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Some properties for eigenvalues and

eigenfunctions of nonlinear weighted problems

A. ALBERICO – A. FERONE – R. VOLPICELLI

Riassunto: Si studiano alcune proprietà del primo autovalore e delle corrispon-
denti autofunzioni per una classe di problemi non lineari pesati. Utilizzando tecniche di
simmetrizzazione si ottiene una disuguaglianza di Faber-Krahn per il primo autovalore
e una disuguaglianza di Payne-Rayner per le corrispondenti autofunzioni.

Abstract: We study some properties of the first eigenvalue and of the cor-
responding eigenfunctions for a class of non linear weighted problems. Using sym-
metrization techniques, we give a Faber-Krahn inequality for the first eigenvalue and a
Payne-Rayner inequality for the corresponding eigenfunctions.

1 – Introduction

In this paper, we study the properties of the first eigenvalue of the

Dirichlet problem:

(1.1)

(
−div(|Du|p−2Du) = ∏m(x)|u|p−2u in ≠,

u = 0 on @≠,

where ≠ is an open, bounded and connected subset of IRn, 1 < p < n and

m is a positive function in Lr(≠), r > n/p.

Key Words and Phrases: Nonlinear weighted problems – First eigenvalue – Eigen-
functions.
A.M.S. Classification: 15A18 – 34B15 – 35J60
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It is well known, by general theory on non linear eigenvalue problems

(see, for example, [14], [5]), that the problem (1.1) has, at least, a diver-

gent sequence of positive eigenvalues. These eigenvalues can be evaluated

by Lyusternik-Schnirelman method, as critical values of the functional

R(u) =
k Du kp

pZ

≠

m(x)|u|p(x)dx

on a family of subsets of W 1,p
0 (≠) with special topological properties.

Moreover, the first eigenvalue ∏p is the minimum of R on W 1,p
0 (≠). In

particular, if m ≡ 1, ∏p is the best constant C in the Sobolev-Poincarè

inequality

k Du kp
p ≥ C k u kp

p .

In the case p = 2 and m ≡ 1, it is well known that ∏p is positive

and simple, that is all the corresponding eigenfunctions are multiple of

each other. Moreover, various inequalities have been given for ∏p and the

corresponding eigenfunctions. For example, in [17] (see also [21], [22],

[1]) it has been shown that, if u is an eigenfunction corresponding to ∏p,

then, for any 0 < q < r ≤ +1, there exists a constant K = K(r, q, n,∏p)

such that

(1.2) k u kr≤ K k u kq

and the equality holds if, and only if, ≠ is a ball.

More in general, we consider the problem

(1.3)

(
−div((ADu,Du)(p−2)/2ADu) = ∏m(x)|u|p−2u in ≠,

u = 0 on @≠,

where ≠ is an open, bounded and connected subset of IRn, 1 < p < n,

A = {aij}ij is a matrix such that

(1.4)

(
aij ∈ L1(≠), aij(x) = aji(x) for a.e. x ∈ ≠, ∀i, j = 1, · · · , n

aij(x)ξiξj ≥ |ξ|2 ∀ξ ∈ IRn, for a.e. x ∈ ≠,

and

(1.5) m > 0, m ∈ Lr(≠), r > n/p.
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The aim of this paper is to prove that some of the properties, de-

scribed above, of the first eigenvalue for the problem (1.1) in the case

m = 1, still hold for the first eigenvalue of (1.3) under the assumptions

(1.4) and (1.5). The first eigenvalue of the problem (1.3) is positive and

simple; this result is essentially contained in [7]. Similar results for prob-

lems of the type (1.1) have already been obtained by many authors also

in the case m changes its sign (see, for example, [29], [24], [6], [7], [19],

[20], [18], [1]). Secondly, by using symmetrization techniques, we prove

a Faber-Krahn inequality for the first eigenvalue ∏p of (1.3) (see [11] for

the case p = 2, m ≡ 1 and [1] for the nonlinear case and m ≡ 1). Such a

result can be summarized as follows. Let us consider the class of problems

of the type (1.3) where ≠ is an open, bounded and connected subset of

IRn, with prescribed measure, the matrix A = {aij}ij satisfies (1.4) and

m is a function satisfying (1.5), with prescribed rearrangement. Then

the first eigenvalue of any problem in the class described above attains

the lowest value ∏#
p when ≠ is a ball, aijxj = xi and m = m# a.e. in ≠

modulo translations.

In the last section, using a comparison result and properties of rear-

rangements, we obtain a Payne-Rayner inequality for the eigenfunctions

corresponding to ∏p, that is an inequality of the type (1.2). More pre-

cisely, we compare u by a suitable eigenfunction v of the problem (1.1)

with ≠ replaced by a ball B, centered at the origin, such that the corre-

sponding first eigenvalue is equal to ∏p, and m replaced by its spherically

symmetric decreasing rearrangement m#, whose definition is given in Sec-

tion 2. We remark that all the inequalities we will prove are isoperimetric,

in the sense that they are equalities only in the spherical situation, that

is, if and only if ≠ is a ball, aijxj = xi and m = m# a.e. in ≠ modulo

translations.

2 – Notations and preliminary results

Let E be a bounded and measurable subset of IRn, n ≥ 1, let a ∈
L1(E) be a non negative function and let 1 ≤ p ≤ +1. We put

Lp(E, a)=

Ω
u : E → IR measurable : kukp

Lp(E,a) =

Z

E

a(x)|u(x)|pdx<+1
æ
,
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if 1 ≤ p < +1, and

(2.1) L1(E, a) ≡ L1(E).

We denote by W 1,p
0 (E, a) the completion of the space C1

0 (E) with respect

to the norm

kukW1,p(E,a) = kukLp(E,a) + kDukLp(E,a).

Now, let ≠ be an open, bounded subset of IRn, n ≥ 2. If |≠| is

the n-dimensional Lebesgue measure of ≠, let us denote by ≠∗ the open

interval (0, |≠|) and by ≠# the n−dimensional ball, centered at the origin

and with the same measure of ≠. If f : ≠→ IR is a measurable function,

the decreasing rearrangement of f is defined by

f∗(s) = sup{t > 0 : µf(t) > s}, s ∈ ≠∗,

where µf(t) = |{x ∈ ≠ : |f(x)| > t}| is the distribution function of f and

the spherically symmetric decreasing rearrangement of f is defined by

f#(x) = f∗(Cn|x|n), x ∈ ≠#,

where Cn denotes the measure of the unit ball of IRn. Among all the

properties of rearrangements , we recall the well known Hardy-Littlewood

inequality, that is

(2.2)

Z

≠

|f(x)g(x)|dx ≤
Z

≠#
f#(x)g#(x)dx.

Moreover the following result holds (see, for example, [12], [2]):

Proposition 2.1. Let f ∈ L1
+(≠), g ∈ L1

+(≠) and suppose that µf

is a continuous function on [0, sup f [. If
Z

≠

f(x)g(x)dx =

Z

≠#
f#(x)g#(x)dx

then for all τ ≥ 0 there exists t ≥ 0 such that

(2.3) {x ∈ ≠ : |g(x)| > τ} = {x ∈ ≠ : |f(x)| > t}

up to zero measure set.
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Let f, g ∈ Lq(0, a), 1 ≤ q ≤ +1. We say that g is dominated by f if

and only if 



Z s

0

g∗(t)dt ≤
Z s

0

f∗(t)dt ∀s ∈ (0, a)
Z a

0

g∗(s)ds =

Z a

0

f∗(s)ds.

and we write

f ≺ g.

The following result is well known (see, for example, [12], [3]):

Proposition 2.2. Let f, g ∈ Lq
+(0, a), q ≥ 1 and let q0 be the

conjugate exponent of q. If √ ∈ Lq0
+(0, a) and g ≺ f , then

(2.4)

Z a

0

√∗(t)g∗(t) dt ≤
Z a

0

√∗(t)f∗(t) dt.

Furthermore an immediate consequence of Proposition 2.2 is the fol-

lowing:

Proposition 2.3. Let f , g, h be positive and decreasing functions

on (0, a) and let hf , hg ∈ L1
+(0, a). Let F be a convex, nonnegative,

Lipschitz function such that F (0) = 0. If hg ≺ hf then

(2.5)

Z a

0

h∗(t)F (g∗(t)) dt ≤
Z a

0

h∗(t)F (f∗(t)) dt.

Moreover, if F is strictly convex, we have equality in (2.5) if and only if

f∗ ≡ g∗ a.e. in (0, a).

Another useful property of rearrangements is (see [23], [10]):

Theorem 2.1. Let ≠ be an open, bounded subset of IRn, n ≥ 2. Let

u be a positive function in W 1,p
0 (≠), 1 < p < +1. Then

(2.6)

Z

≠

|Du|p(x)dx ≥
Z

≠#
|Du#|p(x)dx.

If |{x ∈ ≠ : |Du|(x) = 0}Tu#−1
(0, ess supu)| = 0, and equality holds in

(2.6), then ≠ = ≠#, u = u# a.e. in ≠, modulo translations.
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The inequality (2.6) is known as the Pólya-Szegö inequality. For an

exhaustive treatment of rearrangements, see, for example, [12], [26], [8],

[15], [28].

Let us now consider the nonlinear eigenvalue problem (1.3) under

the assumptions (1.4) and (1.5). Let u ∈ W 1,p
0 (≠), u 6≡ 0. Then u is an

eigenfuction of the problem (1.3) if

(2.7)

Z

≠

(ADu,Du)
(p−2)

2 (ADu,Dϕ)dx = ∏

Z

≠

mu|u|p−2ϕ dx,

for all ϕ ∈ W 1,p
0 (≠) and the corresponding real number ∏ is called an

eigenvalue of the problem (1.3).

It is well known, by general theory of nonlinear eigenvalue problems

(see for example [14], [5], [18]) that there exists a sequence {∏k
p}k∈IN of

eigenvalues such that lim
k
∏k

p = +1. Moreover the first eigenvalue ∏p is

the minimum of the Rayleigh quotient

(2.8) ∏p = min
u∈W

1,p
0

(≠)

u6≡0

Z

≠

(ADu,Du)
p
2 dx

Z

≠

m|u|pdx
,

and all the functions that realize the minimum of this quotient are eigen-

functions of (1.3).

In the case p = 2 and m ∈ L1(≠), it is well known (see, for example,

[13], [7]) that the first eigenvalue ∏p is positive and simple. Moreover all

the eigenfunctions associated to ∏p do not change sign. Similar results

have been proven in [1] in the case p 6= 2 and m ≡ 1.

More in general, the following result, which is essentially contained

in [7] holds (see also [18], [1]):

Theorem 2.2. Let ≠ be an open, bounded and connected subset of

IRn, 1 < p < n. Let ∏p be the first eigenvalue of the problem (1.3) under

the assumptions (1.4) and (1.5). Then ∏p is simple, that is if u and v

are eigenfunctions associated to ∏p, then there exists α ∈ IR such that

u = αv.
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3 – Faber-Krahn inequality

It is well known that the membrane with lowest principal frequency

is the circular one. This is the so called Faber-Krahn inequality. Using

Pólya-Szegö inequality and rearrangements properties, it is possible to

prove a generalization of the Faber-Krahn inequality. The following result

holds:

Theorem 3.1. Let ≠ be an open, bounded and connected subset

of IRn, 1 < p < n. Let ∏p be the first eigenvalue of (1.3) under the

assumptions (1.4) and (1.5). If ∏#
p is the first eigenvalue of the problem

(3.1)

(
−div (|Dv|p−2Dv) = ∏m#(x)v|v|p−2 in ≠#

v = 0 on @≠#,

then

(3.2) ∏p ≥ ∏#
p

and equality holds if and only if ≠ = ≠#, aij(x)xj = xi and m(x) =

m#(x) a.e. in ≠, modulo translations.

Proof. The proof of (3.2) is similar the one given in [29] in the case

aij(x) = δij. We reproduce it for completeness. By definition, we have

that

∏#
p = min

v∈W
1,p
0

(≠#)

v 6≡0

Z

≠#
|Dv|p(x)dx

Z

≠#
m#(x)|v|p(x)dx

.

If u > 0 is an eigenfunction associated to the first eigenvalue of (1.3),

using ellipticity condition, Pòlya-Szegö principle and Hardy-Littlewood

inequality, we have:

∏p =

Z

≠

(ADu(x),Du(x))p/2dx
Z

≠

m(x)|u|p(x)dx
≥

Z

≠

|Du|p(x)dx
Z

≠

m(x)|u|p(x)dx
≥(3.3)

≥

Z

≠#
|Du#|p(x)dx

Z

≠#
m#(x)|u#|p(x)dx

≥ ∏#
p .
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This completes the proof of the first part of the theorem.

About the equality, let us suppose that ∏p = ∏#
p . So, by (3.3), Hardy-

Littlewood inequality and Pólya-Szegö inequality, we have:

1 ≤

Z

≠

|Du|p(x)dx
Z

≠#
|Du#|p(x)dx

=

Z

≠

m(x)|u|p(x)dx
Z

≠#
m#(x)|u#|p(x)dx

≤ 1,

so that

(3.4)

Z

≠

m(x)|u|p(x)dx =

Z

≠#
m#(x)|u#|p(x)dx

and

(3.5)

Z

≠

|Du|p(x)dx =

Z

≠#
|Du#|p(x)dx.

By (3.3), u# is an eigenfunction of the problem (3.1) corresponding to the

first eigenvalue ∏#
p . On the other hand u#(x) = u∗(Cn|x|n) so that the

equation of problem (3.1) can be reduced to the one dimensional equation

(3.6) − d

d|x|



√

du#

d|x|

!p−1

|x|n−1


 = ∏#

p m#(x)(u#(x))p−1|x|n−1.

Integrating both sides of (3.6) between 0 and |x| we have

(3.7) −du#

d|x| =

"
∏#

p

nCn|x|n−1

Z

|y|<|x|
m#(y)(u#(y))p−1 dy

# 1
p−1

.

On the other hand, by Harnack inequality we have that u# > 0 and then,

by (3.7), it is strictly decreasing along the radious. In particular

(3.8) |{x ∈ ≠ : 0 < u#(x) < ess sup u, |Du#|(x) = 0}| = 0.

By (3.5), (3.8) and Theorem 2.1 we can conclude that

(3.9) ≠ = ≠#, u(x) = u#(x) a.e. x ∈ ≠, modulo translations.
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Finally, by (3.4), (3.7), (3.8), using Proposition 2.1 and (3.9), it follows

that

m(x) = m#(x) a.e.in ≠.

By standard arguments (see [2], [16] and [1]) we get the thesis.

4 – Payne-Rayner type inequalities

In this section we establish an inverse Hölder inequality for the eigen-

functions of the problem (1.3) corresponding to the first eigenvalue ∏p.

The main tool we use is a comparison result between u and an eigenfunc-

tion vq of a suitable problem. More precisely, let B be the ball centered

at the origin, such that ∏p is the first eigenvalue of the following problem:

(4.1)

(
−div (|Dv|p−2Dv) = ∏m#(x)v|v|p−2 in B

v = 0 on @B,

Let vq be a positive eigenfunction of the problem (4.1), corresponding to

∏p, such that

(4.2) kv∗
qkLq(B∗,m∗) = ku∗kLq(≠∗,m∗),

for all 0 < q ≤ +1. In particular, if q = +1, by (2.1), we have

(4.3) v∗
1(0) = u∗(0).

A straightforward calculation shows that

B =
n
x ∈ IRn : |x| < (Kp/∏p)

1/p
o

,

where Kp denotes the first eigenvalue of the problem (4.1) in the unit

ball. By Theorem 3.1 and the characterization of the first eigenvalue, it

follows that |B| ≤ |≠|.
The following comparison result between u and vq holds:

Theorem 4.1. Let ≠ be an open, bounded and connected subset of

IRn, 1 < p < n. Let u be a positive eigenfunction of the problem (1.3)
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corresponding to the first eigenvalue ∏p under the assumptions (1.4) and

(1.5) and let vq be a positive eigenfunction of the problem (4.1) corre-

sponding to ∏p such that (4.2) holds. Then:

i) if 1 ≤ q < +1,

(4.4)

Z s

0

m∗(t)(u∗(t))qdt ≤
Z s

0

m∗(t)(v∗
q (t))

qdt, s ∈ [0, |B|];

ii) if q = +1,

u∗(s) ≥ v∗
1(s), s ∈ [0, |B|].

If any of the above inequalities hold as an equality, then ≠ = B,

u(x) = u#(x) = vq(x), aij(x)xj = xi and m(x) = m#(x) a.e. in ≠,

modulo translations.

The first step to get Theorem 4.1 is to obtain a differential inequality

involving the decreasing rearrangement of u. More precisely, the following

proposition holds.

Proposition 4.1. Let ≠ be an open, bounded and connected subset

of IRn, 1 < p < n. Let u be a positive eigenfunction of the problem (1.3)

corresponding to the first eigenvalue ∏p under the assumptions (1.4) and

(1.5) and let vq be a positive eigenfunction of the problem (4.1) corre-

sponding to ∏p such that (4.2) holds. Let

(4.5) U(s) =

Z s

0

m∗(t)(u∗(t))p−1dt, s ∈ [0, |≠|],

and

(4.6) µp =

√
∏1/p

p

nC
1/n
n

!p0

.

Then

(4.7)





−


µ

U 0(s)

m∗(s)

∂ 1
p−1




0

≤ µp(s
1−1/n)−p0 (U(s))

1
p−1 a.e. in ≠∗

U(0) = U 0(|≠|) = 0.
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Proof. By well known comparison results (see, for example [26],

[27], [4], [9]), we have

(4.8) −(u∗(s))0 ≤ µp(s
1−1/n)−p0

µZ s

0

m∗(t)(u∗(t))p−1dt

∂ 1
p−1

,

a.e. in ≠∗. Writing (4.8) in terms of U , we get the thesis.

Remark 4.1. We observe that any eigenfunction associated to the

first eigenvalue of the problem (4.1) is spherically symmetric because of

the symmetry of the problem (4.1) and the simplicity of the first eigen-

value. In particular, v = vq is spherically symmetric, that is vq(x) =

vq(|x|) and then the equation of problem (4.1) can be reduced to the one

dimensional equation

(4.9) − d

d|x|

"µ
dvq

d|x|

∂p−1

|x|n−1

#
= ∏pm

#(x)(vq(x))p−1|x|n−1.

Integrating both sides of (4.9) between 0 and |x| we have

(4.10) − dvq

d|x| =

"
∏p

nCn|x|n−1

Z

|y|<|x|
m#(y)(vq(y))p−1dy

# 1
p−1

,

then since vq is positive by (4.10) it follows that vq is decreasing along

the radious, that is vq(x) = v#
q (x) = v∗

q (Cn|x|n). By (4.10) we get

−dv∗
q

ds
=

"
∏p

(nC
1/n
n s1−1/n)p

Z s

0

m∗(t)(v∗
q (t))

p−1dt

# 1
p−1

,

where s = Cn|x|n.

Then, if we put

(4.11) V (s) =

Z s

0

m∗(t)(v∗
q (t))

p−1dt, s ∈ [0, |B|],

we have

(4.12)





−


µ

V 0(s)

m∗(s)

∂ 1
p−1




0

= µp(s
1−1/n)−p0 (V (s))

1
p−1 in (0, |B|)

V (0) = V 0(|B|) = 0



56 A. ALBERICO – A. FERONE – R. VOLPICELLI [12]

where we put

µ
V 0(s)

m∗(s)

∂1/(p−1)

= v∗
q (s) s ∈ (0, |B|).

Let us consider the following problem

(4.13)





−


µ

w0(s)

m∗(s)

∂ 1
p−1




0

= µps
−p0(1− 1

n ) (w(s))
1

p−1 in (0, |B|)

w(0) = w0(|B|) = 0.

We will say that a function w is a solution of (4.13) if w is an absolutely

continuous function such that

µ
w0(s)

m∗(s)

∂1/(p−1)

is an absolutely continuous

function and it satifies problem (4.13) for all s ∈ (0, |B|). By definition it

follows that a function w is a solution of (4.13) if and only if there exists

a summable function h such that

w(s) =

Z s

0

m∗(t)(h(t))p−1dt.

Following similar arguments to those used in [1], we have that ∏p is the

first eigenvalue of the problem (4.1), if and only if µp is the first eigenvalue

of the problem (4.13).

The second step is to compare the functions U and V defined in (4.5)

and (4.11) respectively.

Lemma 4.1. Let ≠ be an open, bounded and connected subset of IRn,

1 < p < n. Let u be a positive eigenfunction of the problem (1.3) corre-

sponding to the first eigenvalue ∏p under the assumptions (1.4) and (1.5)

and let vq be a positive eigenfunction of the problem (4.1) corresponding

to ∏p such that (4.2) holds. Let U , V and µp be as in (4.5), (4.11) and

(4.6) respectively. Then

U(s) ≤ V (s), ∀s ∈ [0, |B|].
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Proof. First of all, by (4.2), we observe that U(|B|) < U(|≠|) =

V (|B|). Let us suppose, ab absurdo, that there is a positive maximum of

W (s) = U(s)− V (s) in (0, |B|). Then there exists s1 ∈ (0, |B|) such that

W (s1) > 0 and u∗(s1) = v∗(s1). Let us define

(4.14) Z(s) =

(
U(s) s ∈ (0, s1)

V (s) + W (s1) s ∈ [s1, |B|].

The function

µ
Z 0(s)

m∗(s)

∂ 1
p−1

is absolutely continuous in [≤, |B|], for all ≤ > 0

and

µ
Z 0(s)

m∗(s)

∂ 1
p−1

=

µ
U 0(s)

m∗(s)

∂ 1
p−1

, Z(s) = U(s), s ∈ (0, s1),

µ
Z 0(s)

m∗(s)

∂ 1
p−1

=

µ
V 0(s)

m∗(s)

∂ 1
p−1

, Z(s) > U(s), s ∈ [s1, |B|).

This means that Z satisfies the problem:

(4.15)





−


µ

Z 0(s)

m∗(s)

∂ 1
p−1




0

≤ µps
−p0(1− 1

n ) (Z(s))
1

p−1 a.e. in (0, |B|)

Z(0) = Z 0(|B|) = 0.

Multiplying both sides of the inequality in (4.15) by Z(s) and integrating

by parts, we obtain

(4.16)

Z |B|

0

µ
Z 0(s)

m∗(s)

∂ 1
p−1

Z 0(s)ds ≤ µp

Z |B|

0

Z(s)p0

s(1−1/n)p0 ds,

since, as we will show at the end of the proof,

(4.17) lim
ε→0+

µ
Z 0(ε)

m∗(ε)

∂ 1
p−1

Z(ε) = 0.
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By (4.16) we have:

Z |B|

0

√
(Z 0(s))p0

(m∗(s))
1

p−1

!
ds

Z |B|

0

µ
(Z(s))p

s(1−1/n)p0

∂
ds

≤ µp.

This implies that Z is an eigenfunction associated to the first eigenvalue

µp of problem (4.12) and then it must be proportional to V . But, by

its definition, it follows that Z has to coincide with V . So we get a

contradiction, since we have supposed that W (s1) > 0.

In order to conclude the proof, we have to prove (4.17). First of all,

we observe that the hypotheses on m imply that the embedding

(4.18) W 1,p0(≠∗, (m∗)−
1

p−1 ) ↪→ Lp0(≠∗, s−(1− 1
n )p0)

is compact. By absolute continuity of

µ
Z 0(s)

m∗(s)

∂ 1
p−1

and by inequality

(4.15), we have:

µ
Z 0(ε)

m∗(ε)

∂ 1
p−1

Z(ε) = −


Z |B|

ε



µ

Z 0(s)

m∗(s)

∂ 1
p−1




0

ds



∑Z ε

0

Z 0(s)ds

∏
≤

≤ ∏p≥
nC

1/n
n

¥p

"Z |B|

ε

(Z(s))
1

p−1

s(1− 1
n )p0

ds

#

Z ε

0

m∗(s)

√Z |B|

s

(Z(t))
1

p−1

t(1−
1
n )p0

dt

!p−1

ds


 .

Using Hölder inequality and the embedding (4.18), we obtain

µ
Z 0(ε)

m∗(ε)

∂ 1
p−1

Z(ε) ≤ C kZk1+
1

p−1

Lp0(B∗,s−(1−1/n)p0 )

√Z |B|

ε

1

s(1−1/n)p0 ds

! 1
p0

×

×


Z ε

0

m∗(s)

"Z |B|

s

1

t(1−
1
n )p0

dt

# p−1
p0

ds


 .
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Again by Hölder inequality, (1.5) and using the fact that 1 < p < n, we

get

µ
Z 0(ε)

m∗(ε)

∂ 1
p−1

Z(ε) ≤ Cε
1
n− 1

p k m kr

µZ ε

0

s( 1
n− 1

p )(p−1)r0ds

∂ 1
r0

,

that is

(4.19)

µ
Z 0(ε)

m∗(ε)

∂ 1
p−1

Z(ε) ≤ C k m kr ε
p
n− 1

r .

Since r > p/n passing to the limit as ε→ 0+ in (4.19), we get the thesis.

We are now able to prove Theorem 4.1.

Proof of Theorem 4.1. Let us consider the case 0 < q < +1.

We point out that, if q = p − 1, then the conclusion follows directly by

Lemma 4.1. In the general case, let us define the following functions

Uq(s) =

Z s

0

m∗(t)(u∗(t))qdt, s ∈ [0, |≠|]

and

Vq(s) =

Z s

0

m∗(t)(v∗
q (t))

qdt, s ∈ [0, |B|].

By definitions, we get that

Uq(0) = Vq(0) = 0,

and by Lemma 4.1,

Uq(|B|) ≤ Vq(|B|).
If, ab absurdo, (4.4) does not hold, then there exists s1 ∈ (0, |B|) such

that

(4.20) Uq(s1) > Vq(s1)

and

(4.21) u∗(s1) ≤ v∗
q (s1).
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On the other hand, by Lemma 4.1, it follows that, if U and V are the

functions defined in (4.5) and (4.11), then

(4.22) U(s) ≤ V (s), s ∈ [0, |B|]

and then, by (4.7), (4.12) and (4.21), we get

−


µ

U 0(s)

m∗(s)

∂ 1
p−1




0

≤ −


µ

V 0(s)

m∗(s)

∂ 1
p−1




0

a.e. s ∈ [0, |B|],

that is

(4.23) −(u∗(s))0 ≤ −(v∗
q (s))

0 a.e. s ∈ [0, |B|].

If s ∈]0, s1[, integrating (4.23) between s and s1, and using (4.21), we get

u∗(s) ≤ v∗
q (s), s ∈ (0, s1],

which contraddicts (4.20).

If q = +1, we get the thesis by similar arguments. Since |B| < |≠|
and u∗(|B|) > v∗

1(|B|) = 0, then we consider

s1 = inf{s ∈ B∗ : u∗(t) ≥ v∗
1(t) ∀t ∈ (s, |B|]}.

If s1 = 0, then Theorem 4.1 is proven. So let us suppose, ab absurdo,

that s1 > 0. Then

u∗(s1) = v∗
1(s1).

Moreover, as we have pointed out in Section 2, we have

u∗(0) = v∗
1(0).

If s ∈ (0, s1), integrating (4.23) between 0 and s we get

u∗(s) ≥ v∗
1(s) ∀s ∈ (0, s1)

which contraddicts the assumption s1 > 0.
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Finally, the case of equality in i) and ii) follows immediately from

Theorem 3.1. It is enough to observe that, if, for example, equality holds

in part i), then u∗ = v∗
q and |≠| = |B|. This means that we can apply

Theorem 3.1.

Theorem 4.2. Let ≠ be an open, bounded and connected subset of

IRn, 1 < p < n. Let u be a positive eigenfunction of the problem (1.3)

corresponding to the first eigenvalue ∏p under the assumptions (1.4) and

(1.5). Then, for 0 < q < r ≤ +1, we have:

(4.24) k u∗ kLr(≠∗,m∗)≤ β(n, q, r, p,∏p) k u∗ kLq(≠∗,m∗),

where β(n, q, r, p,∏p) =k v∗ kLr(≠∗,m∗) / k v∗ kLq(≠∗,m∗) and v is a non

trivial eigenfunction of the problem (4.1). Furthermore, equality in (4.24)

holds if, and only if, B = ≠ = ≠#, u(x) = u#(x), m(x) = m#(x) and

aij(x)xj = xi a.e. in ≠, modulo translations.

Proof. By Theorem 4.1, we get that m∗u∗q ≺ m∗v∗
q

q. Then by

Corollary 2.1, we get

k u∗ kLr(≠∗,m∗)≤k v∗
q kLr(≠∗,m∗)=

k v∗
q kLr(≠∗,m∗)

k v∗
q kLq(≠∗,m∗)

k u∗ kLq(≠∗,m∗)

and equality holds if, and only if, u∗(s) = v∗
q (s), for all s ∈ ≠∗. Then, by

Theorem 4.1, we get the thesis.

Let us, now, consider the case r = +1. We get the thesis by the fact

k u∗ kL1(≠∗)= lim
r→+1

k u∗ kLr(≠∗,m∗)≤ lim
r→+1

k v∗
q kLr(≠∗,m∗)=k v∗

q kL1(≠∗) .

In particular if k u∗ kL1(≠∗)=k v∗
q kL1(≠∗), then vq = v1. Taking into

account Theorem 4.1 we immediately have u∗ = v∗
1. This completes the

proof.
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