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Some tensorfields having some universal properties

O. AMICI – B. CASCIARO – M. FRANCAVIGLIA

Riassunto: Si considerano in dettaglio alcuni operatori tensoriali che si otten-
gono in modo naturale dallo studio della variazione seconda delle Lagrangiane definite
mediante il tensore di curvatura. Di tali operatori si danno alcune utili proprietá.

Abstract: In this paper we consider in detail a number of tensor operators which
arise from calculations concerning the second variation of curvature invariants. A few
properties are listed which are relevant for practical calculations.

– Introduction

In view of possible applications to a number of physically relevant

problems in gravitational theories (such as, e.g., stability, inflationary

models, higher-derivative gravity, quantization and singularity issues) we

have recently considered the general structure of first and second order

variations of curvature quadratic invariants defined on a manifold M

endowed with a pseudo-Riemannian metric g and a linear (torsionless)

connection Γ. See [3] and references quoted therein.

The general setting for calculating second variations was established

in [6], where the notion of generalized Jacobi equation was discussed.

An interesting application to Jacobi fields along geodesics of a Rieman-

nian manifold (M,g) was given in [7], while a general theory of curvature
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structures for variational principles was discussed in [1], which is a con-

tinuation of [6]; a short review may be found in [8]. The general results

found therein were later applied to curvature Lagrangians of the non-

linear type f(R), f(kRic k2) and f(kRiem k2), where R, Ric and Riem

are respectively the scalar curvature, the Ricci tensor and the Riemann

tensor of (M,g,Γ) and the norms are standard (see [2], [3] for details

and [4] for some relevant mathematical tricks which make the variational

calculations involving functions rather than scalar densities easier).

The general formulae which in [2] and [3] define the second variation

and the relevant Jacobi equations for this family of Lagrangians show a

number of common features which are in fact due to the natural symme-

tries of curvature tensors and are in turn expressible by means of a few

natural tensor operators in (M,g,Γ).

The aim of this paper is to establish a number of properties which

encode the aforementioned relations, with the explicit purpose of simpli-

fying all calculations involving these curvature invariants. In particular,

our results will find applications in the general theory of conservation

laws for non-linear gravitational Lagrangians (see [5]).

1 – Notations and the main results

Let M be a C1-differentiable n-dimensional manifold. We shall de-

note by T h
k (M) the bundle of tensors of type (h, k) over M , for any

h, k ≥ 0, with the standard conventions. The space of its sections

Ih
k (M) is the module of tensorfields of type (h, k); we set in particular

X (M) = I1
0 (M), ≠1(M) = I0

1 (M) and F(M) = I0
0 (M) (the Lie algebra

of vectorfields, the space of 1-forms and the ring of differentiable functions

on M , respectively). As usual, symmetrization on two (or more) indices

will be denoted by round brackets and skew-symmetrization by square

brackets. We also denote by trp : Ip+h
p+k (M) → Ih

k (M) (for any triple of

integers p, h, k) the trace map obtained by ordered contraction of the

first p covariant indices with the first p contravariant ones. Analogously,

by tr†
p : Ih+p

k+p (M)→ Ih
k (M) we denote the trace map obtained by ordered

contraction of the last p covariant indices with the last p contravariant

ones. For the sake of simplicity we also set tr1 = tr and tr†
1 = tr†.

Let CS(M) be the bundle whose sections Γ(CS(M)) are symmetric

linear connections. Since CS(M) is an affine bundle, any symmetric linear
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connection Γ̃ determines a morphism hΓ̃ : Γ(CS(M)) → I1
2 (M) defined

by hΓ̃(Γ) = Γ− Γ̃, for each symmetric linear connection Γ. As usual, we

denote by JkCS(M) the bundle of jets of order k over CS(M). Notation

follows [11].

We first define a linear morphism ™ : I0
3 (M)→ I0

3 (M) by setting:

(1.1)
™(t)(X,Y,Z) =

1

2
(−t(X,Y,Z) + t(Y,Z,X) + t(Z,X, Y ))

∀t ∈ I0
3 (M),∀X,Y,Z ∈ X (M) .

In any local chart (U, xµ) we have in components

(1.10) [™(t)]αβ∞ =
1

2
(−tαβ∞ + tβ∞α + t∞αβ),

and we shall use the following notation:

(1.100) [™(t)]αβ∞ ≡ t{αβ∞} ≡
1

2
(−tαβ∞ + tβ∞α + t∞αβ).

There is a “dual morphism” ™∗ : I3
0 (M)→ I3

0 (M) defined by:

(1.2)
™∗(s)(θ,σ, ρ) =

1

2
(−s(θ,σ, ρ) + s(σ, ρ, θ) + s(ρ, θ,σ))

∀s ∈ I3
0 (M),∀θ,σ, ρ ∈ ≠1(M),

with obvious coordinate expressions. Again we set the notation:

(1.20) [™∗(s)]αβ∞ ≡ s{αβ∞}.

Here “duality” means that the following holds:

(1.3) tr3(™(t)⊗ s) = tr3(t⊗™∗(s)) ∀t ∈ I0
3 (M),∀s ∈ I3

0 (M),

i.e.

(1.30) t{αβ∞}s
αβ∞ = tαβ∞s

{αβ∞}.
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We also define the “lower symmetrization operator” φ : Ih
k+2(M) →

Ih
k+2(M) by setting:

(1.4)
tr†

2(φ(t)⊗X ⊗ Y ) =
1

2
[tr†

2(t⊗X ⊗ Y ) + tr†
2(t⊗ Y ⊗X)],

∀t ∈ Ih
k+2(M),∀X,Y ∈ X (M);

in components this amounts in fact to symmetrize with respect to the

last two lower indices.

Let then ∆ ∈ I1
1 (M) be the Kronecker (unit) tensor (i.e., the tensor

having components δµ
∫ in each coordinate system). We define tensorfields

B ∈ I3
3 (M) and F ∈ I4

4 (M) by setting:

(1.5) B = ™∗(∆⊗ φ(∆⊗∆)),

and

(1.6) F = ∆⊗B.

The tensorfields B and F define two linear morphisms, which by an abuse

of notation will be denoted again by B : I0
3 (M) → I0

3 (M) and F :

I2
0 (M)× I3

0 (M)→ I1
2 (M), in the following way:

B(z) = tr†
3(B ⊗ z), ∀z ∈ I0

3 (M),(1.7)

F (m, z) = tr2(m⊗ tr†
3(F ⊗ z)), ∀z ∈ I0

3 (M), ∀m ∈ I2
0 (M).(1.8)

The local components of B and F are respectively given by:

(1.70) Bρµ∫αβ∞ = δ{ρ
α δ

µ
(βδ

∫}
∞) ,

and

(1.80) F ∏ρµ∫σαβ∞ = δ∏σB
ρµ∫
αβ∞.

The operators (1.7) and (1.8) are related to the morphism ™ defined in

(1.1) by:

B(z) = ™(φ(z)), B(z)αβ∞ = z{α(β∞)},(1.9)

F (m, z) = tr2(m⊗B(z)), F (m, z)∏αβ = m∏∞z{∞(αβ)}.(1.10)
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The tensorfield B (and F ) will be respectively called the generator of the

Christoffel symbols of the first kind (respectively of the second kind). In

fact, the following holds:

Proposition 1. Let Γ be any linear connection and ∇ its covariant

derivative. Let g be any pseudo-Riemannian metric on M . Then the Levi-

Civita connection ΓLC(g) of g is related to Γ by ΓLC(g) = Γ + Π, being

Π = F (g∗,∇g); or, in other words, hΓ(ΓLC(g)) = F (g∗,∇g), being g∗ the

contravariant metric dual to g. Moreover B and F are parallel:

(1.11) ∇B = 0 , ∇F = 0.

The above morphisms and tensorfields find useful applications in a

number of investigations concerning curvature invariants of a Riemannian

manifold (M,g). In fact, they have been used in [1] (modulo inessential

cyclic permutations) to calculate the first and second variation of the

scalar curvature r(g), of the squared norm of the Ricci tensor Ric(g)

and of the squared norm of the Riemann tensor Riem(g) of any pseudo-

Riemannian metric g on M . More precisely, following [1] let us set

(1.12)
Bαβ∞ ≡

1

2
(zαβ∞ − zβ∞α + z∞αβ),

Fαβ∞ ≡ mαρBβρ∞,

for each m ∈ I2
0 (M) and z ∈ I0

3 (M). Then we have:

(1.13) [B(z)]αβ∞ = B∞αβ , [F (m, z)]αβ∞ = Fα(β∞).

We shall be mainly interested here in the case in which the tensorfield

z is symmetric with respect to the last two indices; under this further

hypothesis equation (1.13) simplifies to

[F (m, z)]aβ∞ = Fa
β∞.

Define now a linear morphism Q : I0
3 (M)→ I0

3 (M) by setting:

(1.14) Q(t)(X,Y,Z) = t(X,Y,Z) + t(Y,Z,X) + t(Z,X, Y ),
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and let Q(M) = ker(Q). The elements of Q(M) will be called “Ja-

cobi structures”; if t ∈ Q(M), the identity Q(t) = 0 will be called “Ja-

cobi identity”. From [1] we know that the module I0
3 (M) admits the

following direct sum splitting I0
3 (M) = S3(M) ⊕M ≠3(M) ⊕M Q(M),

where S3(M) and ≠3(M) are the bundles of symmetric tensorfields and

of three-forms, respectively. The projectors onto S3(M) and ≠3(M) are

the standard symmetrization and the standard alternation operators, re-

spectively; while the projector Q : I0
3 (M)→ Q(M) is defined by:

(1.15) 3Q = ∆⊗∆⊗∆− 2™.

Finally, a tensorfield H ∈ Ih
k+3(M), with k, h arbitrary, is called a gen-

eralized curvature structure iff there exists a suitable contraction C over

h + k indices such that C(H ⊗ t) ∈ Q(M) for any t ∈ Ih
k (M). In this

case we will call “first Bianchi identity” the corresponding Jacobi iden-

tity. With this definition, we see that the tensorfield B defined by (1.6)

is a generalized curvature structure. This notion extends the discussion

of [12].

Now we consider the tensorfields C ∈ I5
5 (M) and E ∈ I7

7 (M) de-

fined by:

(1.16)
tr†

2(C ⊗X ⊗ Y ) = ∆⊗ {tr[X ⊗ tr†(F ⊗ Y )]+

− tr[Y ⊗ tr†(F ⊗X)]},

and

(1.17)

tr3[Z ⊗ V ⊗W ⊗ tr†
2(E ⊗X ⊗ Y )] =

= ∆⊗
n
tr[V ⊗ tr†(B ⊗X)]⊗ tr2[Z ⊗W ⊗ tr†(B ⊗ Y )]+

− tr[V ⊗ tr†(B ⊗ Y )]⊗ tr2[Z ⊗W ⊗ tr†(B ⊗X)]
o
,

for any X,Y,Z, V,W ∈ X (M). These tensorfields determine two linear

morphisms which, by an abuse of notation, will be again denoted by C

and E. More precisely we define C : I2
0 (M) × I0

4 (M) → I1
3 (M) and

E : (I2
0 (M))2 × (I0

3 (M))2 → I1
3 (M) by setting:

(1.18) C(m,p) ≡ tr2[m⊗ tr†
4(C ⊗ p)],
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and

(1.19) E(m, m̄, z, z̄) ≡ tr4[m⊗ m̄⊗ tr†
6(E ⊗ z ⊗ z̄)],

for each m, m̄ ∈ I2
0 (M), z, z̄ ∈ I0

3 (M) and p ∈ I0
4 (M). Using (1.19), from

the tensorfield E we can define a new tensorfield D ∈ I7
7 (M) by means

of the linear morphism D : (I2
0 (M))2 × (I0

3 (M))2 → I1
3 (M) defined by:

(1.20)

4D(m, m̄, z, z̄) ≡ 4tr4[m⊗ m̄⊗ tr†
6(D ⊗ z ⊗ z̄)] =

= E(m, m̄, z, z̄) + E(m̄,m, z, z̄)+

+ E(m, m̄, z̄, z) + E(m̄,m, z̄, z),

for any m, m̄ ∈ I2
0 (M) and z, z̄ ∈ I0

3 (M). It then follows immediately:

(1.21)

[C(m,p)]∏β∞η = m∏α[p∞{α(βη)} − pη{α(β∞)}],

[E(m,m, z, z)]∏β∞η = mεαm≥∏[z{ε(≥η)}z{α(β∞)} − z{ε(≥∞)}z{α(βη)}],

D(m, z) ≡ D(m,m, z, z) = E(m,m, z, z).

Using the above mappings we finally construct a new map R : I2
0 (M)×

I0
3 (M)× I0

4 (M)→ I1
3 (M) by setting:

(1.22) R(m, z, p) = C(m,p) + D(m, z),

for each m ∈ I2
0 (M), z ∈ I0

3 (M) and p ∈ I0
4 (M). The mapping R so

defined will be called the generator of the Riemannian curvatures (of

pseudo-Riemannian metrics on M). In fact the following holds:

Proposition 2. For any linear connection Γ and any pseudo-

Riemannian metric g on M we have:

(1.23) Riem(g) = Riem(Γ) + R(g∗,∇g,∇∇g),

and

(1.24) ∇C = 0 , ∇D = 0,

The parallel tensorfields C and D are generalized curvature structures.
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This suggests us to define a further mapping:

Riem : Γ(J1CS(M))× I2
0 (M)× I0

3 (M)× I0
4 (M)→ I1

3 (M),

by setting

(1.25) Riem(j1Γ, g∗,∇g,∇∇g) = Riem(Γ) + R(g∗,∇g,∇∇g),

for any Γ ∈ Γ(CS(M)) and any pseudo-Riemannian metric g on M . Then,

the following identity holds:

(1.26) Riem(j1Γ, g∗,∇g,∇∇g) = Riem(g).

An analogous construction holds for the Ricci tensor. In fact, the

tensorfields defined by (1.16), (1.17) and (1.20) determine tensorfields

Ĉ ∈ I4
4 (M), Ê ∈ I6

6 (M) and D̂ ∈ I6
6 (M) by setting:

(1.27)

tr2[m⊗ tr†
4(Ĉ ⊗ p)] =− tr†[C(m,p)],

tr4[m⊗ m̄⊗ tr†
6(Ê ⊗ z ⊗ z̄)] =− tr†[E(m, m̄, z, z̄)],

tr4[m⊗ m̄⊗ tr†
6(D̂ ⊗ z ⊗ z̄)] =− tr†[D(m, m̄, z, z̄)],

for any m, m̄ ∈ I2
0 (M), z, z̄ ∈ I0

3 (M) and p ∈ I0
4 (M). With the standard

abuse of notation these tensorfields define in turn linear operators Ĉ :

I2
0 (M)×I0

4 (M)→ I0
2 (M) and Ê, D̂ : (I2

0 (M))2× (I0
3 (M))2 → I0

2 (M) by:

(1.28)

Ĉ(m,p) ≡tr2[m⊗ tr†
4(Ĉ ⊗ p)],

Ê(m, m̄, z, z̄) ≡tr4[m⊗ m̄⊗ tr†
6(Ê ⊗ z ⊗ z̄)],

D̂(m, m̄, z, z̄) ≡tr4[m⊗ m̄⊗ tr†
6(D̂ ⊗ z ⊗ z̄)].

for each m, m̄ ∈ I2
0 (M), z, z̄ ∈ I0

3 (M) and p ∈ I0
4 (M). It follows immedi-

ately:

(1.29)

[Ĉ(m,p)]β∞ =mηα[pη{α(β∞)} − p∞{α(βη)}],

[Ê(m,m, z, z)]β∞ =mαεm≥η[z{ε(≥∞)}z{α(βη)} − z{ε(≥η)}z{α(β∞)}],

D̂(m, z) ≡D̂(m,m, z, z) = Ê(m,m, z, z).
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Finally, we define a map bR : I2
0 (M) × I0

3 (M) × I0
4 (M) → I0

2 (M) by

setting:

(1.30) bR(m, z, p) = Ĉ(m,p) + D̂(m, z),

for each m ∈ I2
0 (M), z ∈ I0

3 (M) and p ∈ I0
4 (M). The mapping bR will be

called the generator of the Ricci tensors (of pseudo-Riemannian metrics

on M). In fact, the following holds:

Proposition 3. For any linear connection Γ and for any pseudo-

Riemannian metric g on M we have:

(1.31) Ric(g) = Ric(Γ) + R̂(g∗,∇g,∇∇g),

and

(1.32) ∇Ĉ = 0 , ∇D̂ = 0.

As for the Riemannian curvature, we define the new operator

Ric : Γ(J1CS(M))× I2
0 (M)× I0

3 (M)× I0
4 (M)→ I1

3 (M),

by setting

(1.33) Ric(j1Γ, g∗,∇g,∇∇g) = Ric(Γ) + bR(g∗,∇g,∇∇g),

for any Γ ∈ Γ(CS(M)) and any pseudo-Riemannian metric g on M . Then,

the following identity holds:

(1.34) Ric(j1Γ, g∗,∇g,∇∇g) = Ric(g).

Now we consider the first-order deformation R(1) of R, as introduced

in [2], and the Hessian mapping of R, given respectively by:

(1.35) R(1)(x, x̄) = C(m̄, p)+C(m, p̄)+2D(m̄,m, z, z)+2D(m,m, z̄, z),
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and

(1.36)

Hess(R)x(x̄, x̌) = C(m̌, p̄) + C(m̄, p̌) + 2D(m̄, m̌, z, z)+

+ 4D(m̄,m, ž, z) + 4D(m̌,m, z̄, z)+

+ 2D(m,m, ž, z̄),

for each x = (m, z, p), x̄ = (m̄, z̄, p̄) and x̌ = (m̌, ž, p̌) belonging to the

module I0
2 (M)× I0

3 (M)× I0
4 (M).

Let g be any pseudo-Riemannian metric, Γ be any (symmetric) con-

nection on M and q̄ and q̌ be two symmetric twice-covariant tensorfields.

We denote by q̄∗, q̌∗ ∈ I2
0 (M) the tensorfields whose local components are

q̄µ∫ = −gµαg∫β q̄αβ and q̌µ∫ = −gµαg∫β q̌αβ, where q̄αβ and q̌αβ are the local

components of q̄ and q̌, respectively. Finally, we set x = (g∗, ∇̃g, ∇̃∇̃g),

x̄ = (q̄∗, ∇̃q̄, ∇̃∇̃q̄) and x̌ = (q̌∗, ∇̃q̌, ∇̃∇̃q̌). Under these assumptions it is

easy to prove the following statements:

Proposition 4. The following properties hold

(1.37) R(1)(x, x̄)∏β∞µ = 2∇[∞φ̄
∏
µ]β,

and

(1.38) Hess(R)x(x̄, x̌)∏β∞µ = 2φ̌[∞(φ̄
∏
µ]β)− 2g∏ρ[∇[∞(φ̌

ε
µ]β q̄ρε) +∇[∞(φ̄

ε
µ]β q̌ρε)],

where φ̄ = F (g∗, ∇̃q̄), φ̌ = F (g∗, ∇̃q̌) and

(1.39) φ̌∞(φ̄
∏
µβ) = φ̌∏σ∞φ̄

σ
µβ − φ̌σµ∞φ̄∏σβ − φ̌σβ∞φ̄∏µσ.

Proposition 5. Let gs, with s ∈] − a, a[ and a > 0 be a ho-

motopic variation of g and q̄ = δgs be the first variation of gs. Then

φ̄ ≡ F (g∗, ∇̃q̄) = δΓLC(g) is the first variation of the Levi-Civita connec-

tion ΓLC(g) of g and we have δRiem(gε) = R(1)(x, x̄).
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The left hand side of equation (1.37) is well known (see, e.g., [11]), via

Proposition 5. Equation (1.38) has an analogous meaning with respect

to the second variation (see [1]).

The corresponding formulae for the Ricci tensors are given by:

(1.40) bR(1)(x, x̄) = Ĉ(m̄, p)+ Ĉ(m, p̄)+2D̂(m̄,m, z, z)+2D̂(m,m, z̄, z).

and

(1.41)

Hess( bR)x(x̄, x̌) = Ĉ(m̌, p̄) + Ĉ(m̄, p̌) + 2D̂(m̄, m̌, z, z)+

+ 4D̂(m̄,m, ž, z) + 4D̂(m̌,m, z̄, z)+

+ 2D̂(m,m, ž, z̄).

Finally, we have:

Proposition 6. Under the same assumptions as in Propositions 4

and 5 the following hold:

(1.42) bR(1)(x, x̄)βµ = 2∇[∏φ̄
∏
µ]β,

and

(1.43) Hess( bR)x(x̄, x̌)βµ = 2φ̌[∏(φ̄
∏
µ]β)−2g∏ρ[∇[∏(φ̌

ε
µ]β q̄ρε)+∇[∏(φ̄

ε
µ]β q̌ρε)].

Results analogous to those of Proposition 5 can be easily obtained

from Proposition 6.

As a final remark, let us recall that on the domain of any sufficiently

regular chart of M one can consider the linear (local) connection Γ in-

duced by the standard flat connection of IRn. This amounts to set the

connection coefficients to be zero in the given coordinates. With this

(non-covariant) procedure one easily recovers the results corresponding

to the above Propositions in terms of natural coordinates on jet-bundles.
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2 – Conclusions

Let us first remark that, as it is well known, the curvature tensor-

field of a complete Riemannian manifold imposes strong conditions on

the “shape” of the manifold itself. Many of these conditions are related

to the properties of the geodesics of the manifold and hence to the varia-

tional problem defined by the Riemannian metric itself. In [1] we proved

that all first order variational problems (even those generically related

to field theories not involving metric structures or connections) define

in fact, through an appropriate form of the second variation, a suitable

“curvature tensorfield”. This last one verifies suitable generalized Bianchi

identities and has the same relation with the Hessian mapping as the cur-

vature tensorfield of the Riemannian metric has with respect to the clas-

sical “Jacobi equation for geodesic deviation”. In the case of variational

problems generically related to field theories it is more difficult (and per-

haps even impossible) to find a unique definition of “completeness” among

the various “compactness conditions” for the relevant operators involved,

especially in view of the fact that these conditions are generally given

by means of inequalities. In any case, a relation among compactness of

the differential operators ensuing from the variational problem, curvature

of the variational problem and “shape” of the configuration manifold of

the theory seems to be more than reasonable in many cases. Because

of this, we suggest to call non trivial (resp. trivial) the curvature of the

variational problem if such a relation exists (resp., does not exist). The

notion of curvature can be easily extended also to variational problems of

any order. Our construction, together with the results of [1], [2] and [3],

shows that the curvature of the variational problems related to curvature

invariants is trivial, since it is essentially determined by the Kronecker

tensor and since the relevant curvature structures are essentially deter-

mined by tensor products of covariantly constant tensors obtained out of

the (constant) Kronecker tensor ∆.

The concluding remarks above emphasize the fact that the mathe-

matical construction which associates to a pseudo-Riemannian metric its

Levi-Civita connection, the curvature and the Ricci tensor, together with

their variations, has a power which is astonishingly deep and unsuspected.

Interpreting in fact these structures in view of the results of [1], the no-

tion of “generalized curvature” becomes more clear, since the curvature
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of the Levi-Civita connection of any pseudo-Riemannian metric coincides

with the curvature of the variational problem generating the geodesics of

the metric itself. In [1] it was shown that this last curvature can be cal-

culated by using any “background” alternative connection (which might

be useful to introduce for contingent reasons related with the possible

physical applications sought for; see, e.g., [10]).

The tensorfields introduced in this paper produce a strong simplifi-

cation in all calculations concerning variational problems based on La-

grangian functions depending on the curvature invariants (see [2] and

[3]). A further simplification seems to be produced by the use of these

general structures when investigating conservation laws for this family of

Lagrangians. Work in this direction is in progress and we aim to address

it in a future publication ([5]).

REFERENCES

[1] O. Amici – B. Casciaro – M. Francaviglia: Covariant second variation for
first order Lagrangians on fibered manifolds II: generalized curvature and Bianchi
identities, Rend. Mat. Univ. Roma, 16 (1996), 637-669.

[2] O. Amici– B. Casciaro – M. Francaviglia: Second Variation and Generalized
Jacobi Equations for Curvature Invariants, Atti Acc. Peloritana, to appear, 1997.

[3] O. Amici– B. Casciaro – M. Francaviglia: The Second Variation for Non-
Linear Gravitational Lagrangians, Atti Acc. Scienze di Torino (1997) to appear.

[4] O. Amici – B. Casciaro – M. Francaviglia: Relations between Variational
Derivatives of Functions and Scalar Densities, Rend. Circ. Mat. Palermo (1997),
to appear.

[5] O. Amici– B. Casciaro – M. Francaviglia: Conservation Laws for non-Linear
Gravitational Lagrangians, in preparation.

[6] B. Casciaro – M. Francaviglia: Covariant second variation for first order
Lagrangians on fibered manifolds I: generalized Jacobi fields, Rend. Mat. Univ.
Roma, 16 (1996), 233-246.

[7] B. Casciaro – M. Francaviglia: A New Variational Characterization of Jacobi
Fields along Geodesics, Ann. Mat. Pura Appl. (1997), to appear.

[8] B. Casciaro – M. Francaviglia: Generalized Jacobi Equations and the Curva-
ture of Variational Principles, in: Proceedings WCNA-96, Athens, July 1996, to
appear, 1997.

[9] B. Casciaro – M. Francaviglia – V. Tapia: On the Variational Characteri-
zation of Generalized Jacobi Equations,, in: “Differential Geometry and Its Ap-
plications”, Proceedings Brno 1995; J. Janiska et al. eds. (1996), pp. 353-372.



136 O. AMICI – B. CASCIARO – M. FRANCAVIGLIA [14]

[10] M. Ferraris – M. Francaviglia: First order Lagrangians, energy-density and
superpotentials in general relativity, Journ. Gen. Rel. Grav., 22 (1990), 965-985.

[11] M. Francaviglia: Relativistic Theories (the Variational Structure), Lectures at
the 13th Summer School in Math. Phys., Ravello, 1988. Quaderni del CNR, 1990

[12] S. Kobayashi and K. Nomizu: Foundations of Differential Geometry I, II , In-
terscience, New York, 1969

Lavoro pervenuto alla redazione il 28 ottobre 1997
ed accettato per la pubblicazione il 25 novembre 1998.

Bozze licenziate il 22 marzo 1999

INDIRIZZO DEGLI AUTORI:

Oriella Amici – Biagio Casciaro – Dipartimento di Matematica – Università di Bari – Via
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– 10123 Torino, Italy


