise:
(1) All E_{i} and X are horizontal. In this case they can be considered the "stars" of some vector fields e_{1}, \ldots, e_{k}, x on P. We have:

$$
\begin{aligned}
K^{M}\left(X \wedge E_{i}\right)+K^{M}\left(X \wedge \varphi E_{i}\right)= & K^{P}\left(x \wedge e_{i}\right)+K^{P}\left(x \wedge J e_{i}\right)+ \\
& -3\left(\left\|A_{X} E_{i}\right\|^{2}+\left\|A_{X} \varphi E_{i}\right\|^{2}\right)
\end{aligned}
$$

Since E_{i} and X are horizontal (normal to ξ) and mutually orthogonal, we obtain $\left(\stackrel{M}{\nabla}_{X} \varphi\right) E_{i}=0$. Thus $\nabla_{X}^{M} \varphi E_{i}=\varphi \nabla_{X}^{M} E_{i}$. But φ preserves the horizontal distribution and $\varphi \xi=0$, consequently $\stackrel{M}{\nabla}_{X} \varphi E_{i}$ is horizontal. This means that $A_{X} \varphi E_{i}=0$. Moreover

$$
\begin{aligned}
A_{X} E_{i} & =v \nabla_{X}^{M} E_{i}=\eta\left(\nabla_{X}^{M} E_{i}\right)-G\left(\nabla_{X} E_{i}, \xi\right)= \\
& =G\left(E_{i}, \varphi X\right)=-G\left(\varphi E_{i}, X\right)=0
\end{aligned}
$$

because X is orthogonal to all E_{i} and φE_{i}. Hence

$$
\sum_{i=1}^{k}\left\{K^{M}\left(X \wedge E_{i}\right)+K^{M}\left(X, \varphi E_{i}\right)\right\}=\sum_{i=1}^{k}\left\{K^{P}\left(x \wedge e_{i}\right)+K^{P}\left(x, J e_{i}\right)\right\}
$$

(2) All E_{i} are horizontal, and $X=\xi$ is vertical. It is known that on Sasakian manifolds the two-planes containing ξ have sectional curvature 1. Hence the sum in the definition equals $2 k$.
(3) X is horizontal, and one of the E_{i}-s is vertical. We may suppose $\xi=E_{k}$. Since $\varphi \xi=0$ and, as above, $K^{M}(X \wedge \xi)=1$, using the computation of case 1), we obtain
$\sum_{i=1}^{k}\left\{K^{M}\left(X \wedge E_{i}\right)+K^{M}\left(X \wedge \varphi E_{i}\right)\right\}=\sum_{i=1}^{k-1}\left\{K^{P}\left(x \wedge e_{i}\right)+K^{P}\left(x \wedge J e_{i}\right)\right\}+1$.
In conclusion, in order to obtain examples of Sasakian manifolds with k-positive bisectional curvature it is enough to choose as base space of
the Boothby-Wang fibration a Kähler and Hodge manifold with $(k-1)$ nonnegative bisectional curvature. Kähler manifolds with non-negative k-bisectional curvature are considered and investigated in Section 3 of Kenmotsu and Xia's paper [7]. The above statements are summarized in

THEOREM 2. The above construction yields (shows the existence of) Sasakian manifolds with k-positive bisectional curvature.

4 - Orthonormal and parallel vector fields in a Sasakian manifold

Let $E_{1}(t), J E_{1}(t), \ldots, E_{k}(t), J E_{k}(t)$ be vector fields along a curve $\gamma(t)$ of a Kähler manifold (P, J, g). If they are orthonormal at $\gamma(0)$ and $E_{1}(t), \ldots, E_{k}(t)$ are parallel along $\gamma(t)$, then the whole system is orthonormal at every point of $\gamma(t)$. This is not true for $E_{1}(t), \varphi E_{1}(t), \ldots, E_{k}(t)$, $\varphi E_{k}(t)$ in a Sasakian manifold, because of $\nabla \varphi \neq 0$. However we want to prove the following

Proposition. Let $\gamma(t)$ be a normal geodesic in a Sasakian manifold $M^{2 n+1}$ and N a linear subspace of $T_{\gamma(0)} M$ of dimension $2 \leq \operatorname{dim} N=$ $m \leq n$, such that N is perpendicular to $\dot{\gamma}(0) \equiv T(0)$. Then there exist orthonormal vector systems $e_{1}, \ldots, e_{k} \in N, k=\left[\frac{m}{2}\right]-1$, such that the parallel translated $E_{i}(t) i, j=1,2, \ldots, k$ of $e_{i}=E_{i}(0)$ along $\gamma(t)$, completed with $\varphi E_{i}(t)$ (i.e. $\left.E_{1}(t), \varphi E_{1}(t), \ldots, E_{k}(t), \varphi E_{k}(t)\right)$ form an orthonormal system at any point of $\gamma(t)$.

Proof. Let ν and ρ be the projections of $\varphi T(0)$ respectively $\xi(\gamma(0))$ $\equiv \xi_{0}$ on N. Thus $\varphi T(0)=(\varphi T(0))^{n}+\nu$ and $\xi_{0}=\xi_{0}^{n}+\rho$, where $(\varphi T(0))^{n}$ and ξ_{0}^{n} are the normal components with respect to N. Let now e_{1}, \ldots, e_{k} $k=\left[\frac{m}{2}\right]-1$ be unit vectors in N with the following properties:

$$
\begin{aligned}
& e_{1} \in\left(\{\nu, \rho\}^{\perp} \cap N\right) \equiv \hat{N}_{1} \\
& e_{2} \in\left(\left\{\nu, \rho, e_{1}, \varphi e_{1}\right\}^{\perp} \cap N\right) \equiv \hat{N}_{2} \\
& \ldots \\
& e_{k} \in\left(\left\{\nu, \rho, e_{1}, \varphi e_{1}, \ldots, e_{k-1}, \varphi e_{k-1}\right\}^{\perp} \cap N\right) \equiv \hat{N}_{k} .
\end{aligned}
$$

These $e_{1}, \ldots e_{k}$ exist, since for $i \leq k$

$$
\begin{aligned}
& \operatorname{dim} \hat{N}_{i}=\operatorname{dim}\left(\left\{\nu, \rho, e_{1}, \varphi e_{1}, \ldots, e_{i-1}, \varphi e_{i-1}\right\}^{\perp} \cap N\right) \geq \\
& \geq m-2 i \geq m-2\left(\left[\frac{m}{2}\right]-1\right) \geq m-(m-2)=2,
\end{aligned}
$$

and $e_{1}, \varphi e_{1}, \ldots, e_{k}, \varphi e_{k}$ are orthonormal.
Let us translate $e_{i} i=1,2, \ldots, k$ parallel along $\gamma(t)$. We get $E_{i}(t)$, $E_{i}(0)=e_{i}$. We state that $E_{1}(t), \varphi E_{1}(t), \ldots, E_{k}(t), \varphi E_{k}(t)$ is an orthonormal system at any point of $\gamma(t)$. Indeed:
(i) $\left\langle E_{i}, E_{j}\right\rangle=\left\langle e_{i}, e_{j}\right\rangle=\delta_{i j}$, (ii) For $\left\langle E_{i}, \varphi E_{j}\right\rangle$ we show that its covariant derivative along γ in the direction of $\dot{\gamma}(t) \equiv T(t)$ vanishes, and therefore it is constant. Indeed

$$
\nabla_{T}\left\langle E_{i}, \varphi E_{j}\right\rangle=\left\langle E_{i},\left(\nabla_{T} \varphi\right) E_{j}\right\rangle=\left\langle E_{i},\left\langle T, E_{j}\right\rangle \xi-\eta\left(E_{j}\right) T\right\rangle=0,
$$

by (4) and the parallelism and orthogonality of E_{i} and T. Therefore $\left.\left\langle E_{i}, \varphi E_{j}\right\rangle\right|_{t}=\left\langle e_{i}, \varphi e_{j}\right\rangle=0$. (iii) Using again (4) and the parallelism and orthogonality of E_{i} and T, we obtain $\left\langle\varphi E_{i}, \varphi E_{j}\right\rangle=\left\langle E_{i}, E_{j}\right\rangle-\eta\left(E_{i}\right) \eta\left(E_{j}\right)=$ $\delta_{i j}-\eta\left(E_{i}\right) \eta\left(E_{j}\right)$. Hence the φE_{i} are orthonormal if $\eta\left(E_{i}\right)$ vanish. We know that $\eta\left(E_{i}(t)\right)=\left\langle E_{i}(t), \xi\right\rangle$, and we denote this by $f_{i}(t)$. We show that $f_{i}(t)$ satisfies the differential equation $f_{i}^{\prime \prime}=-f_{i}$ and $f_{i}(0)=f_{i}^{\prime}(0)=$ 0 . Indeed $f_{i}^{\prime}(t)=\nabla_{T}\left\langle E_{i}, \xi\right\rangle=-\left\langle E_{i}, \varphi T\right\rangle$ and $f_{i}^{\prime \prime}(t)=\nabla_{T}^{2}\left\langle E_{i}, \xi\right\rangle=$ $-\left\langle E_{i},\left(\nabla_{T} \varphi\right) T\right\rangle=-\left\langle E_{i},\langle T, T\rangle \xi-\eta(T) T\right\rangle=-\left\langle E_{i}, \xi\right\rangle=-f_{i}(t)$. Furthermore $f_{i}(0)=\left\langle E_{i}, \xi\right\rangle(0)=\left\langle e_{i}, \xi_{0}\right\rangle=\left\langle e_{i}, \xi_{0}^{n}+\rho\right\rangle=0$, and also $-f_{i}^{\prime}(0)=\left\langle E_{i}, \varphi T\right\rangle(0)=\left\langle e_{i}, \varphi T(0)\right\rangle=\left\langle e_{i},(\varphi T(0))^{n}+\nu\right\rangle=0$. However, the solution of our differential equation with the given initial conditions is unique. Now $f_{i}(t)=0$ satisfies this differential equation and the initial conditions. Therefore $f_{i}(t)=\eta\left(E_{i}\right)=0$.

Remarks. (1) If $\nu=0$ or $\rho=0$, then $\operatorname{dim} \hat{V}_{k}>0$ is satisfied even for $k=\left[\frac{m}{2}\right]$. The other parts of the proof of the Proposition remain unaltered. Thus, in this case the statement of the Proposition is true also for $k=\left[\frac{m}{2}\right]$.
(2) If m is odd and $\nu=\rho=0$, then $\operatorname{dim} \hat{V}_{k}>0$ and the Proposition is true even for $k=\left[\frac{m}{2}\right]+1$.

5 - Intersection of submanifolds in a Sasakian space

A submanifold V of a Sasakian space M is called invariant if it is tangent to the structure vector field ξ and, moreover, for any $X \in \mathfrak{X}(V)$ also $\varphi X \in \mathfrak{X}(V)$. We note that an invariant submanifold of M is odd dimensional and minimal (see for example [14] page 313).

THEOREM 3. Let V and W be two complete invariant submanifolds of dimension $2 r+1$, respectively $2 s+1$, tangent to the structure vector field ξ of a complete connected Sasakian manifold $M^{2 n+1}$ and one of them compact. If $M^{2 n+1}$ has k-nonnegative bisectional curvature, k-positive bisectional curvature on V or W and $r+s \geq n+k-1$, then $V \cap W \neq \emptyset$.

This theorem was proved for Kähler spaces P by Kenmotsu and XiA ([7], Theorem 3.2) and for compact regular Sasakian spaces M in case of $k=1$ by Tanno and BaIk ([13], Theorem 4.1). Now we want to prove this without the assumption of the regularity and the compactness of M, and for $k>1$.

Proof. Assume that $V \cap W=\emptyset$. Now we can repeat the first part of the consideration of the Section 2. There exists a pair of points $p \in V$ and $q \in W$ which represent the distance of V and W, and there exists a normal geodesic $\gamma:[0, l] \rightarrow M$ such that $L(\gamma)=d(p, q)=l$ and $T(0)=\dot{\gamma}(0) \perp V$ and $T(l)=\dot{\gamma}(l) \perp W$. Then we can translate $T_{p} V$ parallel along γ to q. Denoting the translated vector space of $T_{p} V$ by $\widehat{T V}_{q}$, we obtain

$$
\begin{aligned}
\operatorname{dim}\left(\widehat{T V}_{q} \cap T_{q} W\right) & =2 r+1+2 s+1-\operatorname{dim}\left(\widehat{T V}_{q}+T_{q} W\right) \geq \\
& \geq 2 r+1+2 s+1-(2 n+1-1)= \\
& =2(r+s-n)+2 \geq 2 k,
\end{aligned}
$$

for $\dot{\gamma}(l) \perp \widehat{T V}_{q} \cap T_{q} W$. But also $\varphi \dot{\gamma}(l) \perp \widehat{T V}_{q} \cap T_{q} W$ is true. Let namely $v_{a} a=1, \ldots, 2 k$ a vector system which spans $\widehat{T V}_{q} \cap T_{q} W$. So $v_{a} \in T_{q} W$ and also $\varphi v_{a} \in T_{q} W$, for W is an invariant submanifold. Then $\left\langle\varphi \dot{\gamma}(l), v_{a}\right\rangle=-\left\langle\dot{\gamma}(l), \varphi v_{a}\right\rangle=0$ showing that $\varphi \dot{\gamma}(l) \perp \widehat{T V}_{q} \cap T_{q} W$.

Now we want to apply our Proposition on $N=\widehat{T V}_{q} \cap T_{q} W$. Then $\dot{\gamma}(l), \varphi \dot{\gamma}(l) \perp N$ and so $\nu=0$. Thus, according to the Proposition and Remark 1, there exists an orthonormal vector system $e_{1}, \ldots, e_{k} \in N$,
$k=\left[\frac{\operatorname{dim} N}{2}\right]$, such that the parallel translated $E_{i}(t)$ of $e_{i}=E_{i}(l)$ along $\gamma(t)$, completed with $\varphi E_{i}(t)$ form an orthonormal system at any point of $\gamma(t)$.

Then we again can construct the variations α_{i} of γ with variational fields $E_{i}(t)$, and with curves $\alpha_{i}(t, s)$ in the variations. These curves run from V to W, for $E_{i}(0) \in T_{p} V$ and $E_{i}(l) \in T_{q} W$. We obtain $L_{E_{i}}^{\prime}(0)=0$, and formula (3) for $X(t)=E_{i}(t)$ yields again

$$
l L_{E_{i}}^{\prime \prime}(0)=\left.\left\langle\nabla_{E_{i}} E_{i}, \dot{\gamma}\right\rangle\right|_{p} ^{q}-\int_{0}^{l} K\left(\dot{\gamma} \wedge E_{i}\right) d t
$$

Since V and W are invariant submanifolds, from $E_{i}(0) \in T_{p} V$ and $E_{i}(l) \in$ $T_{q} W$ follow also $\varphi E_{i}(0) \in T_{p} V$ and $\varphi E_{i}(l) \in T_{q} W$. Thus we can construct variations α_{i} of γ also with variational fields $\varphi E_{i}(t)$, and with curves $\alpha_{i}(t, s)$ in the variations running from V to W. We obtain $L_{\varphi E_{i}}^{\prime}(0)=0$ and from the formula (2) for $X(t)=\varphi E_{i}(t)$:

$$
\begin{align*}
l L_{\varphi E_{i}}^{\prime \prime}(0)= & \left.\left\langle\nabla_{\varphi E_{i}} \varphi E_{i}, \dot{\gamma}\right\rangle\right|_{p} ^{q}+\int_{0}^{l}\left\|\nabla_{\dot{\gamma}}\left(\varphi E_{i}\right)^{\perp}\right\|^{2}+ \tag{5}\\
& -\left\langle R\left(\left(\varphi E_{i}\right)^{\perp}, \dot{\gamma}\right) \dot{\gamma},\left(\varphi E_{i}\right)^{\perp}\right\rangle d t
\end{align*}
$$

We denote the expression on the right-hand side of (5) by A.
Now we calculate the first term of A :

$$
\nabla_{\varphi E_{i}} \varphi E_{i}=\left(\nabla_{\varphi E_{i}} \varphi\right) E_{i}+\varphi\left(\nabla_{\varphi E_{i}} E_{i}\right)
$$

Using (4,a) and the fact that ∇ is torsionfree, we get

$$
\nabla_{\varphi E_{i}} \varphi E_{i}=\left\langle\varphi E_{i}, E_{i}\right\rangle \xi-\eta\left(E_{i}\right) \varphi E_{i}+\varphi\left(\nabla_{E_{i}} \varphi E_{i}+\left[\varphi E_{i}, E_{i}\right]\right)
$$

An easy calculation yields $\left\langle\varphi E_{i}, E_{i}\right\rangle=0$. Namely replacing in (4,e) X by φX and Y by X there results $\left\langle\varphi^{2} X, \varphi X\right\rangle=\langle\varphi X, X\rangle$ with respect to $(4, \mathrm{~b})$. Then, applying $(4, \mathrm{c})$ and $(4, \mathrm{~b})$ we get $-\langle X, \varphi X\rangle=\langle X, \varphi X\rangle$. Thus the first term drops out, and we obtain

$$
=-\eta\left(E_{i}\right) \varphi E_{i}+\varphi\left\{\left(\nabla_{E_{i}} \varphi\right) E_{i}+\varphi \nabla_{E_{i}} E_{i}+\left[\varphi E_{i}, E_{i}\right]\right\}
$$

Finally, use of $(4, a)$ and $(4, c)$ yields

$$
=-\nabla_{E_{i}} E_{i}+\eta\left(\nabla_{E_{i}} E_{i}\right) \xi+\varphi\left\{\left\langle E_{i}, E_{i}\right\rangle \xi-2 \eta\left(E_{i}\right) E_{i}+\left[\varphi E_{i}, E_{i}\right]\right\}
$$

Since $\varphi(\xi)=0$ the third term drops out, and we obtain

$$
\begin{aligned}
\left.\left\langle\nabla_{\varphi E_{i}} \varphi E_{i}, \dot{\gamma}\right\rangle\right|_{p} ^{q}= & -\left.\left\langle\nabla_{E_{i}} E_{i}, \dot{\gamma}\right\rangle\right|_{p} ^{q}+\left.\eta\left(\nabla_{E_{i}} E_{i}\right)\langle\xi, \dot{\gamma}\rangle\right|_{p} ^{q}+ \\
& -\left.2 \eta\left(E_{i}\right)\left\langle\varphi E_{i}, \dot{\gamma}\right\rangle\right|_{p} ^{q}+\left.\left\langle\varphi\left[\varphi E_{i}, E_{i}\right], \dot{\gamma}\right\rangle\right|_{p} ^{q}
\end{aligned}
$$

However, at p and $q E_{i}, \varphi E_{i}$, and hence $\left[\varphi E_{i}, E_{i}\right]$ and $\varphi\left[\varphi E_{i}, E_{i}\right]$ are perpendicular to $\dot{\gamma}$. Moreover, according to our assumption, ξ is tangent to V and W, i.e. $\xi \perp \dot{\gamma}$ at p and q. So the first term only remains alive on the right-hand side:

$$
\begin{equation*}
\left.\left\langle\nabla_{\varphi E_{i}} \varphi E_{i}, \dot{\gamma}\right\rangle\right|_{p} ^{q}=-\left.\left\langle\nabla_{E_{i}} E_{i}, \dot{\gamma}\right\rangle\right|_{p} ^{q} \tag{6}
\end{equation*}
$$

This is the firts term of A.
We show that the second term of A vanishes:

$$
\begin{equation*}
\nabla_{\dot{\gamma}}\left(\varphi E_{i}\right)^{\perp}=0 \tag{7}
\end{equation*}
$$

By the definition of X^{\perp} (see Section 2)

$$
\nabla_{\dot{\gamma}}\left(\varphi E_{i}\right)^{\perp}=\nabla_{\dot{\gamma}}\left(\varphi E_{i}-\left\langle\varphi E_{i}, \dot{\gamma}\right\rangle \dot{\gamma}\right)=\nabla_{\dot{\gamma}}\left(\varphi E_{i}\right)-\left\langle\nabla_{\dot{\gamma}}\left(\varphi E_{i}\right), \dot{\gamma}\right\rangle \dot{\gamma}
$$

for $\nabla_{\dot{\gamma}} \dot{\gamma}=0$. However,

$$
\nabla_{\dot{j}} \varphi E_{i}=\left(\nabla_{\dot{\gamma}} \varphi\right) E_{i}+\varphi \nabla_{\dot{\gamma}} E_{i} .
$$

Here $\nabla_{\dot{\gamma}} E_{i}=0$, and because of $(4, a)$

$$
=\left\langle\dot{\gamma}, E_{i}\right\rangle \xi-\eta\left(E_{i}\right) \dot{\gamma}=-\eta\left(E_{i}\right) \dot{\gamma}
$$

for $\dot{\gamma} \perp E_{i}$. Hence

$$
\begin{aligned}
\nabla_{\dot{\gamma}}\left(\varphi E_{i}\right)^{\perp} & =-\eta\left(E_{i}\right) \dot{\gamma}-\left\langle-\eta\left(E_{i}\right) \dot{\gamma}, \dot{\gamma}\right\rangle \dot{\gamma}= \\
& =-\eta\left(E_{i}\right) \dot{\gamma}+\eta\left(E_{i}\right) \dot{\gamma}=0
\end{aligned}
$$

Finally, using again the relation $\left(\varphi E_{i}\right)^{\perp}=\varphi E_{i}-\left\langle\varphi E_{i}, \dot{\gamma}\right\rangle \dot{\gamma}$, we obtain for the integrand of the last term of A

$$
\begin{equation*}
\left\langle R\left(\left(\varphi E_{i}\right)^{\perp}, \dot{\gamma}\right) \dot{\gamma},\left(\varphi E_{i}\right)^{\perp}\right\rangle=\left\langle R\left(\varphi E_{i}, \dot{\gamma}\right) \dot{\gamma}, \varphi E_{i}\right\rangle \tag{8}
\end{equation*}
$$

Taking into consideration (6), (7), (8) we obtain

$$
l L_{\varphi E_{i}}^{\prime \prime}(0)=-\left.\left\langle\nabla_{E_{i}} E_{i}, \dot{\gamma}\right\rangle\right|_{p} ^{q}-\int_{0}^{l} K\left(\dot{\gamma} \wedge \varphi E_{i}\right) d t
$$

and

$$
\begin{aligned}
l \sum_{i=1}^{k}\left(L_{E_{i}}^{\prime \prime}(0)+L_{\varphi E_{i}}^{\prime \prime}(0)\right) & =-\int_{0}^{l} \sum_{i=1}^{k}\left(K\left(\dot{\gamma} \wedge E_{i}\right)+K\left(\dot{\gamma} \wedge \varphi E_{i}\right)\right) d t= \\
& =-\int_{0}^{l} \sum_{i=1}^{k} H\left(\dot{\gamma} \wedge E_{i}\right) d t
\end{aligned}
$$

However, according to the assumption of our theorem, the k-bisectional curvature $\sum_{i=1}^{k} H\left(\dot{\gamma} \wedge E_{i}\right) \geq 0$ on M and it is positive at p and q. So the right-hand side is negative, while the left is nonnegative, for $L_{E_{i}}^{\prime \prime}(0)$, $L_{\varphi E_{i}}^{\prime \prime}(0) \geq 0$, because γ is a shortest curve between p and q. This contradiction shows that $V \cap W=\emptyset$ cannot hold.

Acknowledgements

This paper was finished while the second author was visiting the University Paris 6 as a post-doctoral researcher. He is extremely thankful to A. Boutet de Monvel and to C. M. Marle for having made this visit possible.

REFERENCES

[1] D. E. Blair: Contact manifolds in Riemannian geometry, Lecture Notes in Mathematics, 509, Springer-Verlag, 1976.
[2] W. M. Boothby - H. C. Wang: On contact manifolds, Ann. of Math., 68 (1958), 721-734.
[3] T. Frankel: Manifolds with positive curvature, Pacific J. Math., 11 (1961), 165171.
[4] A. Gray: Nearly Kaehler manifolds, J. Diff. Geom., 4 (1970), 283-309.
[5] S. I. Goldberg - S. Kobayashi: Holomorphic bisectional curvature, J. Diff. Geom., 1 (1967), 225-233.
[6] Y. Hatakeyama: Some notes on differentiable manifolds with almost contact structures, Tohoku Math. J., 15 (1963), 176-181.
[7] K. Kenmotsu - C. Xia: Hadamard-Frankel type theorems for manifolds with partially positive curvature, Pacific J. Math., 176 (1996), 129-139.
[8] K. Kenmotsu - C. Xia: Intersections of minimal submanifolds in manifolds of partially positive curvature, Kodai Math. J. 18 (1995), 242-249.
[9] S. Marchiafava: Su alcune sottovarietà che ha interesse considerare in una varietà Kaehleriana quaternionale, Rend. Mat. Roma, 10 (1990), 493-529.
[10] B. O'Neill: The fundamental equations of submersions, Mich. Math. J., 13 (1966), 459-468.
[11] L. Ornea: A theorem on nonnegatively curved locally conformal Kaehler manifolds, Rend. Mat. Roma, 2 (1992), 257-262.
[12] T. SakaI: Riemannian Geometry, Amer. Math. Soc., Providence, 1996.
[13] S. Tanno - Y. -B. BaIK: ϕ-holomorphic special bisectional curvature, Tohoku Math. J., 22 (1970), 184-190.
[14] K. Yano - M. Kon: Structures on Manifolds, World Scientific, Series in Pure Math., 3 Singapore, 1984.

Lavoro pervenuto alla redazione il 24 marzo 1998 ed accettato per la pubblicazione il 7 ottobre 1998.

Bozze licenziate il 19 febbraio 1999

INDIRIZZO DEGLI AUTORI:

T. Q. Binh - L. Tam - Institute of Mathematics and Informatics - Lajos Kossuth University - H-4010 Debrecen, P.O.BOX 12 - Hungary

E-mail: binh@math.klte.hu tamassy@math.klte.hu
L. Ornea - Faculty of Mathematies - University of Bucharest - 14 Academiei Str, 70109 Bucureşti - Romainia
E-mail: lornea@geo.math.unibuc.ro

[^1]
[^0]: Key Words and Phrases: Intersection of submanifolds - Sasakian spaces
 A.M.S. Classification: $53 \mathrm{C} 40-53 \mathrm{C} 25-53 \mathrm{C} 20$

[^1]: Research performed in this paper by T. Q. Binh and L. Tamássy was supported by OTKA T-17261 and FKFP 0312/1997.

