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Continuous Sobolev inner products on the unit

circle: canonical models

E. BERRIOCHOA – A. CACHAFEIRO

Riassunto: Si studiano le proprietà algebriche ed asintotiche delle successioni di
polinomi ortogonali secondo due forme di prodotto interno di tipo Lebesgue-Sobolev. Si
tratta delle forme (1.2) e (1.3) che sono, in certo senso, canoniche.

Abstract: We study the algebraic and asymptotic properties for the orthogo-
nal polynomials with respect to Lebesgue-Sobolev inner products of two different types,
which, in a certain sense, can be considered canonical.

1 – Introduction

The theory of orthogonal polynomials on the real line with respect

to an inner product of Sobolev type (discrete case) has been widely de-

velopped, while the study of the orthogonality with respect to a Sobolev

inner product (continuous case) has been done for particular measures,

generally classical measures ([12], [9], [14]). Moreover, an important part

of the study has been done from the point of view of the coherence of

measures (see [8]). The full description of the coherent pairs appears in

[13], where the author proves that, at least, one of the measures that

constitutes the coherent pair must be classical (Laguerre or Jacobi).
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A.M.S. Classification: 42C05
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With regard to the unit circle T, the theory of orthogonal polynomials

with respect to Sobolev products has been developped in the discrete case,

that is, for inner products of the following type:

hf, gi =

Z 2π

0

f(eiθ)g(eiθ)dµ(θ) + f(Z)Ag(Z)H ,

where f(Z) = (f(z1), . . . , f
(l1)(z1), . . . , f(zm), . . . , f (lm)(zm)), |zi| ≥ 1 and

A is a hermitian and positive definite matrix. The algebraic study has

been extensively developped and recently asymptotic properties were

found: relative asymptotics in [5] and strong asymptotics in [6].

The study of the coherent pairs on the unit circle is introduced in [4].

There it appears the characterization of the normalized Lebesgue measure

like the unique Bernstein-Szegö measure which has a coherent companion.

On the other hand, the first model in the Sobolev continuous case on the

unit circle appears in [10]. It corresponds to the Szegö polynomials zn

which are orthogonal with respect to the inner product

hf, gi =

Z 2π

0

f(eiθ)g(eiθ)
dθ

2π
+

Z 2π

0

f 0(eiθ)g0(eiθ)
dθ

2π
,

because the sequence of derivatives is also orthogonal with respect to the

Lebesgue measure.

As a previous step for the development of the general theory, it is

interesting to know explicit examples of orthogonal polynomials for ap-

propriate choices of the measures. Following this idea we have given in [1]

a complete characterization of the orthogonal polynomials with respect

to the inner product

(1.1) hf, gis =

Z 2π

0

f(eiθ)g(eiθ)dµ(θ) +
1

∏

Z 2π

0

f 0(eiθ)g0(eiθ)
dθ

2π
,

with dµ(θ) = dθ

|eiθ−α|2 , |α| < 1 and ∏ > 0.

Taking into account that the better known examples of orthogonal

polynomial sequences on the unit circle, in the standard theory, are those

corresponding to rational or polynomial modifications of the Lebesgue

measure or the addition of a Dirac delta to the Lebesgue measure (see



[3] Continuous Sobolev inner products on the unit etc. 91

[7], [15]); in this paper we discuss the properties of the orthogonal poly-

nomials with respect to inner products like (1.1) for these other two dif-

ferent choices of the measure µ, which, in this sense, can be considered

canonical.

In inner products like (1.1), the second measure has a very important role.

Therefore we begin this study taking for the derivatives the normalized

Lebesgue measure in both cases. In this situation generalizations for

higher derivatives could be obtained in a natural way.

Case I.

(1.2) hf, gis1
=

Z 2π

0

f(eiθ)g(eiθ)dµ1(θ) +
1

∏

Z 2π

0

f 0(eiθ)g0(eiθ)
dθ

2π

with dµ1(θ) = |eiθ−α|2

1+|α|2
dθ
2π

, α 6= 0 and ∏ > 0.

Case II.

(1.3) hf, gis2
=

Z 2π

0

f(eiθ)g(eiθ)dµ2(θ) +
1

∏

Z 2π

0

f 0(eiθ)g0(eiθ)
dθ

2π

with dµ2(θ) = dθ
2π

+ dδa(θ), |a| = 1 and ∏ > 0.

2 – Orthogonal Polynomials related to h , is1

Theorem 1. Let {eΦn} be the monic orthogonal polynomial sequence

(MOPS) with respect to h , is1
. Then for n ≥ 1:

i) eΦn(z) = zn + αn
eΦn−1(z)

ii) k eΦn k2s1
= 1 +

n2

∏
− |c1|2
k eΦn−1 k2s1

iii) eΦn+1(z) = (z + αn+1)eΦn(z)− αnzeΦn−1(z)

iv) eΦn−1(z) =
≥
(z + αn+1)eΦn(z)− eΦn+1(z)

¥ 1

αnz
.
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with k eΦ0 k2s1
= 1, c1 = hz, 1iµ1

and

(2.1) αn = − c1

k eΦn−1 k2s1

.

Proof. i) The matrix of moments for h , is1
is tridiagonal, symmetric

and the elements on the diagonal are di,i = 1 + i2

∏
for i ≥ 0. Thus

hzn, zkis1
= 0 for k = 0, . . . , n− 2 and therefore for n ≥ 1 there exists αn

such that eΦn(z) = zn +αn
eΦn−1(z). Besides we can compute αn as follows

αn = −hz
n, eΦn−1(z)is1

k eΦn−1 k2s1

= −hz
n, eΦn−1(z)iµ1

k eΦn−1 k2s1

=

= −hz
n, zn−1iµ1

k eΦn−1 k2s1

= − c1

k eΦn−1 k2s1

ii) Taking norms in (i, Theorem 1) we get k eΦn k2s1
=k zn k2s1

−|αn|2 k
eΦn−1 k2s1

. Thus if we use (2.1) we conclude (ii, Theorem 1).

iii) Let us consider (i, Theorem 1) for n and n + 1. Then if we eliminate

zn+1 we obtain (iii, Theorem 1).

iv) It is immediate that αn = 0 if and only if c1 = 0, which is equivalent

to α = 0. Then, since α 6= 0, we can deduce the three-term backward

descending relation.

Corollary 1. It holds that

eΦn(z) =
nX

k=0




nY

j=k+1

αj


 zk.

Proof. It is straightforward from (i, Theorem 1) using induction.

Theorem 2. Let {eΦn} be the MOPS with respect to h , is1
. Then:

i) lim
n→1

k eΦn k2s1
=1.

ii) lim
n→1

k eΦn k2s1

n2
=

1

∏
.
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iii) There exists N ∈ N such that {k eΦn k2s1
}1

n=N is an increasing se-

quence.

iv) lim
n→1

≥
k eΦn k2s1

−n2

∏

¥
= 1.

Proof. i) and ii) We apply the extremal property of the MOPS with

respect to an inner product. Thus if we denote c0 = hzn, zniµ1
we have:

c0+
n2

∏
=k zn k2s1

≥k eΦn k2s1
≥ min

P (z)=zn+...
k P k2µ1

+
1

∏
min

P (z)=zn+...
k P 0 k2θ≥

n2

∏
,

and dividing by n2, we obtain c0
n2 + 1

∏
≥ keΦnk2

s1
n2 ≥ 1

∏
. Therefore we get i)

and ii).

iii) It is easy to check that n2

∏
≥ c0 + (n−1)2

∏
if and only if n ≥ ∏c0+1

2
.

Thus if we take N the greatest integer smaller than ∏c0+1
2

we have for

n ≥ N that

k eΦn k2s1
≥ n2

∏
≥ c0 +

(n− 1)
2

∏
≥k eΦn−1 k2s1

,

which proves iii).

Assertions i), ii) and iii) are valid for Sobolev products like (1.1) where

µ is a Borel positive measure with infinite support on [0, 2π].

iv) It is a consequence of i) and (ii, Theorem 1).

Corollary 2. Let {αn} be the sequence in (i, Theorem1). Then

i) There exists N such that {|αn|}n≥N is decreasing and limn→1 αn = 0.

ii) The sequence {αn}n≥N is on the straight line segment from 0 to −c1.

iii) eΦn(0) 6= 0 for n ≥ 0 and αn =
eΦn(0)

eΦn−1(0)
for n ≥ 1.

iv) αn =
−c1

1 + αn−1c1 + (n−1)2

∏

for n ≥ 1 with α0 = 0.
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Proof. i) and ii) Taking into account that αn = − c1

keΦn−1k2
s1

for n ≥ 1

and Theorem 2 we get the assertions.

iii) From (i, Theorem 1) eΦn(0) = αn
eΦn−1(0), with α1 = −c1 6= 0 and

eΦ0(0) = 1. Since eΦ0(0) 6= 0 and αn 6= 0 for every n, then eΦn(0) 6= 0 and

therefore we get (iii, Corollary 2).

iv) From (ii, Theorem 1)

−c1

k eΦn k2s1

=
−c1

1 + n2

∏
− |c1|2

keΦn−1k2
s1

and using (2.1) we obtain (iv, Corollary 2).

Corollary 3.

i) lim
n→1

k eΦn(z)− zn k2s1
= 0.

ii) lim
n→1

k eΦn(z)− zn k2µ1
= 0 and lim

n→1
k eΦ0

n(z)− nzn−1 k2θ= 0.

Proof.

i)
k eΦn(z)− zn k2s1

= heΦn(z)− zn, eΦn(z)− znis1
=

=k zn k2s1
− k eΦn(z) k2s1

= 1 +
n2

∏
− k eΦn(z) k2s1

.

Applying (iv, in Theorem 2) we get i).

ii) It is immediate from i).

Next we see that we can reduce the study of all orthogonal families

with the same |c1| to only one.

Let c1 = |c1|eiθ. If we denote the sequence αn in (i, Theorem 1) by αn,c1 ,

then

Lemma 1.

αn,c1 = eiθαn,|c1|.
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Proof. We prove by induction that αn = −c1f(n, |c1|) where f is a

function which depends only on n and |c1|.
For n = 1, α1 = −c1 then f(n, |c1|) = 1. If we assume that the result

is valid for n− 1, by using (iv, Corollary 2) we obtain

αn,c1 =
−c1

1 + αn−1,c1c1 + (n−1)2

∏

=

=
−c1

1− |c1|2f(n− 1, |c1|) + (n−1)2

∏

= −c1f(n, |c1|) = eiθαn,|c1|.

By using the previous lemma we prove that the families of orthogonal

polynomials corresponding to different values of c1 with the same modulus

can be related in a very simple way.

Theorem 3. If we denote eΦn(z) = eΦn,c1(z) then it holds

eΦn,c1(z) = einθ eΦn,|c1|
≥ z

eiθ

¥
.

Proof. From Corollary 1 and taking into account Lemma 1 we get

eΦn,c1(z) = zn +
n−1X

k=0




nY

j=k+1

αj,c1


 zk =

= einθ



≥ z

eiθ

¥n

+
n−1X

k=0




nY

j=k+1

αj,c1

eiθ



≥ z

eiθ

¥k


 =

= einθ



≥ z

eiθ

¥n

+
n−1X

k=0




nY

j=k+1

αj,|c1|



≥ z

eiθ

¥k


=einθ eΦn,|c1|

≥ z

eiθ

¥
.

Corollary 4.

i) eΦn,c1(z0) = 0 if and only if eΦn,|c1|(
z0
eiθ ) = 0.

ii) The zeros of eΦn,|c1| are symmetric with respect to the real line.

iii) The zeros of eΦn,c1 are symmetric with respect to the straight line

segment from 0 to c1.
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Proof. i) It is immediate from Theorem 3 and it means that the

zeros of eΦn,c1 can be obtained from the zeros of eΦn,|c1| making a rota-

tion eiθ.

ii) Since eΦn,|c1| is a polynomial with real coefficients we get the result.

iii) It is a consequence of i) and ii).

Theorem 4.

i) eΦn and eΦn−1 do not have any common zero.

ii) For i and j large enough eΦi and eΦj do not have any common zero.

Proof. i) Let β be a common zero of eΦn and eΦn+1. Then, if we use (i,

Theorem 1) we have eΦn+1(β) = βn+1 + αn+1
eΦn(β), which implies β = 0.

This yields a contradiction if we take into account iii) in Corollary 2.

ii) It suffices to prove for eΦi,−|c1| and eΦj,−|c1| which are polynomials with

positive coefficients. We assume, without loss of generality, i > j.

Next we use the following result due to Eneström (see [11]), concern-

ing the boundness of the zeros for polynomials with positive coefficients:

“Let P (z) =
Pn

k=0 akz
k, n ≥ 1 be a polynomial with ak > 0 for all

0 ≤ k ≤ n. Setting a = min0≤k<n( ak
ak+1

) and b = max0≤k<n( ak
ak+1

), then

all zeros of P (z) are contained in the annulus a ≤ |z| ≤ b.”

Since in our case a[eΦj] = min1≤k≤j{αk} and b[eΦj] = max1≤k≤j{αk},
the zeros of eΦj are in the annulus a[eΦj] ≤ |z| ≤ b[eΦj].

Applying Corollary 2 we know that for ε > 0 there exists N ∈ N
such that for n ≥ N |αn| < ε and {αn}n≥N is a decreasing sequence.

Let ε1 > 0 such that ε1 < mini=1,...,N{αi}. Then there exists j ≥ N

such that for n ≥ j |αn| < ε1, {αn}n≥j is a decreasing sequence and

αj < αk k = 1, . . . , j − 1. If we take j in this way then a[eΦj] = αj and

therefore the zeros of eΦj are in αj ≤ |z| ≤ maxk=1,...,j{αk}.
Now assume there exists β such that eΦi(β) = eΦj(β) = 0 which implies

αj ≤ |β|.
Since

eΦi(z)=p(z)+

√
j+1Y

k=i

αk

!
eΦj(z) with p(z)=zi+αiz

i−1+. . .+αi . . . αj+2z
j+1

then p(β) = 0. Therefore 0 is a zero of p(z) and the other zeros are in

the annulus min{αi, . . . , αj+2} ≤ |z| ≤ max{αi, . . . , αj+2}. This implies

β = 0 or |β| ≤ αj+2, which leads to a contradiction with αj ≤ |β|.
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Theorem 5. The zeros of eΦn are in the annulus mini=1,...,n |αi| ≤
|z| ≤ maxi=1,...,n |αi|.

Proof. Following the same ideas of the previous theorem we obtain

the result.

Besides for n large enough mini=1,...,n |αi|= |αn|= |c1|
keΦn−1k2

s1

> |c1|
1+

(n−1)2

∏

,

which gives a lower bound for the zeros.

Note that for ∏ ≤ 1 and n ≥ 2

|αn| =
|c1|

k eΦn−1 k2s1

≤ |c1|
k eΦn−1 k2µ + (n−1)2

∏

≤ |c1|.

Since |α1| = |c1| < 1, then in this particular case the zeros are in the unit

disk D = {z : |z| < 1}.

Theorem 6. Let δ > 0, then limn→1
eΦn(z)

zn = 1 uniformly for

|z| ≥ δ.

Proof. From (2.1)

(2.2) |αn| =
|c1|

k eΦn−1 k2s1

≤ |c1|
k eΦn−1 k2µ + (n−1)2

∏

<
∏|c1|

(n− 1)2

and for |z| ≥ δ

(2.3)
∏|c1|
|z| ≤

∏|c1|
δ

= ∞.

Therefore from Corollary 1 and applying (2.2) and (2.3) we get

ØØØ
eΦn(z)

zn
− 1

ØØØ =
ØØØ

n−1X

k=0

nY

j=k+1

≥ αj

zn−k

¥ØØØ <

<
∏|c1|

|z|(n− 1)2
+

∏2|c1|2

|z|2(n− 1)2(n− 2)2
+ . . .
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+
∏n−1|c1|n−1

|z|n−1
(n− 1)2(n− 2)2 . . . 12

+
∏n−1|c1|n

|z|n(n− 1)2(n− 2)2 . . . 12
<

<
∞

(n− 1)2
+

∞2

(n− 1)2(n− 2)2
+ . . . +

∞n−1

(n− 1)2(n− 2)2 . . . 12
+

+
∞n

∏(n− 1)2(n− 2)2 . . . 12
.

Let K be a natural number such that (K − 1)2 ≤ ∞ < K2. Then for

K ≤ i ≤ n − 1, ∞
(n−1)2

≤ ∞
i2
≤ ∞

K2 < 1 and so we have that ∞
(n−1)2

is a

bound for the first n −K terms. For the last K − 1 terms ∞n

((n−1)!)2
is a

bound. Therefore

n−1X

k=K




n−1Y

j=k

∞n−k

(n− 1)2 . . . k2


+

K−1X

k=1




n−1Y

j=k

∞n−k

(n− 1)2 . . . k2


+

+
∞n

∏(n− 1)2 . . . 12
<

(n−K)∞

(n− 1)2
+

Kτ∞n

((n− 1)!)2

with τ = max{1, 1
∏
}. Since these two last sequences converge to zero, we

get the result.

Corollary 5. Let δ > 0. For n large enough the zeros of eΦn are

in |z| ≤ δ.

Proof. It is a consequence of Hurwitz theorem (see [3]).

3 – Orthogonal polynomials related to h , is2
.

In order to study the Sobolev orthogonal polynomials with respect

to the inner product h , is2
we recall the following results:

1) Since dµ2(θ) = dθ
2π

+ dδa(θ) then

hzn, zmiµ2
= hzn, zmiθ + an−m =

(
2 for n = m

an−m for n 6= m

and the MOPS(µ2) {Φn(z)} is given by

Φn(z) = zn − an

1 + Kn−1(a, a)
Kn−1(z, a)
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where Kn(z, y) are the kernels with respect to the normalized Lebesgue

measure and k Φn k2µ2
= 1+Kn(a,a)

1+Kn−1(a,a)
, (see [2]).

2) Let us consider

hzn, zmiS = hzn, zmiθ +
1

∏
nmhzn−1, zm−1iθ =

(
1 + n2

∏
for n = m

0 for n 6= m

Then it holds that {zn} is the MOPS(h , iS) and k zn k2S= 1 + n2

∏
.

Taking into account these facts the inner product h , is2
can be written as

hzn, zmis2
= hzn, zmiµ2

+
1

∏
nmhzn−1, zm−1iθ = hzn, zmiS + an−m

and it holds

Theorem 7. Let {e™n} be the MOPS(h , is2
). Then

i) e™n(z) = zn − an

1 + Hn−1(a, a)
Hn−1(z, a),

with Hn−1(z, y) the kernel related to h , iS, that is Hn−1(z, y) =
Pn−1

k=0
zkyk

1+k2
∏

.

ii) k e™n k2s2
= 1 +

n2

∏
+

1

1 + Hn−1(a, a)
.

Proof. i) It follows from 1) and 2) above.

k e™n k2s2
= he™n, znis2

=
D
zn − an

1 + Hn−1(a, a)
Hn−1(z, a), zn

E
s2

=ii)

=
D
zn − an

1 + Hn−1(a, a)
Hn−1(z, a), zn

E
µ2

+

+
1

∏

D
nzn−1 − an

1 + Hn−1(a, a)
H

(1,0)
n−1 (z, a), nzn−1

E
θ

=

=
D
zn − an

1 + Hn−1(a, a)
Hn−1(z, a), zn

E
θ
+

+ |a|2n
≥
1− Hn−1(a, a)

1 + Hn−1(a, a)

¥
+

n2

∏
=

= 1 +
n2

∏
+

1

1 + Hn−1(a, a)
.

We denote H
(1,0)
n−1 (z, a) = @

@z
Hn−1(z, a).
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Corollary 6. Let {e™n} be the MOPS(h , is2
). Then

i) e™n(z) = zn−1(z − a) + βn−1
e™n−1(z) for n ≥ 2,

with βn−1 = a(
1+Hn−2(a,a)

1+Hn−1(a,a)
) and therefore βn−1 6= 0 for n ≥ 2.

ii) e™n(z) = (z + βn−1)e™n−1(z)− βn−2z e™n−2(z) for n ≥ 3.

iii) e™n(z) =
n−1X

k=1




n−1Y

j=k+1

βk


 zk(z − a) +

n−1Y

j=1

βj

≥
z − a

2

¥
for n ≥ 2.

iv) e™n(z) = zn − ∏

1 + Hn−1(a, a)

nX

k=1

akzn−k

∏+ (n− k)2
.

Proof. i) Let us consider (i, Theorem 7) for n and n− 1

(1 + Hn−1(a, a))(e™n(z)− zn) = −anHn−1(z, a),

a(1 + Hn−2(a, a))(e™n−1(z)− zn−1) = −anHn−2(z, a).

If we substract we get

(1 + Hn−1(a, a))(e™n(z)− zn)− a(1 + Hn−2(a, a))(e™n−1(z)− zn−1) =

=
−azn−1

1 + (n−1)2

∏

and then

(1 + Hn−1(a, a))e™n(z)− a(1 + Hn−2(a, a))e™n−1(z)+

− (1 + Hn−1(a, a))(zn − azn−1) = 0,

which implies (i, Corollary 6).

ii) From (i, Corollary 6) z e™n−1(z) = zn−1(z−a)+βn−2z e™n−2(z) and sub-

stracting from (i, Corollary 6) we have e™n(z)−z e™n−1(z) = βn−1
e™n−1(z)−

βn−2z e™n−2(z), that is (ii, Corollary 6).
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iii) (iii, Corollary 6) follows from (i, Theorem 7) and (i, Corollary 6)

proceeding by induction on n. Indeed e™2(z) = z(z − a) + β1
e™1(z) with

e™1(z) = z− a
2
. Then if we suppose (iii, Corollary 6) is true for n− 1 and

take into account (i, Corollary 6) we obtain the result for n.

iv) Operating in (iii, Corollary 6) we obtain

e™n(z) = zn + (βn−1 − a)zn−1 + βn−1(βn−2 − a)zn−2 + . . .

+ βn−1 . . . β2(β1 − a)z − βn−1 . . . β1

a

2
.

Taking into account that

βn−1 . . . βj+1(βj − a) = − ∏an−j

(∏+ j2)(1 + Hn−1(a, a))
j = 1, . . . , n− 2 ,

βn−1 − a = − ∏a

(∏+ (n− 1)2)(1 + Hn−1(a, a))

and

βn−1 . . . β1

a

2
=

an

1 + Hn−1(a, a)
,

we deduce (iv, Corollary 6).

Corollary 7.

i) lim
n→1

k e™n k2s2
=1 and lim

n→1

k e™n k2s2

n2
=

1

∏
.

ii) There exists N such that for n ≥ N {k e™n k2s2
}n≥N is increasing.

Proof. Although the result in Theorem 2 is also valid in this par-

ticular case, it is easy to obtain i) directly as follows. Since

lim
n→1

Hn−1(a, a) = lim
n→1

∏
n−1X

k=0

1

∏+ k2
= H ∈ R+,

then if we take limits in (ii, Theorem 7) we get

lim
n→1

k e™n k2s2
=1 and lim

n→1

k e™n k2s2

n2
= lim

n→1

≥ 1

n2
+

1

∏
+

1

Hn−1(a, a)n2

¥
=

=
1

∏
.
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Theorem 8. Let {e™n} be the MOPS (h , is2
) and let {βn} be the

sequence defined in Corollary 6. Then

i) e™n(a) = −e™n(0) =
an

1 + Hn−1(a, a)
.

ii) βn =
e™n+1(a)
e™n(a)

=
e™n+1(0)
e™n(0)

.

iii) |βn| < 1 for n ≥ 1, {|βn|}n≥1 is increasing and lim
n→1

βn = a.

Proof. i) In (i, Theorem 7) taking z = a and z = 0 we obtain
e™n(a) = an

1+Hn−1(a,a)
and e™n(0) = − an

1+Hn−1(a,a)
Hn−1(0, a) = −e™n(a).

ii) From i) e™n(a) 6= 0 n ≥ 0 and from (i, Corollary 6) we get ii).

iii) From Corollary 6 |βn| = |a| |1+Hn−1(a,a)|
|1+Hn(a,a)| < |a|. Moreover |βn−1| <

|βn| if and only if
1+Hn−2(a,a)

1+Hn−1(a,a)
<

1+Hn−1(a,a)

1+Hn(a,a)
, and this last inequality is

equivalent to (∏ + n2)(1 + Hn(a, a)) > (∏ + (n− 1)
2
)(1 + Hn−1(a, a)),

which is true.

In order to obtain a result about the situation of the zeros of e™n we

first prove that we can reduce the study to the case in which a = 1.

Let us denote e™n by e™n,a. If a = 1 we write e™n,1.Then

Theorem 9.

i) e™n,a(z) = an e™n,1(
z
a
).

ii) If β is a zero of e™n,1 then aβ is a zero of e™n,a.

iii) The zeros of e™n,a are symmetric with respect to the straight line seg-

ment from 0 to a.

iv) e™n,a and e™n−1,a do not have any common zero.
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Proof. i) Applying (iv, Corollary 6)

e™n,a(z) = an

√≥z

a

¥n

− ∏

1 + Hn−1(1, 1)

nX

k=1

1

∏+ (n− k)2

≥z

a

¥n−k
!

=

= an e™n,1

≥z

a

¥

ii) It is an immediate consequence of i).

iii) Since e™n,1 has real coefficients, its zeros are symmetric with respect

to the real line and therefore from ii) we get iii).

iv) Assume β is a common zero of e™n,a and e™n−1,a. Then taking z = β in

(i, Corollary 6) we deduce βn−1(β−a) = 0 which implies β = 0 or β = a,

but this is impossible because e™n(a) = −e™n(0) 6= 0 for every n.

Theorem 10. The zeros of e™n are in |z| < 2.

Proof. First we recall the following result:

“If P (z) =
Pn

k=0 akz
k is a polynomial of degree n (n ≥ 1) such that

ak −Λak−1 ≥ 0 (k = 1, . . . , n) for some Λ > 0, then P (z) has all its zeros

in the disk |z| ≤ an−a0Λ
n+|a0|Λn

Λ|an| .”

We apply the preceding result to e™n,1 which has real coefficients. If

we take Λ = 1 we see that ak − ak−1 ≥ 0 for k = 1, . . . , n:

1 + ∏
(1+Hn−1(a,a))(∏+(n−1)2)

> 0 and − 1
∏+(n−i)2

+ 1
∏+(n−(i+1)2)

> 0 for i =

1, . . . , n−1. Besides an−a0+|a0|
|an| = 1+ 2

1+Hn−1(1,1)
< 2 because Hn−1(1, 1) =

∏
Pn−1

k=0
1

∏+k2 > 1.

Finally we study the asymptotic behavior of e™n.

Theorem 11.

lim
n→1

e™n(z)

zn
= 1

uniformly on compact subsets of |z| > 1.
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Proof. Let r and R be positive numbers such that r > 1, R > 1 and

take z such that r ≤ |z| ≤ R. Given ε0 > 0 take ε > 0 such that ε
r−1

< ε0
2
.

Since {βn} → a there exists k ∈ N such that for n ≥ k |βn − a| < ε.

Thus, applying Theorem 8

ØØØ(βn−1 − a)

z
+
βn−1(βn−2 − a)

z2
+ . . . +

βn−1 . . . βk+1(βk − a)

zn−k

ØØØ <

<
n−kX

j=1

ε

|z|j <
ε

r − 1
<
ε0

2
.

On the other hand there exists m ∈ N such that for n ≥ m 1
rn < ε0

4k

and so 1
|z|n < ε0

4k
for z such that r ≤ |z| ≤ R. Thus

ØØØβn−1 . . . βk(βk−1 − a)

zn−k+1
+ . . . +

βn−1 . . . β2(β1 − a)

zn−1
+
βn−1 . . . β1

a
2

zn

ØØØ ≤

≤ 2
k−1X

j=1

ØØØ1
z

ØØØ
n−j

+
1

2

ØØØ1
z

ØØØ
n

<
ε0

2
for n ≥ m + k − 1.

Therefore given ε0 > 0 there exists N = m + k − 1 such that for

n ≥ N |e™n(z)

zn − 1| < ε0 for r ≤ |z| ≤ R.

Corollary 8.

i) lim
n→1

e™n(z)

zn−1
= z

uniformly on compact subsets of |z| > 1.

ii) lim
n→1

e™n(z)

zn−1(z − a)
=

z

z − a

uniformly on compact subsets of |z| > 1.

Proof. It is straightforward from Theorem 11

Corollary 9. Let ε > 0. For n large enough the zeros of e™n are

in |z| < 1 + ε.

Proof. It is a consequence of Hurwitz Theorem.
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Remark 1. As a conclusion we want to remark that there are some

important differences between the cases studied:

Although the Sobolev polynomials behave like the orthogonal poly-

nomials with respect to the second measure outside the unit disk; in the

first case the result remains true for |z| ≥ δ with δ > 0 (Theorem 6), and

it is interesting to note that the Sobolev norm of the difference tends to

zero (Corollary 3). In the second case this last result is not true and the

asymptotic behavior cannot be extended into the disk.
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