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Non trivial solutions of non-linear partial differential

inequations and order cut-off

D. BLANCHARD – D. FOURDRINIER

Riassunto: In questo lavoro otteniamo delle condizioni necessarie sulla dimen-
sione dello spazio affinché una classe di disequazioni variazionali ammetta una solu-
zione non triviale.

Dimostriamo che una soluzione non triviale ∞(∞ : IRN → IRk) di questo tipo di
disequazioni esiste solo se la dimensione N è sufficientemente grande rispetto all’ordine
minimo dell’operatore a derivate parziali considerato. Riconosciamo inoltre che la pro-
prietà di cut-off è individuata dal numero di variabili che compaiono effettivamente
nell’operatore.

Introduciamo infine alcuni modelli provenienti dalla teoria delle decisioni statisti-
che nei quali intervengono le disequazioni ed i fenomeni di tipo cut-off considerati.

Abstract: We derive necessary conditions on the space dimension such that a
class of partial differential inequations admit a non trivial solution.

We show that a nontrivial solution ∞(∞ : IRN → IRk) of this type of inequations
may exist only if the dimension N is sufficiently large with respect to the minimal order
of the partial differential operator which is investigated. Furthermore, we prove that the
cut-off property is actually governed by the number of variables which genuinely occur
in the operator.

We briefly introduce a few motivations in statistical decision theory that lead to
such inequations and dimension cut-off phenomenon.
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1 – Introduction

The goal of this paper is to study nonlinear partial differential in-

equalities of the form

(1) R∞ ≤ 0 in D0(IRN)

where

(2) R∞ =
kX

i=1

X

(α1,··· ,αN )

|α|≤M

ai
α1···αN

@|α|∞i

@xα1
1 · · · @xαN

N

+ k∞kq .

More precisely, we investigate a space dimension phenomenon connected

with the existence of a nontrivial solution to (1) in the space (Lq
loc(IR

N))k.

In (2), N , k and M are non-negative integers, ∞ = (∞1, . . . , ∞k) is a

function from IRN into IRk, (α1, . . . , αN) is a non null multi-index (i.e.

an N -tuple of non-negative integers) such that its length satisfies |α| =

α1 + · · · + αN ≤ M , ai
α1···αN

is a constant (all these constants being not

simultaneously null) and q is a real number such that q > 1.

Let us stress that the structure of the operator R given by (2) is quite

general (in particular R is not assumed to be elliptic). Moreover ∞ may

be a vector field. Such a feature takes its origin in Statistics where a few

statistical problems are connected with partial differential inequalities

involving various operators. Let us just mention two basic examples

and postpone to an appendix (see Section 5) the development of the

underlying statistical motivations and analysis.

The first example is given by k = N and

(3) R∞ = 2div ∞ + k∞k2

where a statistical analysis (see Section 5) suggest that in this case, the

inequation (1) has no nontrivial solution when the space dimension N is

less than or equal to 2.

By contrast, it is easy to check, when N ≥ 3, that ∞(x) = −c
kxk2

leads to R∞(x) < 0 for any x 6= 0 and for any constant c such that

0 < c < 2(N − 2).

The second example is given by k = 1 and

(4) R∞ = 2∆∞ + ∞2 .
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Here the statistical analysis leads to conjecture that the inequation (1) has

no nontrivial solution when the space dimension N is less than or equal

to 4. By contrast, an example of a function ∞ satisfying R∞(x) ≤ 0 is

∞(x) = d
kxk2 for any x 6= 0 anf for a constant d such that 0 < d < 4(N−4)

and N ≥ 5.

Although the structures of R in examples (3) and (4) are strongly

different, the above mentioned results prompt to conjecture that in both

case the inequality (1) exhibits the same dimension cut-off phenomenon:

there exists a critical value Nc of the dimension N such that, for N ≤ Nc,

the only solution ∞ is ∞ ≡ 0 while, for N > Nc, nontrivial solutions exist.

As a consequence of the study of (1) under the general form (2), we

indeed prove that Nc = 2 in case (3) and Nc = 4 in case (4).

Similar results have been obtained independently of the present work,

and under the label “Nonlinear Liouville theorems”, by H. Berestycki,

I. Capuzzo Dolcetta and L. Nirenberg in the case where the prin-

cipal part of R is elliptic (see [1]). In the same framework, a few results

concerning the case where the coefficients of R depend on the space vari-

able x are given by I. Birindelli, I. Capuzzo Dolcetta and A. Cutri

in [3].

The paper is organized as follows. In Section 2, we first derive a

necessary condition on the dimension N (depending on q and on the

lowest order of partial derivation occuring in R) for the inequation (1) to

admit a non trivial solution. Then this result is improved through taking

into account the number P (≤ N) of variables that really appear in the

derivatives in the expression (2). Section 3 yields applications of the

results of Section 2 to the dimension cut-off problems mentioned above.

We give, in Section 4, some concluding remarks. Finally, Section 5 is an

appendix which details the statistical background.

2 – Space dimension and non-trivial solutions to R∞ ≤ 0

This section is devoted to the derivation of necessary conditions so

that the inequation R∞ ≤ 0 may admit non-trivial solutions. Indeed the

setting is intricately linked to the functional space in which a function ∞

satisfying the inequation R∞ ≤ 0 is to Ly. In this paper, we address the

above inequation in the usual space of distributions which is commonly

used as for as partial differential equations or inequations are concerned.
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In this framework, in view of the expression (2) of R, defining the nonlin-

ear term k∞kq as a distribution prompts to seek ∞ in the space (Lq
loc(IR

N))k

in which case the linear part of R is perfectly defined.

In the following, it will be convenient to denote by m the minimum

of the length of the multi-indexes such that |α| ≤M and ai
α1···αN

6= 0 for

any 0 ≤ i ≤ k. In other words, m is the lowest order of partial derivation

occuring in R.

In Theorem 1, a first necessary condition is obtained in terms of N ,

q and m. In Theorem 2, if more information on the coefficients ai
α1···αN

is available, the result of Theorem 1 is improved by replacing the space

dimension N by the number P of variables really appearing in the deriva-

tives of ∞ in (2).

Theorem 1. Assume that N ≤ q
q−1

m . Then the only solution ∞ in

(Lq
loc(IR

N))k of the inequation R∞ ≤ 0 is ∞ = 0. (a.e. with respect to the

Lebesgue measure).

Remark. We assume above that q > 1. Indeed the result of Theo-

rem 1 fails when q = 1 (consider N = 1, k = 1 and R∞ = ∞0 + |∞| = 0).

Proof. The proof is inspired from a technique developed by H.

Brézis in [4] (see also [5] where similar questions are investigated).

Let ∞ be in Lq
loc(IR

N) such that R∞ ≤ 0. The result lies in proving

that ∞ = 0 (a.e.).

Let ϕ be a positive C1(IR+)-function such that ϕ(r) = 1 for r ≤ 1,

ϕ(r) ≤ 1 for any r and suppϕ = [0, 2]. Consider then the sequence of

C1(IRN)-functions ϕn from IRN into [0, 1] defined through

(5) ∀n ≥ 1 ∀x ∈ IRN ϕn(x) = ϕ

µkxk
n

∂
.

Remark that, for any n, the function ϕn has a compact support since

suppϕn = B2n where Bτ denotes the closed ball of radius τ in IRN .

According to R∞ ≤ 0, we have, for every n ∈ IN∗ and every inte-

ger β > 0,

(6)

Z

RN
k∞(x)kq ϕβn(x)dx ≤ −

D kX

i=1

X

(α1,··· ,αN )

|α|≤M

ai
α1···αN

@|α|∞i

@xα1
1 · · · @xαN

N

, ϕβn

E
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where h., .i denotes the duality brackets between the space of distribu-

tions D0(IRN) and the space C1
0 (IRN) of C1(IRN)-functions with com-

pact support. From the very definition of the distribution derivatives of

(Lq
loc(IR

N))k-functions, it follows that

(7)

Z

IRN
k∞(x)kqϕβn(x)dx≤−

X

(α1,··· ,αN )

|α|≤M

D kX

i=1

ai
α1···αN

(−1)|α|∞i,
@|α|ϕβn

@xα1
1 · · ·@xαN

N

E
.

Since the distribution
Pk

i=1 ai
α1···αN

(−1)|α|∞i lies in Lq
loc(IR

N), inequal-

ity (7) yields

(8)

Z

IRN
k∞(x)kqϕβn(x)dx ≤

≤ −
Z

IRN

kX

i=1

≥
∞i(x)

X

(α1,··· ,αN )

|α|≤M

ai
α1···αN

(−1)|α| @|α|ϕβn(x)

@xα1
1 · · · @xαN

N

¥
dx ≤

≤
Z

IRN
k∞(x)k ·

∞∞∞
X

(α1,··· ,αN )

|α|≤M

aα1···αN
(−1)|α| @|α|ϕβn(x)

@xα1
1 · · · @xαN

N

∞∞∞dx

where aα1···αN
denotes the vector of IRk with components ai

α1···αN
.

Now, the properties of the function ϕ and (5) ensure that, for β ≥M,

there exists a constant K > 0, depending on ϕ and β such that

(9)
ØØØ @|α|ϕβn(x)

@xα1
1 · · · @xαN

N

ØØØ ≤ K

nm
ϕβ−M

n (x)

for any multi-index (α1, · · · , αN) such that m ≤ |α| ≤M .

Indeed the inequality (9) has to be established only for n ≤ kxk ≤
2n because supϕ ⊂ [1, 2]. Next a recurrence argument together with

Leibniz’s formula and the estimate

ØØØ @|α|

@α1
x1 · · · @xαN

xN

≥kxk
n

¥ØØØ ≤ C1

1

n|α|

for n ≤ kxk ≤ 2n lead to

ØØØ @|α|ϕβn
@xα1

1 · · · @xαN
N

≥kxk
n

¥ØØØ ≤ C2

n|α| max(ϕβ−1
n (x), ϕβ−2

n (x) · · ·ϕβ−|α|
n (x))
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where the constant C1 depends on N and the constant C2 depends on the

maximum of the successive derivatives of ϕ and on β. Now inequality (9)

is an easy consequence of the above estimate since 0 ≤ ϕn ≤ 1 and

m ≤ |α| ≤M .

Hence (8) and (9) give, for some constant C > 0,

(10)

Z

IRN
k∞(x)kqϕβn(x)dx ≤ C

nm

Z

IRN
k∞(x)kϕβ−M

n (x)dx .

Applying Hölder’s inequality with 1
r

+ 1
q

= 1, β > Mr and ϕβ−M
n =

ϕβ/r−M
n · ϕβ/q

n , inequality (10) gives

(11)

Z

IRN
k∞(x)kqϕβn(x)dx ≤ C

nm

≥ Z

IRN
ϕβ−rM

n (x)dx
¥1/r

×

×
≥ Z

IRN
k∞(x)kqϕβn(x)dx

¥1/q

.

It is easy to see that (11) is equivalent to

(12)

Z

IRN
k∞(x)kqϕβn(x)dx ≤ Cr

nrm

Z

IRN
ϕβ−rM

n (x)dx .

Since 1lBn ≤ ϕn ≤ 1 with suppϕn ⊂ B2n and restricting the integration

of the first integral of (12) over Bn, it follows that

(13)

Z

Bn

k∞(x)kqdx ≤ AnN−rm

for some constant A > 0.

Letting n go to infinity, we deduce from (13) that, if N < rm, the

function ∞ is equal to 0 almost everywhere and that, if N = rm, ∞ ∈
(Lq(IRN))k.

Thus the result of the theorem is proved for N < rm = q
q−1

m. Con-

sider the last case where N = rm. Notice that all the derivatives of the

function ϕ vanishing out of the compact set [1, 2] and ϕ being bounded

by 1, inequality (9) can be refined in

(14)
ØØØ@
α1+···+αNϕβn(x)

@xα1
1 · · · @xαN

N

ØØØ ≤ K

nm
1lCn(x)
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where Cn is the annulus {x ∈ IRN/n ≤ kxk ≤ 2n} and where 1lCn holds

for its characteristic function. Then we deduce from (8) and (14) that,

for some constant C > 0,

(15)

Z

Bn

k∞(x)kqdx ≤ C

nm

Z

Cn

k∞(x)kdx .

By Hölder inequality it follows from (15) that

(16)

Z

Bn

k∞(x)kqdx ≤ C

nm

≥ Z

Cn

dx
¥1/r≥ Z

Cn

k∞(x)kqdx
¥1/q

.

Using, as an upper bound, the measure of B2n for the first integral of the

right hand side of (16), the fact that N = rm gives

(17)

Z

Bn

k∞(x)kqdx ≤ A
≥ Z

Cn

k∞(x)kqdx
¥1/q

for some constant A > 0.

Now we have seen above that ∞ ∈ (Lq(IRN))k. Hence

lim
n→1

Z

Cn

k∞(x)kqdx = 0 .

Thus (17) implies that

0 = lim
n→1

Z

Bn

k∞(x)kqdx =

Z

IRN
k∞(x)kqdx

and, finally, that ∞ = 0 (a.e) which is the desired result.

As already mentioned at the beginning of this section, Theorem 1

is now improved through taking into account the very structure of the

operator R. Loosely speaking, the dimension N in the statement of

Theorem 1 may be replaced by the number P of variables xj with respect

to which partial derivatives really intervene in the operator R. Through a

reordering of the variables x1, · · · , xN , the operator R may be rewritten as

(18) R(∞) =
kX

i=1

X

(α1,··· ,αP )

|α|≤M

ai
α1,··· ,αP

@|α|∞i

@xα1
1 · · · @xαP

P

,
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which means that no derivatives with respect to the (N − P ) variables

xP+1, · · · , xN appear in the expression of R.

Theorem 2. The result of Theorem 1 is still valid when N is

replaced by P .

Proof. The proof of Theorem 2 is very similar to that of Theorem 1

and only the modifications to be made will be detailed.

Denote by X =(x1, · · · , xP )∈IRP and Y =(xP+1, · · · , xN)∈IRN−P .

Consider the sequence of C1
0 (IRP )-functions ϕn from IRP into [0, 1]

defined through

∀n ≥ 1 ∀X ∈ IRP ϕn(X) = ϕ
≥kXk

n

¥

where ϕ is specified at the beginning of the proof of Theorem 1. Let √

be a positive C1
0 (IRN−P )-function such that √ ≤ 1.

Proceeding as when deriving (8), we obtain, for any n ∈ IN∗ and any

integer β > 0,

(19)

Z

IRP ×IRN−P
k∞(X,Y )kqϕβn(X)√(Y )dX dY ≤

≤
Z

IRP ×IRN−P
√(Y )k∞(X,Y )k

∞∞∞
X

(α1,··· ,αP )

|α|≤M

aα1···αN
(−1)|α|×

× @|α|ϕβn
@xα1

1 · · · @xαP
P

(X)
∞∞∞dX dY .

In view of (9), since √ has a compact support, we deduce from (19) that

Z

IRP ×supp√

k∞(X,Y )kqϕβn(X)√(Y )dX dY ≤

≤ C

nm

Z

IRP ×supp√

k∞(X,Y )kϕβ−M
n (X)√(Y )dX dY

for some constant C > 0.
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Hölder’s inequality gives here

Z

IRP ×supp√

k∞(X,Y )kqϕβn(X)√(Y )dX dY ≤

≤ C

nm

≥ Z

IRP ×supp√

k∞(X,Y )kqϕβn(X)√(Y )qdX dY
¥1/q

×

×
≥ Z

IRP ×supp√

ϕβ−rM
n (X)dX dY )

¥1/r

.

Since √q ≤ √, it follows that

(20)

Z

IRP ×supp√

k∞(X,Y )kqϕβn(X)√(Y )dX dY ≤ AnP−mr meas(supp√)

for some constant A>0.

If P < rm, letting n go to infinity leads to ∞ ·√ = 0 almost every-

where on IRN , for any function √ with compact support. It follows that

∞ = 0 (a.e.).

In the case where P = rm, we first remark that inequality (20) does

not imply that ∞ ∈ (Lq(IRN))k, but k∞kq√ ∈ L1(IRN), for any function √

defined such as above.

In view of (14) with X in place of x and the annulus Cn being now

in IRP , inequality (19) yields

Z

Bn×supp√

k∞(X,Y )kq√(Y )dX dY ≤ C

nm

Z

Cn×supp√

k∞(X,Y )k√(Y )dX dY

(the ball Bn being now in IRP ).

Then Hölder’s inequality gives, using P = rm and √q ≤ √,

(21)

Z

Bn×supp√

k∞(X,Y )kq√(Y )dX dY ≤

≤ K[meas(supp√)]1/r
≥ Z

Cn×supp√

k∞(X,Y )kq√(Y )dX dY
¥1/q

where K is a positive constant. Since k∞kq√ ∈ L1(IRN), the right hand

side of (21) goes to 0 as n goes to infinity, from which we deduce that, as

previously, ∞ = 0 (a.e.).
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3 – Application to dimension cut-off problems

As far as the dimension cut-off problem introduced in Section 1 is

concerned, let us first consider the cases of the two inequalities in IRN

(22) A div∞ + k∞kq ≤ 0

and

(23) B ∆∞ + |∞|q ≤ 0 .

In (22) and (23), A and B are two non zero real numbers. Indeed (22)

(respectively (23)) recovers (3) (respectively (4)). Since the parameter

m associated to (22) (respectively to (23)) is equal to 1 (respectively 2)

whatever the dimension N, Theorem 1 shows that the critical value Nc of

the dimension N is such that Nc ≥ [ q
q−1

] for (22) and Nc ≥ [ 2q
q−1

] for (23)

(where we denote by [y] the integer part of any real number y).

Now easy calculations show that the vector field ∞(x) = −cx

kxk
q

q−1
sat-

isfies (22) for N > q
q−1

and 0 < c ≤ {A(N − q
q−1

)} 1
q−1 (respectively

−{−A(N − q
q−1

)} 1
q−1 ≤ c < 0) if A > 0 (respectively A < 0).

It is worth noting that the bound on the dimension N > q
q−1

coincides

with the required condition so that ∞ belongs to (Lq
loc(IR

N))N .

Similar calculations yield that the real valued function ∞(x) = c

kxk
2

q−1

lies in Lq
loc(IR

N) and satisfies (23) for N > 2q
q−1

and 0 < c ≤ { 2B
q−1

(N −
2q

q−1
)} 1

q−1 (respectively −{−2B
q−1

(N − 2q
q−1

)} 1
q−1 ≤ c < 0) if B > 0 (respec-

tively B < 0).

It follows from the above considerations that Nc = [ q
q−1

] for (22) and

that Nc = [ 2q
q−1

] for (23). In the specific case q = 2, we obtain Nc = 2

for (3) and Nc = 4 for (4).

Remark that in both cases (22) and (23) the quantity q
q−1

is inde-

pendent on the dimension N . Theorems 1 and 2 provide a lower bound

for the initial value Nc of the dimension cut-off problem as soon as the

sequence of operators R leads to such an N -independence.

In this setting and to illustrate how the use Theorem 2, consider the

sequence R∞ = 2
PN−1

i=1
@2∞

@x2
i
+|∞|q for ∞ ∈ Lq

loc(IR
N). Clearly P = N−1 and

m = 2, so that Theorem 2 leads to Nc ≥ [ 2q
q−1

]+1 (remark that Theorem 1
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would give Nc ≥ [ 2q
q−1

]). Actually for this example we have Nc = [ 2q
q−1

]+1.

Indeed, it is easy to check that the real valued function ∞(x) = c

kxk
2

q−1

satisfies R ∞ ≤ 0 for P > 2q
q−1

and 0 < c ≤ { 4
q−1

(P − 2q
q−1

)} 1
q−1 .

4 – Concluding remarks

The method presented in this paper quite fits to a general partial

differential operator with constant coefficients, but it does not seem to

work for space dependent (even smooth) coefficients unless they satisfy

some very strong assumptions. As an example, case (26), considered in

Section 5, cannot be investigated by the method used in Theorem 1 and

Theorem 2.

5 – Appendix

The issue we are dealing with in this article has its origin in Statistics,

more specifically in Statistical Decision Theory, the feature of this sta-

tistical problem being connected with differential inequalities. Our goal,

in this section, is to briefly introduce the underlying statistical frame-

work and to indicate how differential inequations are crucial in solving

the statistical problem under consideration.

In Subsection 5.1, we first investigate the classical problem of esti-

mating an unknown parameter. Subsection 5.2 sheds light on another

statistical problem namely estimating a loss.

5.1 – Point estimation

Assume we observe a random quantity x in a space X coming from

a probability distribution Pθ where θ is an unknown parameter which

belongs to a set Θ, called the parameter space (X is called the sample

space). We wish to estimate θ, that is, to give a value ϕ(x) which as-

sesses θ. Formally, any estimation of θ is given through a measurable

application ϕ from X into Θ; ϕ is called an estimator of θ.

A criterion for the choice of an estimator ϕ lies in the consideration

of a loss function L which is an application from Θ × Θ into IR+; the

quantity L(θ, ϕ(x)) represents the loss incurred by the estimation ϕ(x)
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when the “true value” of the parameter is θ. The frequentist approach

to Statistics suggests that the performance of any estimator ϕ should be

evaluated, not only on the basis of the current observation x, but on all

the possible values of x, that is X. Precisely, the mean of the loss with

respect to Pθ is considered, that is the risk of ϕ at θ:

R(ϕ, θ) =

Z

X

L(θ, ϕ(x))Pθ(dx) .

It will be convenient in the following to denote by Eθ[f ] the integral

of f with respect to Pθ; thus the risk of ϕ at θ will be written as R(ϕ, θ) =

Eθ[L(θ, ϕ)].

When a particular estimator ϕ0 is having good properties (with re-

spect to its risk or other criterions) and is considered as “standard”, the

question arises whether there exists another estimator ϕ which improves

upon ϕ0, that is, such that the risk difference

(24) R(ϕ, θ)−R(ϕ0, θ) = Eθ[L(θ, ϕ)− L(θ, ϕ0)]

is nonpositive for any θ ∈ Θ and negative for some θ ∈ Θ. A difficulty

with solving this question is that, in the integral of the right hand side

of (24), the integrand term depends on θ. However, in many cases of

interest (such as Pθ is Gaussian or belongs to the exponential family),

the development of powerful tools of analysis (see C. Stein [11], H.M.

Hudson [8]), leads to a representation of the risk difference as the mean

value of an expression R∞ involving the difference ∞ = ϕ − ϕ0 and its

derivatives but not the parameter θ. In other words, equation (24) can

be written as

(25) R(ϕ, θ)−R(ϕ0, θ) = Eθ[R∞] .

Thus a sufficient condition for improving on ϕ0 is to find a solution ∞

to the differential inequation R∞ < 0.

As a first basic example we will show below that, when Pθ is Gaus-

sian and L is quadratic, the risk difference in (24) corresponds to the

partial differential operator R∞ given by (3) in Section 1; that is, R∞ =

2div ∞ + k∞k2.



[13] Non trivial solutions of non-linear partial differential etc. 149

An interesting phenomenon is that it can be proved that, for the

corresponding statistical problem, there is no estimator ϕ such that, for

any θ ∈ Θ, R(ϕ, θ)−R(ϕ0, θ) ≤ 0 (with strict inequality for some θ) when

the dimension N is 1 or 2 (see C. Stein [10] for the pionnered proof).

Consequently, according to (25), we cannot have R∞(x) ≤ 0 with strict

inequality on some x-set of positive Pθ-measure. However we have already

seen in Section 1 that, when N ≥ 3, ∞(x) = c
kxk2 leads to R∞(x) < 0 for

any x 6= 0 and for any constant c such that 0 < c < 2(N − 2), and hence

R(ϕ, θ)−R(ϕ0, θ) < 0 for any θ.

We now develop the specific statistical context giving rise to a risk

difference such as (25) with a differential operator of the form (3). Assume

that Pθ is absolutely continuous with respect to the Lebesgue measure

with density x → 1

(2π)N/2 exp (−1
2
kx− θk2) and that the loss function L

is quadratic, that is L(ϕ, θ) = kϕ− θk2.
The simplest candidate ϕ0 to be a standard estimator is ϕ0(x) = x

whose risk is easily derived to give

R(ϕ0, θ) = N .

One is then led to compute the quantity appearing in (24)

R(ϕ, θ)−R(ϕ0, θ) =
1

(2π)N/2

Z

IRN

©kϕ(x)− θk2 − kx− θk2™ e−kx−θk2/2dx ,

for any competing estimator ϕ. In the following, we show that the right

hand side of the above equality can be derived through ∞ = ϕ − ϕ0 and

its divergence. Of course we only consider estimator ϕ with finite risk

and a straightforward application of Schwarz’s inequality shows that this

is the case if and only if Eθ[k∞k2] < +1.

Then the risk difference between ϕ and ϕ0 can be written as

R(ϕ, θ)−R(ϕ0, θ) = Eθ[k∞k2] + 2Eθ[(ϕ0 − θ) · ∞] .

Next

Eθ[(ϕ0 − θ) · ∞] =
1

(2π)N/2

Z

IRN
(x− θ) · ∞(x)e−kx−θk2/2dx =

=
1

(2π)N/2

Z +1

0

e−R2/2

Z

SR,θ

(x− θ) · ∞(x)dσR,θ(x)dR
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where σR,θ is the area measure on the sphere SR,θ={x∈IRN ; kx−θk=R}.
Then Stokes’ formula leads to

Eθ[(ϕ0 − θ) · ∞] =
1

(2π)N/2

Z +1

0

Re−R2/2

Z

BR,θ

div ∞(x)dx dR

where BR,θ = {x ∈ IRN ; kx− θk ≤ R}.
It easily follows that

Eθ[(ϕ0 − θ) · ∞] =
1

(2π)N/2

Z

IRN
div ∞(x)

Z +1

kx−θk
Re−R2/2dR dx =

=
1

(2π)N/2

Z

IRN
div ∞(x)e−kx−θk2/2dx =

= Eθ[ div ∞] .

Finally, we obtain

R(ϕ, θ)−R(ϕ0, θ) = Eθ[R∞] ,

with R∞ = 2 div ∞ + k∞k2, which is the stated result.

The above example is not the only one where differential inequalities

occur. J.O. Berger [2] yields different differential inequalities corre-

sponding to a few distributions and estimated parameters under con-

sideration. He mentions that solving these inequations seems difficult.

However he shows that, in many cases, only a few terms of the differen-

tial expressions are important, in the sense that they determine the basic

nature of the solution. These terms are of the form

(26) R∞(x) =
NX

i=1

aix
1−m
i

@∞i(x)

@xi

+
NX

i=1

bix
−m
i ∞2

i (x) .

where m denotes some integer in the range [−2, 1] and ai and bi(1≤ i≤N)

are constant.

Then J.O. Berger [2] establishes a few sufficient conditions under

which a function ∞ satisfies R∞(x) < 0. An interesting fact is that these

conditions require that the dimension N is sufficiently large.
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L.D. Brown [6] studies thoroughly a general class of differential

inequalities and their relationship with the admissibility of corresponding

estimators. These inequalities are of the form

(27) 2
NX

i=1

ai∞i(x) +
NX

i=1

NX

j=1

aij

@∞i

@xj

(x) + ∞t(x)B∞(x) ≤ 0

where ∞t(x) denotes the transpose of ∞(x), B = (bij) is a symmetric

positive definitive matrix valued function, A = (aij) is a non-singular

matrix valued function and ai, aij, bij are everywhere continuously dif-

ferentiable functions. Notice that, as far as the dimension cut-off is con-

cerned, case (27) (even for constant coefficients) seems, when ai 6= 0, to

behave as the case q = 1 of (2) (see the remark after Theorem 1). Actu-

ally consider the simplest version of (27), that is 2a ·∞+2div∞+k∞k2 ≤ 0,

which by translation reduces to 2 div Γ + kΓk2 ≤ kak2. Indeed, for this

last inequality no dimension cut-off may be expected (consider the case

N = 1).

5.2 – Loss estimation

Another statistical context giving rise to differential inequalities is the

estimation of a loss. Keeping the notations introduced at the beginning of

this section, an estimator ϕ of the unknown parameter θ being choosen,

one would like to calculate the incurred loss L(θ, ϕ(x)). The reason of

this concern is that the risk of ϕ at θ is a mean of the loss taken on

all possible observations, when the only interesting thing at hand is the

observation x itself. However L(θ, ϕ(x)) is not available since it depends

on the unknown parameter θ. Hence it is of interest to estimate the loss

of ϕ(x) with a measurable function ∏ from X into IR+.

Of course there remains to assess the performance of ∏ itself. A simple

way is to consider the quadratic error incurred by the loss estimation ∏(x)

when the loss equals L(θ, ϕ(x)), that is, (∏(x) − L(θ, ϕ(x)))2. Then the

mean of this error is calculated with respect to the distribution Pθ ; this

is a new notion of risk:

R(∏, θ) = Eθ
£
(∏− L(θ, ϕ))2

§
.

It is clear that the same notions developed for a point estimator have

their analog for a loss estimator.
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A framework in which loss estimation leads to the consideration of

differential inequality is the following (cf. I. Johnstone [9]). Assume we

are in the context of the example developed in Subsection 5.1, that is, Pθ
is the normal distribution on IRN with density x→ 1

(2π)N/2 exp− 1
2
kx−θk2

and unknown mean θ ∈ IRN . The considered estimator of θ is the identity

function ϕ0, that is ϕ0(x) = x, and the loss used to evaluate ϕ0 is the

quadratic loss L(θ, ϕ0(x)) = kϕ0(x)− θk2.
A possible criterion for the choice of a loss estimator ∏ is to require

that ∏ is unbiased i.e.

∀ θ ∈ IRN Eθ[∏] = Eθ[kϕ− θk2] .

It is easy to check that the constant estimator ∏0 = N is unbiased and

that its risk is constant (with respect to θ) and equals 2N.

Now the question of the existence of competing estimators arises.

Note that every estimator ∏ can be written under the form ∏ = ∏0 −
∞ = N − ∞ where ∞ is a measurable function from IRN into IR. Then

I. Johnstone [9] proves that, under some analytic properties for ∞ (twice

weak differentiability and integrability for ∞2 and for the different weak

derivatives of ∞), the risk difference between ∏ and ∏0 equals

(28) R(∏, θ)−R(∏0, θ) = Eθ
£
2∆∞ + ∞2

§

for any θ in IR (here ∆∞ denotes the Laplacian of ∞). Such a result ex-

presses the risk difference in (28) through the partial differential operator

R∞ given by (4) in Section 1 (i.e. R∞ = 2∆∞+∞2) and it can be obtained

through a repeated application of Stokes’ formula as in Subsection 5.1.

Thus there will exist an estimator which improves on ∏0 if there

exists a function ∞ such that the differential inequality 2∆∞ + ∞2 ≤ 0

holds true with strict inequality on a set of positive measure (with respect

to the Lebesgue measure). Again it is interesting to note that such an

improvement cannot occur when the dimension N is less than or equal

to 4 (see I. Johnstone [9]). Nevertheless we know from Section 1 that,

when N ≥ 5, ∞(x) = d
kxk2 leads to R∞(x) < 0 for any x 6= 0 and for any

constant d such that 0 < d < 4(N − 4), and hence R(∏, θ)−R(∏0, θ) < 0

for any θ.

As a last example which also leads to partial differential inequalities

involving the Laplacian, D. Fourdrinier and M.T. Wells [7] show
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that, for a more general class of distributions (i.e. a class of distributions

invariant by orthogonal transformations translated by θ such that θ be-

longs to a proper linear subspace Θ of dimension k < N), the differential

inequality

(29)
2

(N − k + 4)(N − k + 6)
∆∞ + ∞2 ≤ 0

is a sufficient condition for improving on an unbiased estimator of the

loss of the least square estimator (i.e. the orthogonal projector from IRN

onto Θ).
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[5] H. Brézis: Semilinear equations in IRN without condition at infinity, Applied
Mathematics and Optimization, 12 (1984), 271-282.

[6] L.D. Brown: The differential inequality of a statistical estimation problem, in:
Statistical Decision Theory and Related Topics, IV, vol. 1, (S.S. Gupta and J.O.
Berger, eds.) (1988), 299-324.

[7] D. Fourdrinier – M.T. Wells: Estimation of a loss function for spherically
symmetric distributions in the general linear model , The Annals of Statistics, 23,
2 (1995), 571-592.

[8] H.M. Hudson: A natural identity for exponential families with applications in
multiparameter estimation, The Annals of Statistics, 6 (1978), 473-484.

[9] I. Johnstone: On inadmissibility of some unbiased estimates of loss, in: Statisti-
cal Decision Theory and Related Topics, IV, vol. 1 (S.S. Gupta and J.O. Berger,
eds.) (1988), 361-379.



154 D. BLANCHARD – D. FOURDRINIER [18]

[10] C. Stein: Inadmissibility of the usual estimator for the mean of a multivariate
normal distribution, Proc. Third Berkeley Symp. Math. Statist. Probability, 1
(1956), 197-206.

[11] C. Stein: Estimation of the mean of a multivariate distribution, Proc. Prague
Symp. Asymptotic Statist. (1973), 345-381.

Lavoro pervenuto alla redazione il 3 dicembre 1997
ed accettato per la pubblicazione il 25 novembre 1998.

Bozze licenziate il 6 aprile 1999

INDIRIZZO DEGLI AUTORI:
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