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Asymptotic behaviour for the nonlinear

beam equation in a time-dependent domain

J. FERREIRA — R. BENABIDALLAH
J.E. MUNOZ RIVERA

R1ASSUNTO: In questo lavoro si dimostra lesistenza di soluzioni forti per l’equa-
zione non lineare delle travi (*) dove Q; ¢ un dominio non cilindrico di R?, v ¢ una
costante positiva e M (\) & una funzione reale tale che M (\) > —mq, con mg costante
positiva. Si riconosce inoltre che l’energia ha un decadimento esponenziale.

ABSTRACT: In this paper we prove existence of strong solutions as well as the
exponential decay of the energy to the mized problem for the nonlinear beam equation

*) Utt + Ugzzs — M( |uz\2dx) Uge +vur =0 in Qy,

I

where Q; is a non-cylindrical domain of R?. By v we are denoting a positive constant.
Here M () is a real function such that M (\) > —mo, for all X\ > 0, where mgo > 0.

1 — Introduction

In this work we will study the existence of strong solution as well as
the exponential decay of the energy to the nonlinear beam equation of
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Kirchhoff type given by,

(L.1) wp+Uppes — M(/ \ux\2dm)um+yut:0 in Q. ,
Iy

(1.2) w(z,0)=uo(x), wu(z,0)=u(x) in a(0)<z<p(0),
(1.3) u(z,t)=0, wuy(z,t)=0 on .

By Q; we are denoting a non-cylindrical domain of R? defined by
(1.4) Qi = {(x,t) eR?|a(t) <z < B(t), 0<t<T}
where «(-), 8() are C*-functions such that
a(t) < p(t) forall0<t<T.
The lateral boundary ¥, of (); is given by

o= U (@) x{thu ) < {t}).

0<t<T

The system (1.1)-(1.3) describes the transverse deflection u(zx,t) of a
beam which changes its configuration at each instant of time, increasing
its deformation and hence increasing its tension. This model was pro-
posed by WoIlNOwSKI [17] for the case of cylindrical domain, see also
EISLEY [7] and BURGREEN [5] for the physical justification and back-
ground of the model.

The existence, uniqueness and regularity of solutions of this equation
with some modifications was studied by DICKEY [6], BALL [1], MEDE-
IROS [9], PEREIRA [13], MENZALA [10], RIVERA [16], RAMOS [14], among
others. While the exponential decay to zero in a cylinder domain was
studied by BRITO [4], BILER [3], BALL [2], PEREIRA [13], see also the ref-
erences therein. The exponential decay over non cylindrical domains was
studied by NAKAO and NARAZAKI [11] for the nonlinear wave equation.
In this work the authors, using the penalty method, were able to show
the exponential decay of weaks solutions. The principal shortcoming of
the above method is because it is not possible to show the existence of
regular solution.



3] Asymptotic behaviour for the nonlinear etc. 179

In this paper we deal with the nonlinear beam equation of Kirch-
hoff type over a non cylindrical domain. We show the existence and
uniqueness of strong solutions to the system. The method we use to
prove the result of existence and uniqueness is based on transform the
system (1.1)-(1.3) into another initial boundary-value problem defined
over a cylindrical domain whose sections are not time-dependent. This
is done using a suitable change of variable. Then we show the existence
and uniquenes for this new system. Our existence result on noncylindri-
cal domains will follows using the inverse of the transformation. That is,
using the diffeomorphism h : @, — @ defined by

r—«

(1.5) h(x,t):(y,t):( ,t) for (z,8)€Q, 7=8—a

and h=! : Q — Q; defined by

(1.6) h™Hy, 1) = (z,t) = (at) +7(t)y, 1) .

Denoting by v the function

(1.7) v(y,t) =uoh™ (y,t) = u(at) + )y 1),
the eq. (1.1)-(1.3) becomes

1 11t
(1.8) Vgt + ?Uyyyy - ?M(;/o (vy) dy)vyy + o+
+ a1y, + asvy, +azv, =0 in Q)

(1.9) v(t,0) =v(t,1) =0 on |0, 77,
(1.10) vy(t,0) = v, (t,1) =0 on |0, 77,
(1.11) Vli=o = v0, Vim0 =v1 n]0,1[,
where

ar(y.t) = (CELY) ayy.r) = —2( L),

12 " / /
ay(y, 1) = —(CH) + (v =) (L)

(1.12)
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Let us denote by M the function
. A
(1.13) M) = / M(s)ds.
0

To show the existence of strong solution we will use the following
hypotheses

(1.14) o' <0, B'>0,
(1.15) vy=pB—a € L>(0,00), ess inf v(t) =% >0

<t<oco

(1.16) o, Be WH>(0,00) N W>'(0,00).

Note that assumption (1.14) means that Q) is increasing in the sense
that when t; <ty then I, = [a(t1), 5(t1)] C I4,.
The above method was introduced by R. DAL PAsso and M. UcGHI [12]
to study certain class of parabolic equations in non cylindrical domains.
On the contrary to the penalty method, the exponential decay of the
solution in our case is not a simple task. The main difference is that
in our case the first order energy is not a decreasing function. To see
the dissipative properties of the system we have to construct a suitable
functional whose derivative is negative and is equivalent to the first order
energy. This functional is obtained using the multiplicative technique
following RIVERA’s method in [16].

Concerning the function M € C*'([0, c0[), we assume that

(1.17) M(r) > —mg, M(r)r>M(r) Yr>0,
where
(1.18) 0<my < Mvle

here \; is the first eigenvalue of the Dirichlet problem

{ Wezze = Mw = in |0, 1]
w(0) =w(l) =0, w,(0)=w,(1)=0.

We recall also the classical inequality

2 2
(1.19) [wzallz20,1) = Mllwellz2g) -
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The remaining part of this work is organized as follows. In the follow-
ing Section 2 we show the existence and uniqueness of strong solutions.
Finally in Section 3 we will show the exponential decay.

2 — Global solution

Let us denote by A the operator
AW = Wypew, D(A) = H* Q)N HZ(Q).

where €2 is a bounded domain in R. It is well known that A is a positive
self adjoint operator in the Hilbert space L?(2) for which there exist
sequences {w, }neny and {\, }nen of eigenfunctions and eigenvalues of A
such that the set of linear combinations of {w,, },en is dense in D(A) and
A< A <. <\, > 00asn — oco. Let us denote by

o™ = Z(vo,wj)wj, (v, w
j=1 j=1
Note that for any (v, v;) € D(A) x HZ(0,1), we have
(W™, 0™ = (vg,v1)  strong in  D(A) x H2().

Let us denote by V,, the space generated by ws,... ,w,,. Standard re-
sults on ordinary differential equations imply the existence of a local
solution v(™ of the form

o™ () = gim(t)w;
j=1

to the system

(v w;) + p(o™ w i)+ M( i) (0l wy)+

yy7

™ w;)+

vy

(0™ ;) + (a0"

_|_
+ (a0, w;) + (azvi™, w;) =0 (j=1,...,m),
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(2.2) (™) (y,0) = vém), vt(m) (y,0) = v%m) )

To obtain the corresponding estimates of the approximated solu-
tions v, we will define the following energy functions associated to the

eq. (1.8)

2 2
Ey(t,v) = [Jve]| 2 + ||UyyHL2
2 2
Ey(t,v) = ||Uty||L2 + ||vyyyHL27
2 2
Es(t,v) = Hvtt”LQ + ”UtyyHL2 :

We will denote by
EM™(t) = Ei(t,0™) (i=1,2,3).

To show the existence of strong solutions we will prove that the above
energies are bounded. In fact, multiplying eq. (2.1) by Jm(t), and sum-
ming up the product result we obtain the inequality

Ld () 2 Y 1y m) 2 1y 2
23 SPTe OB L ||L2+¥[7 o, ™ 1 M (v~ [lo,™ [ o)+
— m) 12 m m) 12
— My Mol )] < ela+ b)(LS™ () + ™))
where
(2.4) a=a(t)=|d|+|a"|, b=0b()=|8]+[8"],
and

m )12 _ 2 1, 12
25) L) = o™ e+ S e+ M ™) -

From (1.17)-(1.19) it follows that

— m)|? 1A — m) 2 my m) |2
(2.6) Y SN L+ My [0l™ L)) > e o™
LOO
where
A
(2.7) my = (5 —mo) > 0.
71l o0
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From (1.17), it follows that the inequality (2.3) can be written as

t
m m 2
L) +v [ et ads < el + ol +
(2.8) 0

te /0 (a(s) + b(s)) L0 (s)ds.

Using Gronwall’s inequality and taking into account (1.16) we get
(2.9) c@w+AWww;wsmmmﬁw%ﬁn

from (2.6) it follows that

m) 12 2 2
(2.10) [05™ 12 < elllvrllzz + llvoll2) -

Therefore (2.8) implies
m m 2 m 2 2 2
(2.11) E™(t) = (o™l + 10512 < e(llorllz2 + llvole)

Multiplying eq. (2.1) by g, (t), and summing up the product result
we obtain the following inequality

1d (m) (m) 2 — m)||2
T G A PP Ll

_ — m2 7712
(2.12) My S ) S <

’L2—

2 .-
< cfalt) + () (ol e + 0™ M112)

where

1
m m m m 2
£} )(t):Q/ V™™ dy 4 o™, .
0

In virtue of (2.6) and (2.9), it follows from (2.12) that

t
m) 2 2 2
(2.13) /0 [o5™ N 2ds < e([lorllzz + [lvollfe) -
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Multiplying egs. (2.1) by\/ng;-m (t) and summing upinj =1,... ,m,
we get after some calculations

1 d m 14 m 2 -
gy 2@ OF gl < clalt) + 00) W+
m 2 m
"‘C”Ué )HLQ—i—c(a() ())E( )()
where
m m 2 B m 9
(2.15) L5 () = i Il + ol .+

+ MOy o ) i) -
from (1.17)-(1.19), we have

my

— m)||2 — m
(2:16) v~ luimlle + v MG ) e e > [y 112 -

(Rl

Using Gronwall’s inequality, relation (2.14) and taking into account (2.11),
we get

Q11 L0 + [ 1 ads < el + ol

Since ,
ES(t) = [0l + [0, < o™ () +

yyy

_ m) 12 m) |2
+ e max [M (v oy 1)l eyl e

from (2.17), (2.10)-(2.11) it follows that there exists a positive constant ¢
such that

m m 2 2
(2.18) ES(t) = |lory )||L2 + [0S < ellloallin + Ilvollys)
Finally, differentiating (2.1) with respect ¢, multiplying by g¢7,,(¢) and

using similar arguments as in (2.14), we obtain

m m 2
thﬁ( )( t) + VHUt(t )HL2 <

" 111 m 2 m 2

(2.19) < c(alt) + "]+ b(t) + 8" Nl 12, + ol .)+
m 2 " 1 m

el ol + elalt) + o] + b(E) + 18" |NLI (),



[9] Asymptotic behaviour for the nonlinear etc. 185

where
m m) 2 — m) |2 — — m) (12 m) 2
L) = llvi 2+ lvigy e + 7M™ of™ ) ok 1 2) -
From eq. (2.1) we get
m 2 2 2
o™ (0)1 2 < ellvollFra + lloall72) -

Using the Gronwall’s inequality, relations (2.11), (2.17) and (2.19) we get

t 2
L™ (t) +/0 s || p2ds < e(llvollza + llvill ) -
From where it follows
m m 2 m 2 2 2
(2.20) B () = [0 12 + v 2 < e[l + llvoll3a) -

From estimates (2.11), (2.18) and (2.20), it follows that {v(™")} con-
verges strongly at v in L (0, 00; Hy (0,1)). Moreover, since M € C'*(0, 00)

loc
and v{™ is bounded in L>(0, 00, L*(0,1)) N L*(0, 00; L*(0,1)), we have
for any ¢t > 0
' —11,,(m") (|12 1 2
/O My~ loy™ (Ol o) = My vy (D)]72)]dt <

’
< CHU(m ) - UHLQ(o,t;Hl)

(2.21)

where ¢ is a positive constant independent of m’ and t, so that

(2.22) My~ ol O] ) (05 w;) — My o, ()]2) 0y w5) -

vy

Therefore we have that v satisfies
v € L>(0,00; H3(0,1) N H?(0,1)),

(2.23) vy € L*(0,00; H2(0,1)),
Vit € LOO(O, (o o} LQ(O, ].)) s
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and
. . 1 .
(v 07) + voe0?) + 92 M (v [ o) . 07) 4
2.24 _ , ;
( ) + 4(Uyy7ng/y) + (@1vyy, w’)+
+ (agvty,wj) + (asvy, w) =0,
(2.25) v(y,0) = vy, v(y,0) =1v;.

For any w’ € V,,. Letting m — oo we conclude that v satisfies
eq. (1.8) in the sense of L>(0,00; L*(0,1)) therefore we have that

(2.26) v € L>(0,00; H3(0,1) N H*(0,1)).

The Uniqueness follows by using standard arguments. 0

Thus we have the following result

THEOREM 2.1. Let us take vy € H2(0,1) N H*(0,1), v, € HZ(0,1)
and let us suppose that assumptions (1.14)-(1.18) holds. Then there ex-
ists a unique solution v of the problem (1.8)-(1.11) in the class (2.26)
satisfying the eq. (1.8) in the sense of L>(0,00; L?(0,1))

To show the existence in non cylindrical domains, we return to our
original problem by using the change variable given in (1.5) by (y,t) =

h(z,t), (z,t) € Q.
Let v the solution obtained from Theorem 2.1 and u defined by (1.7),
then u belong to the class
u € L>(0,00; HX(I;) N H*(I})),
(2.27) u; € L>(0,00; H*(I})),
uyy € L(0,00; L2(11))

where I; =|a(t), B(t)] for any ¢t > 0. Denoting by

u(z,t) =v(y,t) = (voh)(x,t),
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then from (1.8) it is easy to see that u satisfies the eq. (1.1) in the sense
L*>(0,00; L*(I;)). The uniqueness of u follows from the uniqueness of v.
Therefore, we have the following result.

THEOREM 2.2.  Let us take uy € HZ(ly) N H*(Iy), vy € HZ (1)
and let us suppose that assumptions (1.14)-(1.18) holds. Then there ex-
ists a unique solution u of the initial boundary value problem (1.1)-(1.3)
satisfying (2.27) and the eq. (1.1) in the sense of L*(0,00; L*(I})).

3 — Asymptotic behaviour

In this section we will show the exponential decay of the solution
given by the Theorem 2.2. To do this we assume that M satisfies the
condition

(3.1) M(r)r > M(r), M(r)>-mg Yr>0
with mg such that

At

[iod |

Additionally, we assume that the functions 5 and « satisfies the conditions

(3.3) max |5'(t)| <e, max |&/(t)|<e,

0<t<oc0 0<t<o0o

where
€ = domin(ry, —ro)

and the numbers &y, r and ry are given by (3.6) and (3.20).
Then we have the following result.

THEOREM 3.1.  Let us take initial datas uy € HZ(Iy), uy € L*(1y)
and let us suppose that assumptions (3.1)-(3.3) hold. Then any regular
solution of (1.1) satisfies the inequality

E(t) < Ce ™!
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where C and w are positive constants and
2 2
Et) = llullzo s, + lullir,)
is the energy associated to the eq. (1.1).

PrOOF. Multiplying (1.1) by u; and performing an integration by
parts over I, we get

L) + vl — 2B 0 (BE,OF — s (BE),OP)+

(3.4) 2 dt . 2

0 () (ualt), O = [ la (), D)) = 0
where
(35) £u(0) = [ (el + e+ M (]2,

with M (-) given by (1.13). Let us take r € C2([0,1]) such that
(3.6) r(l)=r, >0, r(0)=r;<0.

For x € I, (t € [0, 00[), we put

T — ot
(37) @) = (o n)(a) =r(*=8) = i),
then ¢ € C*(I,) and we also have
(3-8) ||QHC2(7t)) =1+ + 7(;2)“T||c2([0,1]) =5 <oo0.

Let us introduce the functional

Lo(t) = —2 . quz U d .
t

Multiplying (1.1) by —qu, and integrating over I, we obtain

SLa(0) + 5a(50) (uar (50), OF + e (30, O+
(3.9) 4
— S0 (e (a0 O + (ua(a®), OF) = Y- I,
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where
- = 2d / 2d )
Ji 5 M (/t |t | :E) t Qe | Uz |“dx

1
Jy = —/ Qelu?dz, J3 = 1// quguda
2 Jr, I

Jy = _/ qruzud
Iy

Js = [ (@) a)ta + S0l )

Iy
Since ||t || oo o 0021,y < A and M() € CH([0, oo]), it follows that

(3.10) max |M(\)| =R < oo,

0<A<A

so that, taking into account (3.10), (3.8) and the Poincaré inequality, we
have
2
‘Jl| < ClHUM||L2(1t) )

where ¢; (i = 1,...,6) denote positive constants which depend only on
R, S and the norm |||, . Moreover with the same arguments, we have

2 2
|2 + Js| < CQ(HutHL?(It) + ||“m||L2(1t)) )
2
‘J4 + J5| S CS||UII||L2(1t) .

From (3.9) the above estimates of J; (i =1,...,5) and recalling that

q(B(t) =r(1) =71, qla(t)) =r(0) =ro

we get
d 1
Eﬁz(t) + §T1(‘Um(6(t)7t)‘2 + ‘Ut(ﬁ(t)7t)‘2)+
1
(3.11) = gro(uas (@), ) + (fus(at), 1))
< Cz”ut||i2(1t) + C5||U’JL’I||2LQ(I,5) :
Using

2 2 5 2 2
(3.12) Humum(li) < Huxx”m(lz) + M(Hux”ﬁ(lt)) + mOH“:CHLQ(It) :
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From (3.11) and (3.4), we get
1d 2
5&(&@) + 00Lo(t)) + (v — c2d0) el 12,y +
1
+ 5 Gors + /()| (B(E), )+
1
+ 5 Gors = B'(8)) [ (B(2), )P+
3.13 1,
(349) F2(@) — doro)ur(a(e). -
1
= 5 (@' (1) + doro))taa(a(t), O <
< 5005(”%1:”%2(5) + M(H“x”i?(m))‘*‘
+ C5(50m0Hul’Hi2(It) )
where g is a positive constants to be fixed later. Let us denote by
Vo2
L3(t) = [ (wu+ <|u|*)dz.
I, 2
Multiplying (1.1) by u and integrating over I; we obtain
5.14) Lo : : M(|ug|[3 2y =0
(3.14) —Ls(t) — [luell2(r,) + l[tallpar,y + M (uallze,) ez, = 0-

dt

From (1.19), we have

on

= 2 HuwHL2I )
M ()

Hum ||L2(It

so that (3.1) and (3.2) give us

(3.15)

2 T 2 2
||U:mHL2(It) + M(Hqu’HLQ(It)) 2 ml”“z”p(]t) :

From (3.2) and (3.14) it follows that

(3.16)

1d

1 2 =5 2
55/33@) + §(||u3€9€HL2(It) + M ([l 72, +

my 2 2
+ 7||UI||L2(It) < wellze,) -



[15] Asymptotic behaviour for the nonlinear etc. 191

Moreover, from (3.8) we have

1
2(50‘/9 (quz)utdx’ S §||ut||12(1t) +5§m066||uw”§12(h)+
t
2 F 2
+ 5(2)06(”“:1:90”L2(It) + M(HuwHLQ(It))) .

Recalling the definition of £; and £, and using the above inequality we
get
my

£4(0) + 80L2a(t) > Ll + (T2t
(3.17)

+ (§ — 53¢ ) (ltwalT2ry + M(lualZ2r,) -

2
— 88mocs ) llue 52, +

Since 5
2 v 2
Ly(t) > —;”UtHLmt) + §||U||L2(1t) .

Finally we define
L(t) = L1(t) + SoLa(t) + S La(t)

From (3.17) it follows that

14 2 2
a0 3610 * Sl + (5 = mocs) a3z +

1
+ (5 = des) Ulntaa 22y + Mzl 7agr,) -
From (1.14) and (3.6) we get

1d 7 2 Vi 2
5 3 L0+ (g = 260 ) uel72zy + (S6° = esdomo) sz +

14 2 o 2
+ (2= = €500 (ttaall72 ) + M(le 72, +

(3.19) 116 .
+ 5 Gor1 = /(0| (B(), ) = 5(=a/(t)+
+ doro|us(a(t), t)|* < 0.

Now taking

1 myv v
3.20 0o = \ / Y
( ) 0= mln 066 2C6 802 16m0C5 1605> ’
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we deduce from (3.18) that

2 2 2 T 2
L(t) 2 erlllulliz o + uellz20,) + uaellzo @y + M (luel[z2(0,)]-
From (3.19) we arrive at

d
— <
ZL() + al(t) <0,

where « is a positive constante independent of t. Therefore we have that

L(t) < £(0)e

which implies that
E(t) <Ce™™

where C and « are positive constants independent of ¢t and

2 2
E(t) = lluellz2q,) + 1ullz2q,) -

The proof is now complete. 0
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