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A regularity theorem for ω-minimizers of

integral functionals

L. ESPOSITO – G. MINGIONE

Riassunto: Si prova la locale Hölderianità degli ω-minimi del funzionale integraleR
≠

f(x, u, Du) dove la funzione di Carathèodory f soddisfa la seguente condizione di
crescita

| Du |p −b(x) | u |∞ −a(x) ≤ f(x, u, Du) ≤ L (| Du |p +b(x) | u |∞ +a(x)) ,

con L ≥ 1, 1 < p ≤ ∞ < p∗ e dove a(x), b(x) sono funzioni non negative aventi
opportune sommabilità.

Abstract: We prove local Hölder continuity of the ω-minimizers of the integral
functional

R
≠

f(x, u, Du), where the Carathèodory function f , satisfies the following
growth condition

| Du |p −b(x) | u |∞ −a(x) ≤ f(x, u, Du) ≤ L (| Du |p +b(x) | u |∞ +a(x)) ,

where L ≥ 1, 1 < p ≤ ∞ < p∗ and a(x), b(x) are two non negative functions that lie in
suitable Lp spaces.

– Introduction

Let us consider an integral functional of the type

(1) F (u,≠) =

Z

≠

f(x, u,Du) dx,

where u ∈W 1,p(≠), 1 < p < n, and f is Carathéodory integrand satisfy-
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ing the growth assumption

(2) |ξ|p − b(x) |u|∞ − a(x) ≤ f(x, u, ξ) ≤ L(|ξ|p + b(x) |u|∞ + a(x)),

where a(x), b(x) are two nonnegative functions, a(x) ∈ Ls(≠), 1
s

= p
n
−

≤, b(x) ∈ Lσ(≠), 1
σ

= 1 − ∞
p∗ − ≤, ≤ > 0 and p ≤ ∞ < p∗ = np

n−p
. We recall

that u is an ω-minimizer of functional (1) if for any ball BR(x0) ⊂⊂ ≠,

and for any C1 function ϕ with compact support in BR(x0)

F (u,BR(x0)) ≤ [1 + ω(R)]F (u + ϕ, BR(x0))

where ω(R) is a continuous nondecreasing function such that ω(0) = 0.

The notion of ω-minimizer was considered for the first time few years

ago in a paper by G. Anzellotti (see [2]) and its introduction was mo-

tivated by the fact that several typical problems in calculus of variations

lead to an inequality of the type above. For instance, if u ∈ W 1,2
0 (≠) is

the solution of the obstacle problem

Min

ΩZ

≠

| Dv |2 dx : v ∈W 1,2
0 (≠), v ≥ √ a.e. in ≠

æ

where √ ∈W 1,2
0 (≠), then u is an ω-minimizer of the functional

Z

≠

(| Du |2 +∏2) dx

for a suitable ∏. Another nontrivial example of ω-minimizer is given by

the solution of the volume-constrained problem (see [2])

Min

ΩZ

≠

| Dv |2 dx : v ∈W 1,2
0 (≠) ;

Z

≠

v dx = const

æ
.

Anzellotti proved that ω-minimizers of the functional

Z

≠

(|Du|2 + ∏2) dx

are C1,α in ≠. More generally (see Chapter 8, [9]) for a general functional

of the type (1), under the usual regularity assumptions on the integrand
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f, one can prove that ω-minimizers are C1,α provided they are locally

Hölder continuous. This result naturally leads to the question whether

ω-minimizers are Hölder continuous or not. A first result in this direction

has been given in a recent paper (see [3]), where f is assumed to satisfy

the stronger growth assumption

| ξ |p≤ f(x, u, ξ) ≤ L(| ξ |p + | u |p +1)

In this paper we prove Hölder continuity of ω-minimizers, for an in-

tegrand satisfying the fairly general conditions (2). The notion of ω-

minimizer is clearly related to the notion of Quasi-minimizer introduced

by Giaquinta and Giusti in [7] . However the problem of showing that

ω-minimizers are also Quasi-minimizers is still open. If it where so Hölder

continuity of ω-minimizers would follow from the results proved in [7] .

It is also interesting to remark that a notion similar to the one of ω-

minimizer has been previously given by Almgren in the context of geo-

metric measure theory (see [1]).

To prove that ω-minimizers are Hölder continuous we follow a tech-

nique used in [3] and [5]. As in the papers quoted above we use a well

known variational principle due to Ekeland (see Theorem 5). As far as we

know the use of Ekeland principle to get not only existence but also some

information about the regularity of minimizers goes back to a paper by

Marcellini and Sbordone (see [12]). Here the idea is to compare the

ω-minimizer u with the minimizer v in the Dirichlet class u+W 1,p
0 (BR(x0))

of the functional

w −→ F (w,BR(x0)) + CR

Z

BR(x0)

|Dw −Du| dx,

where CR is a suitable constant depending on u and R.

The minimizer v turns out to be a Q-minimizer of the functional

w −→
Z

BR(x0)

|Dw|p + b(x) |w|∞ + a(x) + C 0
R,

where C 0
R depend on CR , hence it is Hölder continuous and we show that

Z

Bρ(x0)

°|Dv|p + ρ−µ |v|∞¢ dx
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decays as ρn−p+αp for some α > 0, µ > 0 not depending on R. From

this estimate we are able to prove a similar, but more complicated, decay

estimate for the ω-minimizer u (see (20) below). And from this, using a

nonstandard version of the usual iteration argument, we finally conclude

that u is locally Hölder continuous.

– Preliminary results

From now on ≠ will denote any open subset of Rn while BR(x0), x0 ∈
≠ and R <dist(x0, @≠), will denote the open ball with radius R and center

at x0, {x ∈ ≠ : |x− x0| < R}. If u is integrable in BR(x0) we set:

(u)x0,R
=

1

ωnRn

Z

BR(x0)

u dx =

Z

BR(x0)

u dx.

Where no confusion may arise we shall simply write uR in place of (u)x0,R

and BR in place of BR(x0) while c will denote a (possibly) varying con-

stant and only the meaningful dependeces will be specified. We shall deal

with variational integrals of the type:

(3) F (u,≠) =

Z

≠

f(x, u,Du) dx,

where u ∈W 1,p(≠), 1 < p < n,

f : ≠×R×Rn −→ R

is a Carathéodory integrand satisfying the following growth conditions:

(4) |ξ|p − b(x) |u|∞ − a(x) ≤ f(x, u, ξ) ≤ L(|ξ|p + b(x) |u|∞ + a(x)),

1 < p ≤ ∞ < p∗ =
np

n− p

and a(x), b(x) are two nonnegative functions such that:

a ∈ Ls(≠), b ∈ Lσ(≠),
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where for some ≤ > 0

(5)
1

s
=

p

n
− ≤, 1

σ
= 1− ∞

p∗ − ≤.

and L > 1.

We now recall the definitions of Q-minimizer and ω-minimizer:

Definition 1. A function u ∈ W 1,p(≠) is a Q-minimizer of func-

tional F, with Q ≥ 1 if and only if

F (u, suppϕ) ≤ QF (u + ϕ, suppϕ)

for any ϕ ∈W 1,p
0 (≠).

Definition 2. A function u ∈ W 1,p(≠) is an ω-minimizer of func-

tional F if and only if

F (u,BR) ≤ [1 + ω(R)]F (u + ϕ, BR)

for any BR ⊂⊂ ≠ and ϕ ∈ W 1,p
0 (BR), where ω : [0,+1[→ [0,+1[ is a

continuous non decreasing function such that ω(0) = 0.

Definition 3. A function u ∈ W 1,p(≠) is a spherical Q-minimizer

of functional F if and only if:

F (u,BR) ≤ QF (u + ϕ, BR)

for any BR ⊂⊂ ≠ and ϕ ∈W 1,p
0 (BR) with Q ≥ 1.

The definitions above show that the concepts of Q-minimizer, ω-

minimizer and spherical Q-minimizer are closely related and generalize,

in different directions, the notion of classical minimizer. Under growth

assumptions stated in (4) Q-minimizers of functional F turn out to be

locally Hölder continuous (see [9], chapter 7, or [7], for a proof). So, the

same question (partially answered in [3], under less general growth as-

sumptions) naturally arises for ω-minimizers, the spherical Q-minimizers

being known to be, in general, unbounded, even in the case of the Dirich-

let functional (see [7]). The proof of the local Hölder continuity of Q-

minimizers, due to Giaquinta-Giusti, is achieved through a fairly natu-

ral application of the classical De Giorgi’s iteration technique (usually
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emploied in the theory of elliptic and parabolic PDE’s) directly to the

functional and rests on the use of the growth conditions and on a proper

choice of the test function ϕ, in order to get suitable energy estimates.

This is made possible by the fact that in the definition of Q-minimizer

the support of the test function ϕ is directly involved. In the case of

ω-minimzers, instead, this is not true anymore, so such a direct proof

cannot be given and a local approximation argument through the Eke-

land’s variational principle, as considered here and in [3], must be used.

The following lemma, whose proof can be found, for example, in

[7], Lemma 6.1, is a technical result that will be used in the proof of

Theorem 1.

Lemma 1. Let Z(t) : [ρ, R] −→ [0,+1] be a bounded function and

suppose that with ρ ≤ t < s ≤ R such that:

Z(t) ≤ θZ(s) +
A

(s− t)
α + B

where A,B,α are positive constants and 0 ≤ θ < 1, then it follows:

Z(t) ≤ c
A

(R− ρ)α + B

where c is a positive constant depending on α and θ

Next result is a convenient version of the theorem concerning the

higher integrability for the gradients of spherical Q-minimizers (see also

[7], Theorem 3.1):

Theorem 1. Let u ∈ W 1,p(≠) be a spherical Q-minimizer of func-

tional (3). Then there exist r > 1, R0 > 0 and c depending on

n, ∞, p,Q,L, kbkσ , kukp∗ , kDukp, such that, for any R ≤ R0,

(6)

Z

B R
2

|Du|pr
dx ≤ c






Z

BR

|Du|p dx




r

+

Z

BR

(a(x) + b(x) |u|∞)r
dx
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Proof. Let us consider BR ⊂⊂ ≠, R
2

< t < s < R and choose

η ∈ C1
0 (Bs) with 0 ≤ η ≤ 1, η = 1 on Bt and | Dη |< 2

s−t
; then we define

ϕ = η(us − u), v = u + ϕ.

Now from the Q-minimality of u we get

F (u,Bs) ≤ QF (v,Bs)

and then, using the growth conditions (4), we have

Z

Bs

| Du |p dx ≤ c

∑Z

Bs

| Dv |p dx +

Z

Bs

a(x) dx

∏
+

+

Z

Bs

b(x)(| u |∞ + | v |∞) dx,

Now we estimate

| v |≤| u | + | u− us |

| Dv |p≤ c

∑
(1− η) | Du |p +

1

(s− t)
p | u− us |p

∏

and so we get

(7)

Z

Bs

| Du |p dx ≤

≤ c

∑Z

Bs−Bt

| Du |p dx +
1

(s− t)
p

Z

Bs

| u− us |p dx

∏
+

+ c

∑Z

Bs

a(x)dx +

Z

Bs

b(x) | u |∞ dx +

Z

Bs

b(x) | u− us |∞ dx

∏
.

Finally we estimate, using Sobolev and Hölder inequalities, the term

Z

Bs

b(x) | u− us |∞ dx ≤

≤
µZ

Bs

| u− us |p∗ dx

∂ p
p∗
µZ

Bs

(b(x) | u− us |∞−p)
n
p dx

∂ p
n

≤

≤ cξ(R)

Z

Bs

| Du |p dx
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where

ξ(R) =

µZ

BR

(b(x) | u− us |∞−p)
n
p dx

∂ p
n

≤

≤ c

µZ

BR

| u |p∗ dx

∂∞−p
p∗

µZ

BR

b(x)
p∗

p∗−∞ dx

∂1− ∞
p∗
≤

≤ c k u k∞−p
p∗ k b kσ| BR |≤ .

If we choose R ≤ R0 small enough, in such way that cξ(R0) < 1
2
, we can

strike out this term on the left hand side in (7). Then we finally have:

Z

Bt

| Du |p dx ≤ c

∑Z

Bs−Bt

| Du |p dx +
1

(s− t)
p

Z

Bs

| u− us |p dx

∏
+

+ c

Z

Bs

(a(x) + b(x) | u |∞) dx

and so adding to both sides the quantity

c

Z

Bt

| Du |p dx

we get for θ = c
c+1

Z

Bt

| Du |p dx ≤ θ
Z

Bs

| Du |p dx +
c

(s− t)
p

Z

BR

| u− uR |p dx

+c

Z

BR

(a(x) + b(x) | u |∞) dx

From this inequality, using Lemma 1 with:

Z(t) =

Z

Bt

| Du |p dx; A = c

Z

BR

| u− uR |p dx

B = c

Z

BR

(a(x) + b(x) | u |∞) dx

it follows
Z

B R
2

| Du |p dx ≤ c

Rp

Z

BR

| u− uR |p dx + c

Z

BR

(a(x) + b(x) | u |∞) dx
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Now the thesis easily follows by a standard applications of the Sobolev

embedding theorem and Gehring’s lemma in the version of Giaquinta

and Modica (see [8]) noticing that b(x) | u |∞∈ Lτ for some τ > 1.

Remark 1. If estimate (6) holds for some r > 1 then it still holds

for every 1 < r
0
< r with the constant c being bounded from above.

From now on troughout the paper r > 1 will be chosen such that

≤
0
= ≤− (r − 1) > 0, ∞r < p∗.

We shall set also

∏ = (1− ∞

p∗ )n, µ = ∏− n≤0, (µ < p).

We now recall some results from the theory of Q-minimizers that are

crucial for our work.

The following Caccioppoli type inequality on level sets is stated in [9],

Theorem 7.1 and contains all the information about Hölder continuity of

Q-minimizers. We shall refer to this inequality for the proof of Theorem 3

and Theorem 4 (see [9] chapter 7).

Theorem 2. Let u ∈ W 1,p(≠) be a Q-minimizer of functional (3)

then, there exist R0, and c depending on n, p, ∞, Q, kukp∗ , k b kσ such that

for any x0 ∈ ≠ and 0 ≤ ρ < R ≤ min {R0,dist(x0, @≠)} and k ∈ R:

(8)

Z

A(k,ρ)

|Du|p dx ≤ c

(R− ρ)p

Z

A(k,R)

(k − u)pdx+

+ c(kakLs(BR) + |k|pR−n≤) |A(k,R)|1−
p
n +≤

,

(9)

Z

B(k,ρ)

|Du|p dx ≤ c

(R− ρ)p

Z

B(k,R)

(k − u)pdx+

+ c(kakLs(BR) + |k|pR−n≤) |B(k,R)|1−
p
n +≤

,

where

A(k,R) ≡ {x ∈ BR(x0) : u(x) > k}
B(k,R) ≡ {x ∈ BR(x0) : u(x) < k}
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Theorem 3. Let u ∈ W 1,p(≠) be a Q-minimizer of functional (3),

then for any q > 0 there exist c ≡ c(q) and R0 > 0 as in Theorem 2, such

that for any x0 ∈ ≠ and 0 ≤ ρ < R < min {R0, dist(x0, @≠)}:

(10) sup
Bρ

|u| ≤ c(q)

(∑
1

(R− ρ)n

Z

BR

|u|q dx

∏ 1
q

+ kak
1
p

Ls(BR) R
n≤
p

)
.

See [9] Chapter 7 for the proof.

In the following we shall also deal with Q-minimizers of the functional

(11) G(v,BR) =

Z

BR

(| Dv |p +b(x) | v |∞ +a(x) + M
p

p−1 ) dx,

where M ≥ 0, BR ⊂⊂ ≠.

The following technical lemma will be useful in the sequel.

Lemma 2. Let u ∈W 1,p(BR) such that

Z

supp(u−v)

| Du |p dx ≤

≤ c

Z

supp(u−v)

≥
| Dv |p +b(x) | v |∞ +a(x) + M

p
p−1

¥
dx+

+

Z

supp(u−v)

b(x) | u |∞ dx

for every v ∈ u + W 1,p
0 (BR). Then there exists R0 > 0 and Q > 1

depending on k b kσ, k Du kp, k u kp∗ , c, such that if R ≤ R0, u is a

Q-minimizer of the functional (11) in BR.

Proof. Let us fix v ∈ u + W 1,p
0 (BR). From the assumption, adding

the quantity:

Z

supp(u−v)

≥
b(x) | u |∞ +a(x) + M

p
p−1

¥
dx
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we get:

(12)

Z

supp(u−v)

≥
| Du |p +b(x) | u |∞ +a(x) + M

p
p−1

¥
dx ≤

≤ c

Z

supp(u−v)

≥
| Dv |p +b(x) | v |∞ +a(x) + M

p
p−1

¥
dx+

+ c

Z

supp(u−v)

b(x) | u |∞ dx.

It is not restrictive to assume that :
Z

supp(u−v)

(| Dv |p +b(x) | v |∞) dx ≤
Z

supp(u−v)

(| Du |p +b(x) | u |∞) dx

otherwise the thesis would trivially follow. Therefore we may estimate:

k u− v k∞−p
p∗ ≤ c

µZ

BR

(| Du |p + | Dv |p) dx

∂∞
p −1

≤

≤ c

µZ

BR

(| Du |p +b(x) | u |∞) dx

∂∞
p −1

= H(R).

Applying Hölder inequality we have
Z

supp(u−v)

b(x) | u |∞ dx ≤

≤ c

Z

supp(u−v)

b(x) | v |∞ dx + c

Z

supp(u−v)

b(x) | u− v |∞ dx ≤

≤
Z

supp(u−v)

b(x) | v |∞ dx + c k b kσk u− v k∞−p
p∗

Z

suppϕ

| D(u− v) |p dx ≤

≤ c

"Z

supp(u−v)

b(x) | v |∞ dx +

Z

supp(u−v)

| Dv |p dx

#
+

+ c k b kσ H(R)

Z

supp(u−v)

| Du |p dx.

So choosing R small enough in such a way that c k b kσ H(R) < 1
2

and

inserting the last inequality in (12) we obtain the assertion.

The aim of the next result is to give a suitable decay estimate for the

quantity: Z

Bρ

(|Du|p + ρ−µ |u|∞)dx
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where u is a Q-minimizer of functional (11)

Theorem 4. Let u ∈W 1,p(≠) be a Q-minimizer of functional (11),

then there exist two constants, α > 0, c > 0 and R0 > 0 depending on

n, p,∞, Q, k a ks, k b kσ, kukp∗ , k Du kp but not on M such that for any

0 ≤ ρ ≤ R
2
≤ R0

2
, if BR ⊂ ≠:

(13)

Z

Bρ

(|Du|p + ρ−µ |u|∞) dx ≤ c

µ
ρ

R

∂n−p+αp Z

BR

(|Du|p + R−µ |u|∞)dx

+ c

µ
ρ

R

∂n−p+αp

(Rn−p+αp + M
p

p−1 Rn + M
∞

p−1 R
∞n
p )

Proof. Let u ∈ W 1,p(≠) be a Q-minimizer of functional (11). By

formula (7.41) in [9] we see that there exist R0 > 0 and an integer ∫

depending on n, p, ∞, Q, k b kσ, k a ks, k u kp∗ but not on M such that if:

(14) osc
≥
u,

R

4

¥
≤
≥
1− 1

2∫+2

¥
osc(u,R) + cχ(R)2∫Rβ,

where β = n≤
p

and

(15) χp(R) ≤ c

"
k a + M

p
p−1 kLs(BR) +R−n≤ sup

BR

| u |p
#

(see (7.29) and (7.30) in [9]), with

osc(u, s) = sup
Bs

u− inf
Bs

u

Notice that by replacing the quantity ≤ appearing in (5) with something

smaller, k b kσ will remain bounded, therefore the integer ∫ appearing in

(14) would remain bounded too. So it is not restrictive to assume that

0 < ≤ < log 1
4
(1− 1

2∫+2 ). With such choice of ≤, from (14), using Lemma 7.3

in [9], we get that if 0 < ρ < R < R0, and BR ⊂ ≠

osc(u, ρ) ≤ c

∑≥ ρ
R

¥n≤
p

osc(u,R) + χ(R)ρ
n≤
p

∏
,
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where χ(R) is estimated in (15). From this inequality one can then easily

prove that if 0 < ρ < R
2
, R ≤ R0, BR ⊂ ≠

(16)

Z

Bρ

| Du |p≤ c

µ
ρ

R

∂n−p+n≤
"Z

BRR

| Du |p +χp

µ
R

2

∂
Rn−p+n≤

#
.

Now we use Theorem 3 to estimate

sup
B R

2

|u|p ≤ c

∑
1

Rn

Z

BR

|u|p dx +
∞∞∞a + M

p
p−1

∞∞∞
Ls(BR)

Rn≤

∏
≤

≤ c

∑
1

Rn

Z

BR

|u|p dx + kakLs(BR) Rn≤ + M
p

p−1 Rp

∏
.

If we put this estimate in (15) we get that if 0 < ρ < R
2
, R ≤ R0:

(17)

Z

Bρ

|Du|p dx ≤c

µ
ρ

R

∂n−p+n≤ ∑Z

BR

|Du|p dx +
1

Rp

Z

BR

|u|p dx

∏

+

µ
ρ

R

∂n−p+n≤ ≥
kakLs(BR) Rn−p+n≤ + M

p
p−1 Rn

¥
.

Now, using Lemma 1 it is easy to check that if u is a Q-minimizer of

functional (11) then u− uR is a Q̃-minimizer of the functional

w →
Z

BR

≥
|Dw|p + b(x) |w|∞ + a(x) + b(x) |uR|∞ + M

p
p−1

¥
dx

for some Q̃ depending on Q, k b kσ, k Du kp, k u kp∗ . Therefore applying

estimate (17) to u− uR we have:

(18)

Z

Bρ

|Du|p dx ≤ c

µ
ρ

R

∂n−p+n≤ ∑Z

BR

|Du|p dx +
1

Rp

Z

BR

|u− uR|p dx

∏
+

+ c

µ
ρ

R

∂n−p+n≤ h
kakLs(BR) Rn−p+n≤ + M

p
p−1 Rn+ k b ks |uR|∞ Rn−p+n≤

i
≤

≤ c

µ
ρ

R

∂n−p+n≤ ∑Z

BR

|Du|p dx +

Z

BR

R−µ |u|∞ dx

∏
+

+ c

µ
ρ

R

∂n−p+n≤ h
kakLs(BR) Rn−p+n≤ + M

p
p−1 Rn + Rn

i
.
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where we used Poincaré inequality and we estimated uR using Hölder

inequality:

k b ks Rn−p+n≤ | uR |∞ ≤ c k b kσ Rn( 1
s− 1

σ )−p+n≤

Z

BR

| u |∞≤

≤ cR−µ

Z

BR

| u |∞ dx.

Now, using Theorem 3 again, we estimate the term

ρ−µ

Z

Bρ

| u |∞ dx.

Then we have
Z

Bρ

|u|∞dx ≤ ωnρ
n

Z

Bρ

|u|∞dx ≤ ωnρ
n sup

Bρ

|u|∞

≤ c

µ
ρ

R

∂n ∑Z

BR

|u|∞dx + kak
∞
p

Ls(BR)R
n≤∞

p +n + kM
p

p−1 k
∞
p

Ls(BR)R
n+

n≤∞
p

∏

≤ c

µ
ρ

R

∂n ∑Z

BR

|u|∞dx + kak ∞
p R

≤∞n
p +n + M

∞
p−1 R∞+n

∏
.

Finally, by the previous inequality and the fact that µ < p we get:

(19)

ρ−µ

Z

Bρ

|u|∞dx ≤

≤ c

µ
ρ

R

∂n−p+pα ∑
R−µ

Z

BR

|u|∞dx+ k a k
∞
p

Ls(BR) Rn−p+pα + M
∞

p−1 R
n∞
p

∏

for a suitable α > 0. Now adding the last estimate to (18) we get the

result.

Remark 2. The estimate of the previous theorem is a generalization

of the one found in [3], Theorem 6 ( see also [5]) but the proof given here

is different. In fact in that case the growth assumption were:

| ξ |p≤ f(x, u, ξ) ≤ L(| ξ |p + | u |p +1)

and the homogenity of the function on the right hand side allowed a

rescaling argument. In our case it is not so and a careful use of the

integral estimates available for Q-minimzers has been emploied.
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Now we state a very well known variational principle due to Ekeland

that will be the main tool in the proof of Theorem 6 (see [4], or [9],

chapter 5, for the proof).

Theorem 5 (Ekeland’s variational principle). Let (X, d) be a com-

plete metric space and F : X −→ ]−1+1] a lower semicontinous func-

tional such that

−1 < inf
X

F < +1.

Let σ > 0 and x ∈ X such that

F (x) ≤ inf
X

F + σ.

Then there exixts y ∈ X such that

d(x, y) ≤ 1

F (y) ≤ F (x)

F (y) ≤ F (z) + σd(y, z) ∀z ∈ X.

Finally we state a technical lemma that will be useful in the proof of

Theorem 6.

Lemma 3. Let ϕ : ]0,+1] −→ ]0,+1[ be a positive function and

let 0 < τ < 1 and R0 > 0 such that for every R < R0:

ϕ(τR) ≤ τ δϕ(R) + BRβ

ϕ(h) ≤ cϕ(τkR)

if τk+1R < h < τkR, for positive constants c,B and 0 < β < δ. Then if

ρ < R < R0 we also have:

ϕ(ρ) ≤ H

"µ
ρ

R

∂β
ϕ(R) + Bρβ

#
,

where H depends on τ, δ,β, c.

Proof. Just follow the proof of Lemma 7.3 of [9] using the inequality

ϕ(h) ≤ cϕ(τkR) instead of the fact that ϕ is nondecreasing.
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– Proof of the main result

In this section we prove the following

Theorem 6. Let u ∈W 1,p(≠) be an ω-minimizer of functional (3),

then u is locally Hölder continuous.

In the following we refer to the quantity:

φ (ρ, x0) =

Z

Bρ(x0)

°| Du |p +ρ−µ | u |∞¢ dx

and for the sake of simplicity we will write:

φ (ρ, x0) ≡ φ(ρ)

where no confusion will occour.

The proof of the theorem will be obtained once we get the following

technical result:

Proposition 1. There exist R0, c,α dependig on n, p, ∞,ω, k a ks,

k b kσ,u such that:

(20) φ(ρ) ≤ c

"µ
ρ

R

∂n−p+pα

+ (ω(R))
d
+

µ
R

ρ

∂∏
Rn≤0

#
φ(R) + cRn−p+pα

for any 0 < ρ < R < R0, where ∏ > 0.

Proof. We divide the proof in three steps.

Step 1. Using Ekeland’s variational principle. Let us fix BR(x0) ⊂⊂
≠ and consider the complete metric space (X, d) where X is the subset

of the Dirichlet class u + W 1,1
0 (BR(x0)) defined by the condition

w ∈ X ⇐⇒ w ∈ u + W 1,p
0 (BR(x0))

and

Z

BR

(| Dw |p +b(x) | w |∞) dx ≤
Z

BR

(| Du |p +b(x) | u |∞) dx



[17] A regularity theorem for ω-minimizers of . . . 33

with

d(u1, u2) = CR

Z

BR

|Du1 −Du2| dx

CR =
1

Rnω(R)



Z

BR

(|Du|p + b(x) |u|∞ + a(x)) dx




− 1
p

.

Let us recall that the Dirichlet class u + W 1,1
0 (BR(x0)) is a complete

metric space when equipped with the metric d. We remark now, that X ,

endowed with the metric d, is a complete metric subspace of the Dirichlet

class u + W 1,1
0 (BR(x0)). Indeed let wn ⊂ X such that:

Z

BR

| Dwn −Dw | dx→ 0

with w ∈ u+W 1,1
0 (BR(x0)) then, eventually passing to a (not relabelled)

subsequence, we may assume that:

wn − w → 0, Dwn −Dw → 0 a.e. in BR(x0)

Applying Fotou’s lemma we get:

Z

BR

(| Dw |p +b(x) | w |∞) dx ≤ lim inf
n

Z

BR

(| Dwn |p +b(x) | wn |∞) dx ≤

≤
Z

BR

(| Du |p +b(x) | u |∞) dx

so that w ∈ X. In this way (X, d) is a closed metric subspace of the

complete metric space (u + W 1,1
0 (BR(x0)), d), and hence it is complete.

Let δ > 0 and vδ ∈ X such that

F (vδ, BR) ≤ inf
X

F + δ.

Recalling that u is an ω-minimizer we have:

F (u,BR) ≤ [1 + ω(R)]F (vδ, BR) ≤
≤ inf

X
F + δ + ω(R) [F (u,BR) + δ] .
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Letting δ go to zero we get

F (u,BR) ≤ inf
X

F + ω(R)F (u,BR) ≤

≤ inf
X

F + cω(R)

Z

BR

(|Du|p + b(x) |u|∞ + a(x)) dx ≤

≤ inf
X

F + cRnω(R)

Z

BR

(|Du|p + b(x) |u|∞ + a(x)) dx.

The functional u → F (u,BR) turns out to be lower semicontinuous on

(X, d) so we can use Ekeland’s variational principle to find a function

v ∈ X (depending on R) such that:

(21)

Z

BR

|Du−Dv| dx ≤ C−1
R

Z

BR

(| Dv |p +b(x) | v |∞) dx ≤
Z

BR

(| Du |p +b(x) | u |∞) dx

F (v,BR) ≤ F (w,BR) + M

Z

BR

|Dw −Dv| dx

for any w ∈ X where

M = cRnω(R)CR

Z

BR

(|Du|p + b(x) |u|∞ + a(x))dx =

= c



Z

BR

(|Du|p + b(x) |u|∞ + a(x))dx




1− 1
p

.

In the proof of the theorem it will be clear that in order to apply

Theorems 1, 2, 4 and Lemma 2, we will need that the quantity:

S(R) = k Dv kLp(BR) + k v kLp∗ (BR) + k b kLσ(BR),

(v is the comparison function given by Ekeland’s theorem) remains boun-

ded for R sufficiently small.

So in view of applying these results to v we check that

(22) sup
R

S(R) <1 .
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In order to prove (22) we note that by (21)2 it trivially follows:

(23)

Z

BR

| Dv |p dx ≤
Z

BR

(| Du |p +b(x) | u |∞) dx

while applying Sobolev-Poincaré inequalty and (23) we have:
Z

BR

| v |p∗ dx ≤ c

Z

BR

| u− v |p∗ dx +

Z

BR

| u |p∗ dx ≤

≤
µZ

BR

(| Du |p + | Dv |p) dx

∂ p∗
p

+

Z

BR

| u |p∗ dx <1

Now we prove the crucial fact that the minimizing property of the function

v implies the fact that v is a Q-minimizer of a comparison functional

determined by the growth conditions.

Let w ∈ u + W 1,p
0 (BR) and ϕ = w − u. If w ∈ X then, using growth

conditions, Young and Sobolev-Poincaré inequalities with (21)3 we get:
Z

suppϕ

|Dv|p dx ≤

≤ c

Z

suppϕ

(|Dv + Dϕ|p + b(x) |v + ϕ|∞ + |v|p + a(x)) dx+

+ cM

Z

suppϕ

|Dϕ| dx ≤

≤ c

Z

suppϕ

(|Dv + Dϕ|p + b(x) |v + ϕ|∞ + |v|∞ + a(x)) dx+

+

Z

suppϕ

≥
CσM

p
p−1 + σ |Dϕ|p

¥
dx ≤

≤ c

Z

suppϕ

≥
|Dv + Dϕ|p + b(x) |v + ϕ|∞ + b(x) |v|∞ + a(x) + M

p
p−1

¥
dx+

+ σ

Z

suppϕ

|Dv|p dx.

So that, if we choose 0 < σ < 1, we can shift the last term to the first

member, thus obtaining:
Z

suppϕ

|Dv|p dx ≤

≤ c

Z

suppϕ

≥
|Dv + Dϕ|p + b(x) |v + ϕ|∞ + b(x) |v|∞ + a(x) + M

p
p−1

¥
dx.
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On the other hand if w /∈ X then, by definition of X it follows:

Z

BR

(| Du |p +b(x) | u |∞) dx ≤
Z

BR

(| Dw |p +b(x) | w |∞) dx

and, a fortiori:

Z

BR

(| Dv |p +b(x) | v |∞) dx ≤
Z

BR

(| Dw |p +b(x) | w |∞) dx

hence, summing up the missing terms and passing to the support of ϕ we

have: Z

suppϕ

(| Dv |p +b(x) | v |∞ +a(x) + M
p

p−1 ) dx ≤

≤
Z

suppϕ

(| Dw |p +b(x) | w |∞ +a(x) + M
p

p−1 ) dx

So that, in any case we have:

Z

suppϕ

| Dv |p dx ≤

≤
Z

suppϕ

≥
| Dv + Dϕ |p +b(x) | v + ϕ |∞ +b(x) | v |∞ +a(x) + M

p
p−1

¥
dx

for every ϕ ∈ W 1,p
0 (BR). Now, by Lemma 1, it follows that v is a Q-

minimizer of functional (11) with Q ≡ Q(n, ∞, p, kvkp∗ , kDvkp , k b kσ ),

and by (22) the constants Q are uniformly bounded.

Step 2. Comparing the Q-minimizers with the ω-minimizer.

We will derive some estimates that will allow us to compare, in the

last step, the ω-minimizer u and the function v, over the ball BR(x0).

We stress that these estimates are based on the higher integrability of

the gradients of u and v.

From Definitions 1, 2, 3 it follows easily that both Q-minimizers

and ω-minimizers are spherical Q-minimizers so that higher integrability

result (Theorem 1) applies to both v and u and for R < R0 we have,
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writing q = pr:

√ Z

B R
2

|Dv|q dx

! 1
q

≤c

√ Z

BR

|Dv|p dx

! 1
p

+c

√ Z

BR

(b(x) |v|∞)
q
p dx

! 1
q

+(24)

+ c

√ Z

BR

a
q
p dx

! 1
q

+ cM
1

p−1 .

√ Z

B R
2

|Du|q dx

! 1
q

≤ c

√ Z

BR

|Du|p dx

! 1
p

+(25)

+ c

√ Z

BR

(b(x) |u|∞)
q
p dx

! 1
q

+ c

√ Z

BR

a
q
p dx

! 1
q

.

We can now interpolate between 1 and q, with:

0 < θ < 1 ,
θ

q
+ 1− θ =

1

p

obtaining , by (211) and (24), (25):

(26)

√ Z

B R
2

|Du−Dv|p dx

! 1
p

≤
√ Z

B R
2

|Du−Dv|q dx

! θ
q
√ Z

B R
2

|Du−Dv| dx

!1−θ

≤

≤



√ Z

BR

|Du|p dx

! 1
p

+

√ Z

BR

| Dv |p dx

! 1
p

+

√ Z

BR

(b(x) | u |∞) q
p dx

! 1
q

+

+

√ Z

BR

(b(x) | v |∞) q
p dx

! 1
q

+

√ Z

BR

a
q
p dx

! 1
q

+ M
1

p−1




θ

×

×


ω(R)

√ Z

BR

(|Du|p + b(x) |u|∞ + a(x)) dx

! 1
p




1−θ

.
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Now we observe that by Hölder inequality we have:

M
1

p−1 ≤ c



√ Z

BR

| Du |p +b(x) | u |∞ dx

! 1
p

+

√ Z

BR

a(x)
q
p dx

! 1
q




therefore, raising both members of (26) to the power p, getting rid of the

averages, we finally obtain

(27)

Z

B R
2

|Du−Dv|p dx ≤ c (ω(R))
d
∑Z

BR

|Du|p dx +

Z

BR

b(x) |u|∞ dx

∏
+

+ (cω(R))
d

"µZ

BR

(b(x) | u |∞) q
p dx

∂ p
q

+

µZ

BR

(b(x) | v |∞) q
p dx

∂ p
q
#

+

+ cRn−p+n≤

for some d > 0. Now we put

A =

Z

BR

b(x) | u |∞ dx, B =

µZ

BR

(b(x) | u |∞) q
p dx

∂ p
q

,

C =

µZ

BR

(b(x) | v |∞) q
p dx

∂ p
q

and estimate these three quantities. We have:

A ≤ c

Z

BR

b(x) | u− uR |∞ dx + c

Z

BR

b(x) | uR |∞ dx

and so using Hölder, Sobolev and Poincaré inequalities we have

Z

BR

b(x) | u− uR |∞ dx ≤

≤
µZ

BR

(b(x) | u− uR |∞−p)
n
p dx

∂ p
n
µZ

BR

| u− uR |p∗ dx

∂ p
p∗
≤

≤ c

Z

BR

| Du |p dx,
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while by Hölder inequality we obtain:

Z

BR

b(x) | uR |∞ dx =k b k1| uR |∞≤ cR−µ

Z

BR

| u |∞ dx.

Collecting the last two inequalities we have that

A ≤ c

Z

BR

(| Du |p +R−µ | u |∞)dx.

Now we estimate in the same way of A:

B ≤
µZ

BR

(b(x) | u− uR |∞)rdx

∂ 1
r

+

µZ

BR

(b(x) | uR |∞)rdx

∂ 1
r

.

As before we have

Z

BR

(b(x) | u− uR |∞)rdx ≤ ≥(R)

Z

BR

| Du |p dx,

where

≥(R) ≤
µZ

BR

| u− uR |p∗ dx

∂∞r−p
p∗

µZ

BR

b
p∗

p∗−∞r dx

∂1− ∞r
p∗
≤

≤ c

µZ

BR

| Du |p dx

∂∞r−p
p

.

So we have

µZ

BR

(b(x) | u− uR |∞)rdx

∂ 1
r

≤ c

µZ

BR

| Du |p dx

∂∞
p −1 Z

BR

| Du |p dx ≤

≤ c

Z

BR

| Du |p dx.

Finally

µZ

BR

(b(x) | uR |∞)rdx

∂ 1
r

≤ c k b kr| uR |∞≤ cR−µ

Z

BR

| u |∞ dx
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and also in this case,

B ≤ c

Z

BR

(| Du |p +R−µ | u |∞)dx.

We now estimate the last term

C ≤
µZ

BR

(b(x) | u− v |∞)r
dx

∂ 1
r

+ B.

As for B we have, using also the estimates for A and B:

µZ

BR

(b(x) | u− v |∞)rdx

∂ 1
r

≤ c k u− v k
∞r−p

r
p∗

µZ

BR

| Du−Dv |p dx

∂ 1
r

≤

≤ c

Z

BR

| Du−Dv |p dx ≤

≤ c

Z

BR

(| Du |p +b(x) | u |∞) dx ≤

≤
Z

BR

(| Du |p +R−µ | u |∞) dx .

So we finally have

A + B + C ≤ c

Z

BR

(| Du |p +R−µ | u |∞) dx .

If we put this estimate in (27) we have

(28)

Z

B R
2

| Du−Dv |p dx ≤ c (ω(R))
d
Z

BR

(| Du |p +R−µ | u |∞) dx+

+ cRn−p+n≤.

Step 3. Getting the decay estimate for the ω-minimizer

Finally, by means of the comparison estimates of the previous step,

we prove that the term:

Z

Bρ

°|Du|p + ρ−µ |u|∞¢ dx
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inherits the nice decay estimate of the term:

Z

Bρ

°|Dv|p + ρ−µ |v|∞¢ dx

proved in Theorem 4. So, using also the estimate of the term A in the

previous step and Hölder inequality we have:

(29) M
p

p−1 Rn + M
∞

p−1 R
∞n
p ≤ c

Z

BR

°| Du |p +R−µ |u|∞¢ dx + cRn−p+n≤.

By (23) and again the estimate of the term A we have:

(30)

µZ

BR

| Du−Dv |p dx

∂∞
p

≤ c

Z

BR

(| Du |p +R−µ | u |∞)dx .

Now from (29), (30) and Theorem 4 we get that for 0 < ρ < R
2
,

R < R0:

Z

Bρ

°|Du|p + ρ−µ |u|∞¢ dx ≤ c

Z

Bρ

°|Dv|p + ρ−µ |v|∞¢ dx+

+ c

Z

Bρ

|Dv −Du|p dx +
c

ρµ

Z

Bρ

|u− v|∞ dx≤

≤c

µ
ρ

R

∂n−p+αp


Z

B R
2

(|Dv|p + R−µ |v|∞)dx + M
p

p−1 Rn + M
∞

p−1 R
∞n
p


+

+ c

Z

B R
2

|Dv −Du|p dx +
c

ρµ

Z

B R
2

|u− v|∞ dx + cRn−p+n≤ ≤

≤ c

µ
ρ

R

∂n−p+αp
" Z

BR

°|Du|p + R−µ |u|∞¢ dx+

+

Z

B R
2

°| Du−Dv |p +R−µ | u− v |∞¢ dx

#
+

+ c (ω(R))
d
Z

BR

°|Du|p + R−µ | u |∞¢ dx+
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+ cρn≤0
µ

R

ρ

∂∏ µZ

BR

| Du−Dv |p dx

∂∞
p

+ cRn−p+n≤ ≤

≤ c

"µ
ρ

R

∂n−p+pα

+(ω(R))
d
+

µ
R

ρ

∂∏
Rn≤0

# Z

BR

°| Du |p +R−µ | u |∞¢ dx+

+ cRn−p+pα

thus proving Proposition 1.

Remark 3. The decay estimate found in the last proposition is an

essential tool in order to prove our regularity result (see proof of Theo-

rem 6, below) and is a more complicated version of an analogous decay

estimate found in [3]. In our case a number of technical complications ,

due to the general growth assumptions (4), had to be faced. The most

worth mentioning are the following. In the proof of boundedness of the

quantity S(R) a space of ”bounded energy” functions X has been intro-

duced to overcome the lackness of coercivity of the functional F so we

are able to get a uniform estimate for the norms of the gradients.

Another technical point is the choice of the right quantity to make de-

cay. In [3], with the particular growth assumptions reported in Remark 2,

the “right” quantity was:

φ(ρ) =

Z

Bρ

(| Du |p + | u |p) dx

while in the case

|ξ|p − |u|∞ − a(x) ≤ f(x, u, ξ) ≤ L(|ξ|p + |u|∞ + a(x)),

some computation suggest to use:

φ(ρ) =

Z

Bρ

(| Du |p + | u |∞) dx .

In our general case, we multiply the u term in the definition of φ by a

suitable (negative) power of the radius R chosen in order to keep into

account the summabilty properties of b(x).

Now we can prove the local Hölder continuity of the ω-minimizer

u. The proof of the theorem is actually based on a more or less stan-

dard iteration argument starting from the decay estimate provided by

the previous proposition.
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Proof of the Theorem 6. In the Proposition 1 choose 0 < τ < 1

and 0 < α0 < α00 < α such that

cτp(α−α00) <
1

2

and then take R < R0 small enough in such a way that:

c
h
(ω(R))

d
+ Rn≤0τ−∏

i
<
τn−p+pα00

2
.

If we write estimate (19) for ρ = τR we obtain:

φ (τR) ≤ τn−p+pα00φ(R) + cRn−p+pα0 .

Finally we observe that if τk+1R < h < τkR we have:

φ(h) ≤ 1

τ
φ(τkR).

So it is possible to apply Lemma 3 to our φ in order to get:

φ(ρ) ≤ c

µ
ρ

R

∂n−p+pα0

φ(R) + cρn−p+pα0

recalling the definition of φ, we get:

Z

Bρ

| Du |p dx ≤
µ
ρ

R

∂n−p+pα

φ(R) + cρn−p+pα ≤ c(R)ρn−p+pα

and by Poincaré inequality we have:

Z

Bρ

| u− uρ |p dx ≤ c(R)ρpα0 .

So, applying Campanato’s characterization of Hölder continuity and a

standard covering argument, we get the result.
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