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Regularity of minimizers of a class

of anisotropic integral functionals

F. SIEPE

Riassunto: In questo lavoro si considera un funzionale scalare del calcolo delle
variazioni di tipo degenere ed a crescite anisotrope, il cui modello è del tipo (∗) dove
si intende che 2 ≤ p < p1 ≤ p2 ≤ · · · ≤ pn. Si dimostra un risultato di maggior
sommabilità per il gradiente dei minimi di tale funzionale.

Tale risultato consente poi di ottenere una regolarità più forte (ad esempio lip-
schitziana), per mezzo di argomenti di iterazione standard.

Abstract: In this paper we consider a scalar degenerate functional of the calculus
of variations under anisotropic growth conditions, which model is of the type

(∗)
Z

≠

h
|Du|p +

nX

α=1

|Dαu|pα

i
dx ,

where we assume that 2 ≤ p < p1 ≤ p2 ≤ · · · ≤ pn. We will prove a higher integrability
result for the gradient of the minimizers of such a functional.

This result will allow us to recover higher regularity (Lipschitz regularity for in-
stance), by means of standard iteration arguments.

1 – Introduction

In this paper we study the regularity properties of minimizers of an

integral functional of the type

(1.1)

Z

≠

h
|Du|p +

nX

α=k

|Dαu|pα
i
dx
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where 1 ≤ k ≤ n (n ≥ 2). To fix the ideas, from now on we assume that

the exponents pα are such that pn ≥ pn−1 ≥ · · · ≥ pk > p ≥ 2. As usual, ≠

denotes a bounded open subset of IRn and u is in the class of functions

W 1,(pα)(≠) = {w ∈ W 1,1(≠) : Dαw ∈ Lpα(≠),∀α = 1, . . . , n} (that is a

Banach space with the natural norm kukW1,(pα) = kukL1 +
P

α kDαukLpα ).

The study of this problem was started by a paper of Marcellini, where

a non degenerate integral of the type

Z

≠

h
(1 + |Du|2) +

nX

α=1

(1 + |Dαu|pα)
i
dx ,

is considered. In [17], it is proved that the minimizers of this functional

are locally Lipschitz continuous, provided that 2 < pα < 2n
n−2

for every

α ∈ {1, . . . , n}.
To get the regularity of the minimizers of functionals of the type (1.1),

an upper bound for the exponents pα is necessary. In fact, an example

given in [16] and [9], shows that if n ≥ 6, the minimizers of the functional

Z

≠

h n−1X

α=1

|Dαu|2 +
1

2
|Dnu|4

i
dx

can even be unbounded. Hence, to get regularity, the upper exponent pn

cannot be much bigger than p. For instance, it has been proved in [7]

(see also [14]) that if

(1.2) max
k≤α≤n

pα ≤ p̄∗ , where p̄ = n
hk − 1

p
+

nX

α=k

1

pα

i−1

and p̄∗ = np̄
n−p̄

if p̄ < n, while p̄∗ is any number larger than p̄ otherwise,

then any minimizer u of a functional of the type (1.1) is locally bounded.

A counterexample given in [14], shows that the bound (1.2) is optimal.

However it is not known if this bound is enough to ensure that u is locally

Lipschitz, or even continuous.

In [18] the regularity of minimizers of a fairly general class of aniso-

tropic functionals is considered. However these results, when applied to

the model case

Z

≠

h
(1 + |Du|2) p

2 +
nX

α=k

|Dαu|pα
i
dx
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with p ≥ 2, ensure that Du ∈ L1
loc(≠), provided that the exponent pn is

strictly less than n+2
n

p, a bound which is quite far from (1.2).

More general results for anisotropic functionals in the scalar case are

given in [19] and for the vectorial case in [2] and [20].

In this paper we improve the regularity result of [17] and [18], by con-

sidering a degenerate functional of the type (1.1), where the exponents pα
satisfy the following bounds

2 ≤ p < p1 ≤ · · · ≤ pn <
2p1

n
+ p if k = 1 and p1 < n

2 ≤ p < pk ≤ · · · ≤ pn ≤
np

n− 2

pk − 2

pk

+ 2 for any 1 ≤ k ≤ n .

Indeed, under these assumptions we prove (see Theorems 1 and 2 below),

that the minimizers are locally Lipschitz.

Instead of getting the boundedness of the gradient throughout a

Moser type iteration argument, we first prove that if u is a minimizer such

that Du ∈ Lq(≠), with pn < q < 2p1
n

+p and p1 < n, then u ∈ W
1,

np
n−2

loc (≠).

The condition Du ∈ Lq(≠) is then dropped by an interpolation and ap-

proximation argument.

Similarly, in the case pk ≥ n the first step of the proof is to show

that Du ∈ L
np

n−2
loc (≠). Once this summability property on the gradient is

obtained, the boundedness of Du is achieved, arguing exactly as in the

standard isotropic case.

2 – Statements and preliminary results

We consider a more general functional than (1.1), of the type

(2.1) F(u,≠) =

Z

≠

≥
F (Du) +

nX

α=1

cαFα(Dαu)
¥
dx ,

where the numbers cα may eventually vanish (it will happen for instance,

that c1, . . . , ck−1 = 0 as we assumed for the model functional (1.1)). More-

over we assume that F : IRn → IR and Fα : IR → IR are C2 functions

satisfying, for some positive constants c, ∫, L and, for any ξ, η ∈ IRn and
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α = k, . . . , n, the following growth, coercivity and convexity conditions:

1

c
|ξ|p ≤ F (ξ) ≤ c(1 + |ξ|p)(H1)

1

c
|ξα|pα ≤ Fα(ξα) ≤ c(1 + |ξα|pα)

|D2F (ξ)| ≤ L(1 + |ξ|p−2)(H2)

0 ≤ F 00
α (ξα) ≤ L(1 + |ξα|pα−2)

hD2F (ξ)η, ηi ≥ ∫|ξ|p−2|η|2(H3)

We prove the following result

Theorem 1. Let u ∈ W 1,(pα)(≠) be a minimizer of functional (2.1),

satisfying growth conditions (H1), (H2), (H3). Then u ∈ W
1,

np
n−2

loc (≠), for

the exponents pα satisfying

2 ≤ p < p1 ≤ · · · ≤ pn <
2p1

n
+ p if k = 1and p1 < n(2.2)

2 ≤ p < pk ≤ · · · ≤ pn ≤
np

n− 2

pk − 2

pk

+ 2 for any 1 ≤ k ≤ n.(2.3)

Remark 1. Notice that both conditions (2.2) and (2.3) give an

improvement of the upper bound obtained in [18].

It follows from the higher integrability result that we obtain in The-

orem 1, by mean of Moser’s iteration technique, that the minimizers of

functional (2.1) are Lipschitz functions. More precisely the following re-

sult holds

Theorem 2. Let u ∈ W
1,

np
n−2

loc (≠) be a local minimizer of func-

tional (2.1) and let us suppose that assumptions (H1), (H2), (H3), (2.2)

or (2.3) hold. Then u ∈ W 1,1
loc (≠).
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Fix h > 0 and a direction in IRn, es. Let us define the difference

quotient

∆s
hv =

v(x + hes)− v(x)

h

(we shall write simply ∆hv, if no confusion arises). If a function v is

defined in ≠, then ∆hv is defined in ≠h = {x ∈ ≠ : d(x, @≠) < h}
and, obviously, if v ∈ W 1,p(≠), then ∆hv ∈ W 1,p(≠h) and for every

i = 1, . . . , n, Di(∆hv) = ∆h(Div).

Some properties of the difference quotients are stated in the next

lemma. Their proof can be found in [18].

Lemma 1. If ≠0 ⊂⊂ ≠ and h0 = d(≠0, @≠), for all h < h0 the

following properties hold

(i) If f or g are supported in ≠h, then

Z

≠

f(∆hg)dx = −
Z

≠

(∆−hf)gdx .

(ii) If v ∈ W 1,(ps)(≠), then

Z

≠0
|∆hv|psdx ≤

Z

≠

|Dsv|psdx for all s = 1, . . . , n .

(iii) If v ∈ Lps(≠), and if there exists a constant c > 0 (independent on

h) such that k∆hvkLps (≠0) ≤ c, then Dsv ∈ Lps(≠0) and

kDsvkLps (≠0) ≤ c .

(iv) If v ∈ W 1,(ps)(≠), then for all s = 1, . . . , n, ∆hv → Dsv strongly in

Lps(≠0).

We recall the following technical lemma.

Lemma 2. If δ ≥ 0, then for all ξ, η ∈ IRn there exist two constant c0

and c1 depending only on δ, such that

(2.4) c0 ≤

Z 1

0

|tξ + (1− t)η|δdt

(|ξ|2 + |η|2) δ
2

≤ c1 .
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Proof. See for example [10].

Let us fix 0 < µ < 1 and q such that pn < q < np
n−2

. With Fµ we

denote the functional

(2.5) Fµ(v,BR) =

Z

BR

Gµ(Dv)dx = F(v,BR) + µ

Z

BR

|Dv|qdx .

By hypothesis (H1), (H2) and (H3), it is easy to check that Gµ ∈ C2(IRn)

and satisfies the following conditions

1

c
|ξ|p + µ|ξ|q ≤ Gµ(ξ) ≤ c̃(1 + |ξ|q)(H4)

|D2Gµ(ξ)| ≤ L̃(1 + |ξ|q−2)(H5)

hD2Gµ(ξ)η, ηi ≥ ∫|ξ|p−2|η|2 + µ|ξ|q−2|η|2(H6)

for some constants c̃, L̃ depending on c, L, n, p, q, pk, . . . , pn but not on µ.

Let us prove the following higher integrability result about the minimizers

of (2.5), assuming for now that k = 1.

Proposition 1. Let v ∈ W 1,q
loc (≠) be a minimizer of functional (2.5),

with q such that

pn < q <
2p1

n
+ p ,

and let us assume that conditions (H4), (H5), (H6) hold. Then v ∈
W

1,
np

n−2
loc (≠) and for all r < R such that B2R ⊂⊂ ≠ there exist two con-

stants β = β(n, p, q, p1) > 1 and c = c(p, q, p1, . . . , pn, r, R) > 0 such

that

(2.6) kDvk
L

np
n−2 (Br)

≤ c(1 + F(v,BR))
β
p .
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Proof. Let us start with the Euler equation

(2.7)

Z

≠

nX

i=1

Gµξi(Dv)Diϕdx = 0 ∀ϕ ∈ W 1,q
0 (≠) .

Let us fix ≠0 ⊂⊂ ≠ and h < d(≠0,≠). Moreover let us consider a smooth

function η ∈ C1
0(≠0), such that η ≥ 0, and let us take as a test function

in the Euler equation (2.7)

ϕ(x) = ∆−h(η2∆hv) .

Then we have
Z

≠

nX

i=1

∆hGµξi(Dv)(2ηDiη∆hv + η2∆h(Div)) dx = 0

and since we can write

∆hGµξi(Dv) =
1

h

Z 1

0

nX

j=1

Gµξiξj (Dv + th∆h(Dv))dt∆h(Djv) ,

we get

Z 1

0

Z

≠

η2
nX

i,j=1

Gµξiξj (Dv + th∆h(Dv))∆h(Div)∆h(Djv)dx dt =

=−2

Z 1

0

Z

≠

η∆hv
nX

i,j=1

Gµξiξj (Dv + th∆h(Dv))Diη∆h(Djv)dx dt ≤

≤c

Z 1

0

Z

≠

≥
η2

nX

i,j=1

Gµξiξj (Dv + th∆h(Dv))∆h(Div)∆h(Djv)
¥ 1

2×

×
≥
|∆hv|2

nX

i,j=1

Gµξiξj (Dv + th∆h(Dv))DiηDjη
¥ 1

2
dx dt

by Cauchy-Schwartz inequality. Then, applying Young inequality we have

Z 1

0

Z

≠

η2
nX

i,j=1

Gµξiξj (Dv + th∆h(Dv))∆h(Div)∆h(Djv)dx dt ≤

≤ c

≤

Z 1

0

Z

≠

|∆hv|2
nX

i,j=1

Gµξiξj (Dv + th∆h(Dv))DiηDjηdx dt+

+c≤

Z 1

0

Z

≠

η2
nX

i,j=1

Gµξiξj (Dv+th∆h(Dv))∆h(Div)∆h(Djv)dx dt .
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Subtracting the last integral on the right hand side and applying (H5)

and (H6) we easily get

Z 1

0

Z

≠

η2|Dv + th∆h(Dv)|p−2|∆h(Dv)|2dx dt ≤

≤ c

Z 1

0

Z

≠

|Dη|2|∆hv|2(1 + |Dv + th∆h(Dv)|q−2)dx dt .

Finally, by Lemma 2 we have

(2.8)

Z

≠

η2(|Dv(x)|2 + |Dv(x + hes)|2)
p−2
2 |∆h(Dv)|2dx ≤

≤ c

Z

≠

|Dη|2|∆hv|2(1 + |Dv(x)|q−2 + |Dv(x + hes)|q−2)dx .

Let us fix R > 0 such that B2R ⊂⊂ ≠ and for every r < R, let η be a

standard cut-off function between Br0 and BR0 , where r < r0 < R0 < R,

i.e. η ∈ C1(BR0), 0 ≤ η ≤ 1, η = 1 in Br0 and |Dη| ≤ c
R0−r0 . With this

choice of η, from (2.8) we get

(2.9)

Z

Br0
(|Dv(x)|2+|Dv(x + hes)|2)

p−2
2 |∆h(Dv)|2dx≤

≤ c1

(R0 − r0)2

Z

BR0\Br0
|∆hv|2(1+|Dv(x)|q−2+|Dv(x+hes)|q−2)dx .

Since v ∈ W 1,q, by Lemma 1 it follows that the right hand side of (2.9) is

finite. Thus letting h→0, we get that |D(|Dsv| p
2)|2≤c(p)|Dv|p−2|Ds(Dv)|2

belongs to L1(Br0). Therefore, by Sobolev embedding theorem it follows

that Dsv ∈ L
np

n−2 (Br0) for every s = 1, . . . , n. Adding up over s we have

(by Lemma 2.9 in [18])

(2.10)
≥ Z

Br0
|Dv| np

n−2 dx
¥n−2

n ≤ c2

(R0 − r0)2

Z

BR0\Br0
(1 + |Dv|q)dx .

Now since p1 ≤ pn < q < np
n−2

, we can apply the interpolation inequality

kDvkLq ≤ kDvkϑLp1kDvk1−ϑ
L

np
n−2
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where the number ϑ ∈ (0, 1) can be computed directly from the relation

1

q
=
ϑ

p1

+
(1− ϑ)(n− 2)

np
,

obtaining that

ϑ =
p1

≥ np

n− 2
− q
¥

q
≥ np

n− 2
− p1

¥ .

Therefore we have

(2.11)

Z

BR0\Br0
|Dv|qdx ≤

≥ Z

BR0
|Dv|p1dx

¥ϑq
p1×

×
≥ Z

BR0\Br0
|Dv| np

n−2 dx
¥ q(1−ϑ)(n−2)

np
.

Next step in the proof will be now to apply Young inequality to the right

hand side of (2.11) and then to use the so called hole-filling argument on

the integral over the annulus BR0\Br0 . To do this we need that q(1−ϑ)

p
< 1,

that is, by the definition of ϑ,

q < p
≥
1− p1(n− 2)

np

¥
+ p1 =

2p1

n
+ p .

It is easy to show that this number is strictly smaller than np
n−2

. Then,

since pn < 2p1
n

+ p, such a choice for q is always possible, and then we are

allowed to apply the interpolation argument showed before.

Let us set σ = p
q(1−ϑ)

> 1, and let us apply Young inequality in (2.11),

with exponents σ and σ
σ−1

. Then since

β =
ϑqσ

p1(σ − 1)
=

np− q(n− 2)

2p1 − n(q − p)
> 1 ,

choosing δ > 0 such that

1

(R0 − r0)δ
= max

n 1

(R0 − r0)2
,

1

(R0 − r0)
2σ
σ−1

o
,
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by (2.10) and (2.11) we easily get

(2.12)

≥ Z

Br0
|Dv| np

n−2 dx
¥n−2

n ≤ c3

(R0 − r0)δ

≥ Z

BR0
(1 + |Dv|p1)dx

¥β
+

+ c4

≥ Z

BR0\Br0
|Dv| np

n−2 dx
¥n−2

n
.

for some constant c3, c4 depending of n, p, q, p1, . . . , pn.

Now let us raise both sides of (2.12) at n
n−2

. We fill the hole, adding

up to both sides the quantity

c
n

n−2
4

Z

Br0
|Dv| np

n−2 dx .

Then we raise again to power n−2
n

obtaining finally

(2.13)

≥ Z

Br0
|Dv| np

n−2 dx
¥n−2

n ≤ c3

(R0 − r0)δ

Z

BR0
(1 + |Dv|p1)dx+

+ ∞
≥ Z

BR0
|Dv| np

n−2 dx
¥n−2

n

for some constants c3, ∞ that depend only of n, p, q, p1, . . . , pn, and in

particular ∞ = c4
c4+1

< 1. To proceed now we need Lemma 3 below.

By using this lemma in inequality (2.13), we easily obtain

(2.14)
≥ Z

Br

|Dv| np
n−2 dx

¥n−2
n ≤ c5(1 + F(v,BR))β

where c5 = c5(n, p, q, p1, . . . , pn, r, R). This completes the proof.

Lemma 3. Let f : [r,R] → IR be a bounded function such that for

δ > 0 and 0 ≤ ∞ < 1 the inequality

f(s) ≤ ∞f(t) +
A

(t− s)δ
+ B

(where A and B are constants) holds for all r ≤ s < t ≤ R. Then we

have

f(r) ≤ c
h A

(R− r)δ
+ B
i

with c = c(∞, δ).
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Proof. See for example [13].

Let us now go back to the minimizers of functional (2.1).

Proposition 2. Let u ∈ W 1,(pα)(≠) be a minimizer of func-

tional (2.1) and let us suppose that conditions (H1), (H2), (H3) hold

and that

2 ≤ p < pk ≤ · · · ≤ pn ≤
np

n− 2

pk − 2

pk

+ 2 .

Then u ∈ W
1,

np
n−2

loc (≠).

Proof. The Euler equation for functional (2.1) is

Z

≠

h nX

i=1

Fξi(Du)Diϕ+
nX

α=k

cαF
0
α(Dαu)Dαϕ

i
dx = 0 ∀ϕ ∈ W

1,(pα)
0 (≠) .

Arguing with the difference quotient method as before we easily reach,

in the same way of (2.8), the following inequality

(2.15)

Z

≠

η2(|Du(x)|2 + |Du(x + hes)|2)
p−2
2 |∆h(Du)|2dx ≤

≤ c

Z

≠

|Dη|2
≥
(1 + |Du|p)+

+|∆hu|2
nX

α=k

cα(1+|Dαu(x)|2+|Dαu(x + hes)|2)
pα−2

2

¥
dx .

We change the previous approach, supposing first that s = n. Then

Z

BR

|∆(n)
h u|2(1 + |Dαu(x)|2 + |Dαu(x + hen)|2) pα−2

2 dx ≤

≤ c1

Z

BR

|Dnu|pαdx + c2

Z

BR

(1 + |Dαu|pα)dx < 1

for all α ≤ n obviously. Then letting h → 0 we get that Dn(|Du| p
2 ) ∈

L2(Br) and thus that Dnu ∈ L
np

n−2 (Br). We are going to find conditions

under which it is possible to iterate this argument. Namely let us suppose

that for some s > k, Ds+1u, . . . ,Dnu ∈ L
np

n−2 (Br). Then we have for α > s
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(since it is easy to check that all the terms in the right hand side of (2.15)

with k ≤ α ≤ s are finite)

Z

BR

|∆hu|2(1 + |Dαu(x)|2 + |Dαu(x + hes)|2)
pα−2

2 dx ≤

≤
≥ Z

BR

(1 + |Dαu| np
n−2 )dx

¥ (n−2)(pα−2)
np ×

×
≥ Z

BR

|∆hu|
2np

np−(pα−2)(n−2) dx
¥np−(pα−2)(n−2)

np
.

The right hand side is finite if

2np

np− (pα − 2)(n− 2)
≤ ps .

This inequality is satisfied if

pn ≤
np

n− 2

pk − 2

pk

+ 2 .

Then letting h → 0 in (2.15) we obtain that

≥ Z

Br

|Dnu| np
n−2 dx

¥n−2
n ≤ c

(R− r)2

h
F(u,BR)+

nX

α=k

Z

BR

(1+|Dnu|pα)dx
i
<1

and, by induction, for all s = k, . . . , n− 1

≥ Z

Br

|Dsu| np
n−2 dx

¥n−2
n ≤ c

(R− r)2

h
F(u,BR)+

+
sX

α=k

Z

BR

(1 + |Dsu|pα)dx+(2.16)

+
nX

α=s+1

Z

BR

(1 + |Dαu| np
n−2 + |Dsu|qα)dx

i

where qα = 2np
np−(pα−2)(n−2)

≤ pk. This concludes the proof.
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Remark 2. If we compare the limitations for the exponents pα given

in the statements of propositions 1 and 2, we find that
2pk

n
+ p ≤ np

n− 2

pk − 2

pk

+ 2

if and only if pk ≥ n. This is obviously the meaning of this choice in the

statement of Theorem 1.

Remark 3. In the special case of n = 2, (2.15) becomes (we suppose

in this case that k = 1, so that p < p1 ≤ p2)

(2.17)

Z

Br

|∆(s)
h (|Du| p

2 )|2dx ≤ c

(R− r)2

Z

BR

×

×
h
(1+|Du|p)+|∆(s)

h u|2(1+|D1u(x)|2+|D1u(x+hes)|2)
p1−2

2 +

+ |∆(s)
h u|2(1 + |D2u(x)|2 + |D2u(x + hes)|2)

p2−2
2

i
dx

for s = 1, 2. Using the method seen in the proof of Proposition 2, we

obtain for s = 2, that D(|D2u| p
2 ) ∈ L2

loc(≠). Then by Sobolev imbedding

theorem |D2u| p
2 ∈ Lχ

loc(≠) for any χ > 2.

If we now consider (2.17) with s = 1, the only term of the right hand

side that is not trivially finite is

Z

BR

|∆(1)
h u|2(1 + |D2u(x)|2 + |D2u(x + hes)|2)

p2−2
2 dx

≤
≥ Z

BR

|∆(1)
h u|

2χp
χp−2(p2−2) dx

¥χp−2(p2−2)
χp

≥ Z

BR

(1 + |D2u|χp
2 )dx

¥ 2(p2−2)
χp

that however is finite if 2χp
χp−2(p2−2)

≤ p1 that is if χ ≥ 2p1(p2−2)

p(p1−2)
> 2.

By the arbitrarity of χ, we conclude that in the case of n = 2, we

have regularity for the minimizer u of functional (2.1) without further

conditions on the exponents pα.

3 – Proof of Theorem 1

In this section we will use the results obtained in Section 2, to get

the proof of Theorem 1. We observe that if condition (2.3) is satisfied,

the result follows immediately from Proposition 2. To conclude the proof

we shall restrict to the case that condition (2.2) holds.
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We will use an approximation argument as in [6]. Let u ∈ W 1,(pα)(≠)

be a minimizer of functional (2.1). Fix R > 0 such that B2R ⊂⊂ ≠. Then

for 0 < ε < min{1, R}, we can introduce a sequence of smooth functions

uε, obtained by mollifying u, so that uε → u strongly in W 1,(pα)(BR). In

particular we can suppose that uε ∈ W 1,q
loc (≠). We fix 0 < µ < 1 and

consider, as in Section 2, the functional Fµ(v,BR).

Notice that by (H4), (H5) and (H6) it follows that functional Fµ has

the same growth q from above and from below. Thus let us denote by

vε,µ ∈ uε + W 1,q
0 (BR) the solution of the Dirichlet problem

min
nZ

BR

Gµ(Dw)dx : w ∈ uε + W 1,q(BR)
o

.

We can now apply Proposition 1 to the minimizers vε,σ of functional Fµ

thus obtaining

(3.1)

≥ Z

Br

|Dvε,µ| np
n−2 dx

¥n−2
n ≤ c6(1 + F(vε,µ, BR))β ≤

≤ c6(1 + Fµ(vε,µ, BR))β ≤ c6(1 + Fµ(uε, BR))β ≤
≤ c7

≥
1 + F(u,BR+ε) + µ

Z

BR

|Duε|q
¥β

.

Since µ < 1, we have that vε,µ is uniformly bounded with respect to µ in

W 1,
np

n−2 and then we can say that up to a subsequence

vε,µ * vε weakly in W 1,(pα)(BR)

for some vε ∈ uε + W
1,(pα)
0 (BR).

Since the functional F is lower semicontinuous with respect to the

weak topology of W 1,(pα)(BR), we can let µ → 0 in (3.1) obtaining

(3.2)
≥ Z

Br

|Dvε|
np

n−2 dx
¥n−2

n ≤ c7(1 + F(u,BR+ε))
β .

These estimates are uniform with respect to ε. But uε → u strongly in

W 1,(pα)(BR) and then by (3.2) we deduce that up to a subsequence

vε * v weakly in W 1,(pα)(BR) ,

for some v ∈ u + W
1,(pα)
0 (BR). Then letting ε→ 0 in (3.2) we get

(3.3)
≥ Z

Br

|Dv| np
n−2 dx

¥n−2
n ≤ c7(1 + F(u,BR))β .
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In particular by the lower semicontinuity of F in the weak topology of

W 1,(pα) we have

(3.4)
F(v,BR) ≤ lim inf

ε→0
F(vε, BR) ≤ lim inf

ε→0
lim inf

µ→0
Fµ(vε,µ, BR) ≤

≤ lim inf
ε→0

lim inf
µ→0

Fµ(uε, BR)=lim inf
ε→0

F(uε, BR)≤F(u,BR).

By (3.4) and the minimality of u, we have finally that v = u in BR since

they are both solutions to the same Dirichlet problem

min
n
F(w,BR) : w ∈ u + W

1,(pα)
0 (BR)

o
.

Then in particular u ∈ W
1,

np
n−2

loc (≠) and so Theorem 1 is proved.
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