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A semilinear heat equation

with concave-convex nonlinearity

T. CAZENAVE – F. DICKSTEIN – M. ESCOBEDO

Riassunto: In questo articolo, ci interessiamo all’equazione parabolica ut −∆u =
∏uq + up in un dominio limitato di IRN , con la condizione al bordo di Dirichlet e
parametri 0 < q < 1 < p e ∏ > 0. Studiamo il problema di Cauchy associato e
il comportamento globale delle soluzioni positive. Ci interessiamo in particolar modo
alle relazioni tra le soluzioni globali (in tempo) dell’equazione parabolica e le soluzioni
del problema stazionario ellittico. In particolare, dimostiamo che esiste una soluzione
globale se e solo se esiste una soluzione debole dell’equazione stazionaria.

Abstract: In this paper, we are interested in the parabolic equation ut −∆u =
∏uq + up in a bounded domain of IRN , with the Dirichlet boundary condition and the
parameters 0 < q < 1 < p and ∏ > 0. We study the initial value problem and the
global behavior of the the positive solutions. We are mainly interested in the relations
between the global (in time) solutions of the parabolic equation and the solutions of the
stationary, elliptic problem. We show in particular that there exists a global solution if
and only if there exists a weak solution of the stationary equation.

1 – Introduction

Let ≠ be a bounded, smooth domain of IRN , and consider the non-

linear heat equation
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(1.1)





ut −∆u = ∏uq + up (t, x) ∈ (0, T )× ≠,

u = 0 (t, x) ∈ (0, T )× @≠,

u(0, x) = u0(x) x ∈ ≠.

Here, 0 < q < 1 < p and ∏ > 0, so that the nonlinearity on the right-hand

side of (1.1) is the sum of a concave and a convex term. The nonlinearity

is “singular” at 0 (in the sense that it is not Lipschitz) because q < 1.

For the nonlinearity g(u) = ∏uq with 0 < q < 1, existence and uniqueness

of positive solutions is proved in [8,9]. However, their methods do not

apply immediately to the problem (1.1) because of the presence of the

term up. For completeness, we study in the Appendix at the end of this

paper the initial value problem for equations of the type (1.1). Even if

we use essentially the methods of [8,9], some new ingredients are needed.

We prove in particular the following result (see Theorem 6.2).

Theorem 1.1. For all u0 ∈ L1(≠), u0 ≥ 0, there exists a unique,

positive solution u of (1.1) defined on a maximal time interval [0, Tm),

u ∈ L1((0, T ) × ≠) for all T < Tm. Moreover, there is the blow up

alternative: either Tm = +1 or else Tm < 1 and ku(t)kL1 −→
t↑Tm

1.

The elliptic version of (1.1), i.e.

(1.2)

(
−∆u = ∏uq + up x ∈ ≠,

u = 0 x ∈ @≠,

was studied in particular by Boccardo, Escobedo and Peral [3], Am-

brosetti, Brezis and Cerami [1], Bartsch and Willem [2], Cabré

and Majer [6]. It is known that there exists a critical value 0 < ∏∗ < 1
of the parameter ∏, such that for ∏ ∈ (0, ∏∗) there exists a minimal, pos-

itive solution u∏ ∈ L1(≠) of (1.2). u∏ is minimal in the sense that if

u ≥ 0, u 6≡ 0 is any solution of (1.2), then u ≥ u∏. For ∏ = ∏∗, there

exists a weak, positive solution u∏∗ of (1.2), u∏∗ ∈ H1
0 (≠) ∩ Lp+1(≠). u∏∗

is obtained as the increasing limit of u∏ as ∏ ↑ ∏∗. For ∏ > ∏∗, there does

not exist any solution u ≥ 0, u 6≡ 0 of (1.2) in L1(≠).

Our main results are the following.
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Theorem 1.2. Let u0 = 0 and let u be the unique, positive solution

of (1.1) defined on the maximal interval (0, Tm).

(i) If 0 < ∏ < ∏∗, then Tm = 1, 0 < u < u∏ and u(t) converges to u∏ in

L1(≠) as t →1.

(ii) If ∏ = ∏∗, then Tm = 1, 0 < u < u∏∗ and u(t) converges to u∏∗ in

Lp+1(≠) as t → 1. Moreover, there exists a constant C such that

ku(t)kL1 ≤ Ce
∏1

p−1 t, where ∏1 is the first eigenvalue of −∆ in H1
0 (≠).

(iii) If ∏ > ∏∗, then Tm < 1.

Corollary 1.3. Let u0 ∈ L1(≠), u0 ≥ 0 and let u be the unique,

positive solution of (1.1) defined on the maximal interval (0, Tm).

(i) If 0 < ∏ < ∏∗ and if u0 ≤ u∏, then Tm = 1, 0 < u ≤ u∏ and u(t)

converges to u∏ in L1(≠) as t →1.

(ii) If ∏ = ∏∗ and if u0 ≤ u∏∗, then Tm = 1, 0 < u ≤ u∏∗ and u(t) con-

verges to u∏∗ in Lp+1(≠) as t →1. Moreover, there exists a constant

C such that ku(t)kL1 ≤ Ce
∏1

p−1 t, where ∏1 is the first eigenvalue of

−∆ in H1
0 (≠).

(iii) If ∏ > ∏∗, then Tm < 1.

The proof of Theorem 1.2 relies on the arguments introduced in [5].

Several modifications are necessary because the nonlinearity ∏uq + up is

convex only for u large (see also [6]).

The paper is organized as follows. In Section 2, we study the prob-

lem (1.2) and show in particular that it has no positive weak solution for

∏ > ∏∗. In Section 3, we prove Theorem 1.2 while in Section 4 we prove

some further results including Corollary 1.3. In Section 5, we compare

some aspects of the cases q < 1 and q = 1 and we study in particular

the behavior of the branch (u∏)0<∏<∏∗ as q ↑ 1. Finally, Section 6 is an

appendix devoted to the study of the initial value problem for equations

of the type (1.1).

Throughout the paper, (T (t))t≥0 is the heat semigroup, i.e. T (t) =

et∆ and we denote by ∏1 the first eigenvalue of −∆ in H1
0 (≠) and by ϕ1

the corresponding eigenvector such that
R
≠ ϕ1 = 1. We set

d≠(x) ≡ dist(x, @≠),
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and we recall that there exist two constants c0, C0 > 0 such that c0ϕ1 <

d≠ < C0ϕ1 in ≠.

2 – Weak solutions of (1.2)

We begin with a definition.

Definition 2.1. Consider a continuous function g : [0,1) → [0,1).

A weak solution of the equation

(
−∆u = g(u) in ≠,

u = 0 in @≠,

is a function u ∈ L1(≠), u ≥ 0 such that g(u)d≠ ∈ L1(≠) and

Z

≠

u(−∆ξ) =

Z

≠

g(u)ξ,

for all ξ ∈ C2(≠), ξ|@≠ = 0. (Note that the definition makes sense, since

|ξ| ≤ Cd≠.)

Remark 2.2. Here are some comments on Definition 2.1.

(i) One can define similarly the notion of weak supersolution, i.e.

Z

≠

u(−∆ξ) ≥
Z

≠

g(u)ξ,

for all ξ ∈ C2(≠), ξ|@≠ = 0, ξ ≥ 0 in ≠. Subsolutions are defined

accordingly.

(ii) It is clear that if u is a weak supersolution, if f ∈ L1(≠) satisfies

f ≤ g(u) and if w is a subsolution of the equation

(
−∆w = f in ≠,

w = 0 in @≠,

then u ≥ w a.e. in ≠. Indeed,

Z

≠

(u− w)(−∆ξ) ≥ 0,
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for all ξ ∈ C2(≠), ξ|@≠ = 0, ξ ≥ 0 in ≠, which implies that u−w ≥ 0.

(iii) It follows in particular from (ii) and the maximum principle that if u

is a weak supersolution and if g(u) 6≡ 0, then there exists δ > 0 such

that u ≥ δd≠.

As recalled before, there is no nontrivial solution of (1.2) in L1(≠) for

∏ > ∏∗. The next result shows that there is no nontrivial weak solution

either.

Proposition 2.3. Suppose ∏ > ∏∗. If u is a weak solution of (1.2),

then u ≡ 0.

The proof of Proposition 2.3 is based on the following variant of

Kato’s inequality for weak solutions of (1.2) (see Lemma 2 of [5]).

Lemma 2.4. Let Φ ∈ C(IR) and ™ ∈ C(IR) ∩ L1(IR). Assume that

Φ(0) = 0, Φ is concave, Φ0 ∈ L1(IR) and Φ0(s) ≥ ™(s) for a.a. s ∈ IR.

Let f ≥ 0 such that fd≠ ∈ L1(≠) and let u ∈ L1(≠) satisfy

(2.1)

Z

≠

u(−∆ξ) =

Z

≠

fξ,

for all ξ ∈ C2(≠), ξ|@≠ = 0. It follows that

(2.2)

Z

≠

Φ(u)(−∆ξ) ≥
Z

≠

™(u)fξ,

for all ξ ∈ C2(≠), ξ|@≠ = 0, ξ ≥ 0.

Proof. We proceed in three steps.

Step 1. The case Φ ∈ C2(IR) and f ∈ C1
c (≠). Note that in this

case u ∈ C2(≠), so that

−∆Φ(u) = Φ0(u)(−∆u)− Φ00(u)|∇u|2 ≥ Φ0(u)(−∆u) = Φ0(u)f ≥ ™(u)f.

Multiplying the above inequality by ξ ∈ C2(≠), ξ|@≠ = 0, ξ ≥ 0 and

integrating by parts, we deduce (2.2).

Step 2. The case Φ ∈ C2(IR) and fd≠ ∈ L1(≠). Let (fn)n≥0 ⊂
C1

c (≠), fn ≥ 0, be such that fnd≠ → fd≠ in L1(≠), and let (un)n≥0 be
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the corresponding solutions of (2.1). It follows (see Lemma 1 of [5]) that

un → u in L1(≠). Since by Step 1,

Z

≠

Φ(un)(−∆ξ) ≥
Z

≠

™(un)fnξ,

for all ξ ∈ C2(≠), ξ|@≠ = 0, ξ ≥ 0, we deduce (2.2) by letting n →1.

Step 3. The general case. Let (ρn)n≥0 be a sequence of nonnegative

mollifiers, and set Φn = ρn ? Φ, ™n = ρn ? ™. It follows that Φn,™n ∈
C1(IR) and that Φn → Φ and ™n → ™ uniformly on bounded sets. In

addition, Φn is concave, Φ0
n ∈ L1(IR), ™n ∈ L1(IR) and Φ0

n(s) ≥ ™n(s)

for a.a. s ∈ IR. Therefore, we deduce from Step 2 that

Z

≠

(Φn(u)− Φn(0))(−∆ξ) ≥
Z

≠

™n(u)fξ,

for all ξ ∈ C2(≠), ξ|@≠ = 0, ξ ≥ 0. Using the fact that Φ0
n and ™n are

uniformly bounded in L1(IR), we may pass to the limit as n → 1 and

we obtain (2.2). This completes the proof.

Corollary 2.5. Let ∏ > 0 and let u 6≡ 0 be a weak solution

of (1.2). It follows that for every e∏ ∈ (0, ∏), there exists a corresponding

solution eu ∈ L1(≠), eu > 0 of (1.2) (with ∏ replaced by e∏).

Proof. The result follows by applying Lemma 2.4 with appropriate

functions Φ and ™, which we now construct. Set g(u) = ∏uq + up and
eg(u) = e∏uq + up for u ≥ 0. Note that eg ≤ g, eg0 ≤ g0 and that there exists

a > 0 such that g is convex on (a,1). We now define the functions Φ

and ™ as follows. Set

H(x) =

Z x

0

ds

g(s + a)
, fH(x) =

Z x

0

ds

eg(s + a)
,

and let

Φ(x) =

(
x for 0 ≤ x ≤ a,

a + fH−1(H(x− a)) for x ≥ a,
and ™(x) =

eg(Φ(x))

g(x)
.
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It is clear that Φ,™ ∈ C(IR). Next,

lim
x→1

fH(x) =

Z 1

0

ds

eg(s + a)
>

Z 1

0

ds

g(s + a)
= lim

x→1
H(x),

so that sup
x≥0

Φ(x) < 1. Also, since fH(x) ≥ H(x), we see that Φ(x) ≤ x.

It follows in particular that ™(x) ≤ 1. Furthermore,

Φ0(x) =

(
1 for 0 ≤ x < a,
eg(Φ(x))

g(x)
for x > a.

Thus 1 ≥ Φ0(x) ≥ ™(x) for all x ≥ 0. In addition,

Φ00(x) =
eg(Φ(x))

g(x)2
[eg0(Φ(x))− g0(x)] ≤ eg(Φ(x))

g(x)2
[g0(Φ(x))− g0(x)] ≤ 0,

for x ≥ a. It follows that Φ is concave; and so we may apply Lemma 2.4

with the functions Φ and ™ defined above.

Let w be defined by w(x) = Φ(u(x)). It follows from Lemma 2.4 that

w is a bounded, weak supersolution of the equation

(2.3)

(
−∆eu = eg(eu) in ≠,

eu = 0 in @≠.

We now set w0 = w and we define the sequence (wn)n≥0 by

(
−∆wn = eg(wn−1) in ≠,

wn = 0 in @≠,

for n ≥ 1. Since g(w0) ∈ L1(≠), the sequence is well defined. In addition,

since w0 ≥ 0, it follows that wn ≥ 0. We claim that wn+1 ≤ wn for all

n ≥ 0. Indeed, it follows from Remark 2.2 (ii) that w0 ≥ w1. The

result for n ≥ 1 now follows from the maximum principle. Therefore, wn

decreases to a solution eu ∈ L1(≠), eu ≥ 0 of (2.3).

Finally, we show that eu > 0. Since u ≥ 0, u 6≡ 0, we see that

w ≥ 0, w 6≡ 0. By the strong maximum principle, it follows that there

exists η > 0 such that w1 ≥ ηϕ1. Note also that z = µϕ1 is clearly a
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subsolution of (2.3) for µ > 0 small enough. Fix such a µ with µ ≤ η.

Since w1 ≥ µϕ1, we have −∆w2 = eg(w1) ≥ eg(µϕ1) ≥ −∆(µϕ1), so that

w2 ≥ µϕ1 by the maximum principle. An obvious iteration argument

shows that wn ≥ µϕ1, thus eu ≥ µϕ1 > 0. This completes the proof.

Proof of Proposition 2.3. Let ∏ > ∏∗, let u be a weak solution

of (1.2) and suppose by contradiction that u 6≡ 0. Given e∏ ∈ (∏∗, ∏),

it follows from Corollary 2.5 that there exists a corresponding solution
eu ∈ L1(≠), eu > 0 of (1.2). This contradicts the definition of ∏∗.

In the next section, we will also use the following application of

Lemma 2.4.

Lemma 2.6. Let 0 < ∏ ≤ ∏∗, M > 0 and set g(u) = ∏uq +up. There

exist ε0 > 0 and continuous functions Φε : [0,1) → [0,1) for 0 < ε ≤ ε0
with the following properties.

(i) Φε(x) = x for 0 ≤ x ≤ M and Φε(x) ≤ x for x ≥ M .

(ii) sup
x≥0

Φε(x) ≤ Cε−
1

p−1 for some constant C independent of ε.

(iii) If w ≥ 0 is a weak solution of (1.2), then wε = Φε(w) satisfies

(2.4)

Z

≠

wε(−∆ξ) ≥
Z

≠

(g(wε)− ε)+ξ,

for all ξ ∈ C2(≠), ξ ≥ 0, ξ|@≠ = 0.

Proof. Let a > M be large enough so that g is convex on (a,1).

Given 0 < ε < g(a), set now

H(x) =

Z x

0

ds

g(s + a)
, Hε(x) =

Z x

0

ds

g(s + a)− ε,

and let

Φε(x) =

(
x 0 ≤ x ≤ a,

a + H−1
ε (H(x− a)) x ≥ a,

and

™ε(x) =





g(a)− ε
g(a)

0 ≤ x ≤ a,

g(Φε(x))− ε
g(x)

x ≥ a.
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It is clear that Φε,™ε ∈ C([0,1)). Since Hε ≥ H, we have Φε(x) ≤ x so

that (i) is satisfied. Next, arguing as in the proof of Corollary 2.5, one

shows easily that Φ0
ε ≥ ™ε and that Φε is concave, so that we may apply

Lemma 2.4 with the functions Φε and ™ε defined above. Let now w ≥ 0

be a weak solution of (1.2) and, given 0 < ε < a, set wε = Φε(w). It

follows from Lemma 2.4 that
Z

≠

wε(−∆ξ) ≥
Z

≠

™ε(w)g(w)ξ =

Z

≠

hε(wε)ξ,

for every ξ ∈ C2(≠), ξ|@≠ = 0, ξ ≥ 0, where

hε(x) = ™ε(Φ
−1
ε (x))g(Φ−1

ε (x)) =





g(a)− ε
g(a)

g(x) 0 ≤ x ≤ a

g(x)− ε x ≥ a.

For 0 ≤ x ≤ a,

hε(x) =
g(a)− ε

g(a)
g(x) = g(x)− εg(x)

g(a)
≥ g(x)− ε.

It follows that hε(x) ≥ g(x) − ε for all x ≥ 0; and since hε(x) ≥ 0, we

deduce that hε(x) ≥ (g(x)−ε)+. Thus wε satisfies (2.4), which proves (iii).

We finally show (ii). Setting Aε = kΦεkL1 − a, we have

Z Aε

0

ds

g(s + a)− ε =

Z 1

0

ds

g(s + a)
,

which we write as

ε

Z Aε

0

ds

g(s + a)(g(s + a)− ε) =

Z 1

Aε

ds

g(s + a)
.

Note that Aε →1 as ε ↓ 0; and so

Z Aε

0

ds

g(s + a)(g(s + a)− ε) −→ε↓0
Z 1

0

ds

g(s + a)2
.

On the other hand, g(s + a) ≥ (s + a)p, so that

Z 1

Aε

ds

g(s + a)
≤ (Aε + a)−(p−1)

p− 1
.

(ii) follows from the above estimates.
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Remark 2.7. Arguing as in the proof of Corollary 2.5 above, one

can show the existence of a solution ewε ∈ L1(≠) of the equation

(
−∆ ewε = hε( ewε) in ≠,

ewε = 0 in @≠,

such that µd≠ ≤ wε ≤ w and kwεkL1 ≤ Cε−
1

p−1 for some constants

C,µ > 0 independent of ε.

3 – Proof of Theorem 1.2

For the proof of Property (i), we will use the following lemma.

Lemma 3.1. Let ∏ > 0 and let u be the positive solution of (1.1)

with the initial value u0 = 0. If u is globally defined (i.e., if Tm = 1),

then there exists a positive weak solution w of (1.2) such that u(t) ↑ w in

L1(≠) as t → 1. If, in addition, w ∈ Lr(≠) for some 1 < r ≤ 1, then

u(t) → w in Lr(≠).

Proof. Let u be as above, so that by Proposition 6.12 u is increasing

in t. Also, u satisfies the equation (1.1) in L2(≠) for almost all t > 0 (see

Remark 6.1).

We begin by obtaining a priori estimates of u. They follow from the

mere fact that u is a global solution. On multiplying the equation (1.1)

by ξ ∈ C2(≠) such that ξ|@≠ = 0, we obtain

(3.1)
d

dt

Z

≠

u(t)ξ +

Z

≠

u(t)(−∆ξ) =

Z

≠

(∏u(t)q + u(t)p)ξ.

Letting ξ = ϕ1 in (3.1), we find

(3.2)
d

dt

Z

≠

u(t)ϕ1 + ∏1

Z

≠

u(t)ϕ1 ≥
Z

≠

u(t)pϕ1 ≥
µZ

≠

u(t)ϕ1

∂p

,

by Jensen’s inequality; and so,

d

dt

Z

≠

u(t)ϕ1 ≥
µ≥Z

≠

u(t)ϕ1

¥p−1

− ∏1

∂Z

≠

u(t)ϕ1.
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If
R
≠ u(t0)ϕ1 > ∏

1
p−1
1 for some t0 > 0, then we deduce from the above

differential inequality that
R
≠ u(t)ϕ1 blows up in finite time, which is

absurd. Thus

(3.3) sup
t≥0

Z

≠

u(t)ϕ1 ≤ ∏
1

p−1
1 .

Integrating (3.2) on (t, t + 1) and applying (3.3), we now obtain

Z t+1

t

Z

≠

upϕ1 ≤ (1 + ∏1)∏
1

p−1
1 .

Since u is increasing in t, this implies

(3.4) sup
t≥0

Z

≠

u(t)pϕ1 ≤ (1 + ∏1)∏
1

p−1
1 .

Let now ξ0 be the solution of

(
−∆ξ0 = 1 in ,

ξ0 = 0 in @≠.

Letting ξ = ξ0 in (3.1) and integrating on (t, t + 1), we obtain

Z

≠

u(t) ≤
Z t+1

t

Z

≠

u ≤
Z

≠

u(t)ξ0 +

Z t+1

t

Z

≠

(∏uq + up)ξ0.

Since ξ0 ≤ Cϕ1, we now deduce by applying (3.3), (3.4) and the inequality

uq ≤ c + cup that

(3.5) sup
t≥0

Z

≠

u(t) < 1.

u(t) being increasing, it follows from (3.4) and (3.5) that there exists a

positive function w such that u(t)−→
t→1

w in L1(≠) and ϕ1u(t)p −→
t→1

ϕ1w
p

in L1(≠).

We claim that w is a weak solution of (1.2). Indeed, integrating (1.1)

on (t, t + 1)× ≠, we obtain

Z

≠

u(t + 1)ξ −
Z

≠

u(t)ξ +

Z t+1

t

Z

≠

u(−∆ξ) = ∏

Z t+1

t

Z

≠

uqξ +

Z t+1

t

Z

≠

upξ.
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Letting t →1, we find

Z

≠

w(−∆ξ) = ∏

Z

≠

wqξ +

Z

≠

wpξ.

Finally, it remains to show that u(t) → w in Lr(≠) if w ∈ Lr(≠). This is

clear by monotone convergence if r < 1. If r = 1, note that w ∈ C(≠).

Since u(t) ∈ C(≠) for all t > 0, we see that z(t) = w − u(t) ∈ C(≠) for

all t > 0 and z(t, x) decreases to 0 as t → 1 for all x ∈ ≠. We easily

deduce that kz(t)kL1 −→
t→1

0, which completes the proof.

Proof of Theorem 1.2 (i). Since u∏ > 0 by the strong maximum

principle and since v(t) ≡ u∏ is a solution of (1.1), it follows from the

maximum principle (see Theorem 6.2 (ii)) that u(t) ≤ u∏ for all t ∈
(0, Tm). Furthermore, u is increasing, so that 0 < u(t) < u∏ for all

t ∈ (0, Tm). Because u∏ ∈ L1(≠), we deduce that Tm = 1. We now may

apply Lemma 3.1 and it follows that u(t) increases to a weak positive

solution w of (1.2) as t →1. We have in particular w ≤ u∏ ∈ L1(≠), so

that w = u∏ (recall that u∏ is the minimal positive solution of (1.2)). It

then follows from Lemma 3.1 that u(t)−→
t→1

u∏ in L1(≠).

For the proof of Theorem 1.2 (ii), we will use the following lemma.

Lemma 3.2. Let ∏, ε > 0 and set g(u) = ∏uq + up and gε(u) =

(g(u) − ε)+ for all u ≥ 0. Suppose wε ∈ L1(≠) is a weak supersolution

of the equation

(3.6)

(
−∆wε = gε(wε) in ≠,

wε = 0 in @≠.

Let v0 ∈ L1(≠), v0 ≥ 0 and let v be the solution of

(3.7)





vt −∆v = gε(v) in (0,1)× ≠,

v = 0 in (0,1)× @≠,

v(0) = v0 in ≠,

defined on the maximal interval [0, Sm). If v0 ≤ wε, then Sm = +1 and

0 ≤ v(t) ≤ wε for all t ≥ 0.
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Proof. Note that the function x 7→ gε(|x|) is locally Lipschitz on IR

so that v is well defined and nonnegative on a maximal interval [0, Sm).

In particular gε(|v|) = gε(v). Fix 0 < T < Sm and set

a =

(
0 if v ≤ wε,

gε(v)− gε(wε)
v − wε

if v > wε.

In particular a ∈ L1((0, T )× ≠) and

(3.8) gε(v)− gε(wε) ≤ a(v − wε).

Let now h ∈ C1
c ((0, T )× ≠), h ≥ 0 and let ξ be the solution of





−ξt −∆ξ − aξ = h,

ξ|@≠ = 0,

ξ(T ) = 0.

Since a ∈ L1((0, T ) × ≠), we have in particular ξ ∈ C([0, T ], C2(≠) ∩
C0(≠)) and ξ ≥ 0. Multiplying (3.7) by ξ and integrating on (0, T )× ≠,

we obtain

−
Z

≠

v0ξ(0) +

Z T

0

Z

≠

v(h + aξ) =

Z T

0

Z

≠

gε(v)ξ.

wε being a weak supersolution of (3.6), we also have

−
Z

≠

wεξ(0) +

Z T

0

Z

≠

wε(h + aξ) ≥
Z T

0

Z

≠

gε(wε)ξ;

and so,

Z T

0

Z

≠

(v−wε)h ≤
Z

≠

(v0−wε)ξ(0)+

Z T

0

Z

≠

(gε(v)−gε(wε)−a(v−wε))ξ ≤ 0,

by (3.8). h being arbitrary, we deduce that v ≤ wε on (0, T )×≠ and the

result follows.

Proof of Theorem 1.2 (ii). Note that we cannot argue as in the

proof of Theorem 1.2 (i), since u∏∗ may be unbounded. Instead, we use



224 T. CAZENAVE – F. DICKSTEIN – M. ESCOBEDO [14]

Lemma 2.6 to obtain estimates of u(t). We note that u∏∗ ≥ µd≠ for some

µ > 0. Fix M ≥ µkd≠kL1 and let ε0 > 0 and (Φε)0<ε≤ε0 be given by

Lemma 2.6 and set wε = Φε(u∏∗). The choice of M and Property (i) of

Lemma 2.6 imply that

(3.9) µd≠ ≤ wε ≤ u∏∗ .

Let v be the maximal solution of the problem (3.7) with v0 = µd≠. It

follows from Lemma 3.2 that 0 ≤ v(t) ≤ wε for all t < 1.

Fix T < 1 and fix 0 < ε ≤ ε0 small enough so that the solution Z

of the linear equation

(3.10)





Zt −∆Z = −ε in (0, T )× ≠,

Z = 0 in (0, T )× @≠,

Z(0) = µd≠ in ≠,

is nonnegative on (0, T )× ≠ (see for example Lemma 7 of [5]). It is not

difficult to verify that one can choose ε of the form

(3.11) ε = αe−∏1T ,

where α > 0 is a constant depending only on ≠ and µ.

We now set z(t) = u(t) + Z(t) ≥ u(t) ≥ 0 for 0 ≤ t < min{T, Tm}. It

follows that





zt−∆z=g(u)−ε≤ g(z)− ε≤ (g(z)− ε)+ in (0,min{T, Tm})× ≠,

z = 0 in (0,min{T, Tm})× @≠,

z(0) = µd≠ in ≠.

By the maximum principle (recall that (g(x) − ε)+ is locally Lipschitz),

we deduce that z ≤ v; and so

(3.12) u(t) ≤ wε,

for 0 ≤ t < min{T, Tm}. Applying now (3.11) and Lemma 2.6 (ii), we see

that ku(t)kL1 ≤ Ce
∏1

p−1T for all t < min{T, Tm}. Since T < 1 is arbi-

trary, the blow up alternative implies that Tm = 1; and so ku(t)kL1 ≤
Ce

∏1
p−1 t for all t > 0.
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We finally show the convergence property. Note that it follows from

(3.9) and (3.12) that u(t) ≤ u∏∗ for all t > 0. On the other hand, we

deduce from Lemma 3.1 that there exists a weak solution w of (1.2) such

that u(t) ↑ w as t → 1. Thus w ≤ u∏∗ . Next, consider any ∏ < ∏∗

and denote by v the corresponding solution of (1.1) with the initial value

v(0) = 0. It follows from the maximum principle (see Theorem 6.2 (ii))

that u(t) ≥ v(t). Since v(t) → u∏ as t → 1 by Theorem 1.2 (i), we see

that w ≥ u∏. ∏ < ∏∗ being arbitrary and u∏∗ being the increasing limit

of u∏ as ∏ ↑ ∏∗, this implies w ≥ u∏∗ , thus w = u∏∗ . Since u∏∗ ∈ Lp+1(≠),

the result follows from Lemma 3.1.

Proof of Theorem 1.2 (iii). Suppose by contradiction that Tm =

1. It follows from Lemma 3.1 that there exists a positive weak solution

of (1.2), which is ruled out by Proposition 2.3.

4 – Further results

We begin with a proposition which extends Property (ii) of Theo-

rem 1.2.

Proposition 4.1. Assume 0 < ∏ ≤ ∏∗ and let w 6≡ 0 be any

weak solution of (1.2). Let u0 ∈ L1(≠), 0 ≤ u0 ≤ w and let u be the

corresponding maximal, positive solution of (1.1). It follows that Tm = 1
and that there exists a constant C such that ku(t)kL1 ≤ Ce

∏1
p−1 t for all

t > 0. Moreover, u(t) ≤ w for all t > 0.

Proof. Suppose first that w ∈ L1(≠). Then it follows from the

maximum principle (see Theorem 6.2 (ii)) that u(t) ≤ w for all t < Tm

and the conclusions follow immediately. Thus we assume that

(4.1) w 6∈ L1(≠).

Note that by Remark 2.2 (iii),

(4.2) w ≥ δd≠,

for some δ > 0. We now proceed in three steps.
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Step 1. If there exist t0 ∈ [0, Tm), η > 0 such that

(4.3) u(t0) ≤ w − ηd≠,

then the conclusions of the theorem hold. Indeed, we may argue as in

the proof of Theorem 1.2 (ii). More precisely, changing u(t) to u(t− t0),

we may assume that u0 ≤ w − ηd≠. Set µ = η, let T > 0 and let Z be

the solution of (3.10). Let ε > 0 be given by (3.11), so that Z ≥ 0 on

(0, T ) × ≠. We now apply Lemma 2.6 with M = ku0kL1 + µkd≠kL1 .

Setting wε = Φε(w), we see that u0 ≤ wε − µd≠. Consider the solution

v of (3.7) with the initial value v(0) = wε, so that by Lemma 3.2 v is

globally defined and v(t) ≤ wε for all t ≥ 0. On the other hand, arguing

as in the proof of Theorem 1.2 (ii), we see that z(t) = u(t)+Z(t) satisfies

z(t) ≤ v(t) for all t < min{T, Tm}. In particular, u(t) ≤ wε. Applying

now (3.11) and Lemma 2.6 (ii), we see that ku(t)kL1 ≤ Ce
∏1

p−1T for all

t < min{T, Tm}. Since T < 1 is arbitrary, the blow up alternative

implies that Tm = 1; and so ku(t)kL1 ≤ Ce
∏1

p−1 t for all t > 0. Since

u(t) ≤ wε and wε ≤ w by Lemma 2.6 (i), the desired conclusions hold.

Step 2. We have

(4.4) u(t) ≤ w,

for all t < Tm. Indeed, let 0 < α < δ with δ given by (4.2) and set

uα0 = min{w − αd≠, u0}. Let uα be the corresponding solution of (1.1).

Since uα satisfies (4.3) with t0 = 0 and η = α, it follows from Step 1 that

uα is globally defined and that uα(t) ≤ w for all t > 0. On the other

hand uα0 ↑ u0 as α ↓ 0, so that it follows from the maximum principle (see

Theorem 6.2 (ii)) that uα ≤ u. We easily deduce that uα ↑ u in (0, T )×≠

for all t < Tm and (4.4) follows.

Step 3. Conclusion. Set v0 = min{w, 1 + u0}. It is clear that

v0 ∈ L1(≠), v0 ≥ u0, and it follows from (4.1) that v0 6≡ u0. Therefore,

there exists a function δ : [0,1) → [0,1) with δ(t) > 0 for t > 0 such

that

(4.5) T (t)(v0 − u0) ≥ δ(t)d≠,
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for all t > 0. Let v be the solution of (1.1) with the initial value v(0) = v0

defined on the maximal interval [0, Tm
0). It follows from Step 2 that

(4.6) v(t) ≤ w,

for t < Tm
0. Set z(t) = u(t) + T (t)(v0 − u0) ≥ u(t) for t < min{Tm, Tm

0}.
Since z(0) = v0 and

zt −∆z = g(u) ≤ g(z),

it follows from the maximum principle (see Theorem 6.2 (ii)) that z(t) ≤
v(t). In particular, u(t) ≤ v(t)− T (t)(v0− u0). Applying (4.5) and (4.6),

we deduce that

u(t) ≤ w − δ(t)d≠,

for t > 0 sufficiently small. Thus (4.3) is satisfied for some t0 > 0 and

the result follows from Step 1.

Proof of Corollary 1.3. Let u0 and u be as in the statement of

Corollary 1.3. We denote by v the unique, positive solution of (1.1) with

the initial value v(0) = 0, defined on the maximal interval (0, Sm). It

follows from the maximum principle (see Theorem 6.2 (ii)) that Tm ≤ Sm

and that u(t) ≥ v(t) for all 0 ≤ t < Tm.

Suppose first that 0 < ∏ ≤ ∏∗ and that u0 ≤ u∏. It follows from

Proposition 4.1 that Tm = +1, u(t) ≤ u∏ for all t ≥ 0 and that there ex-

ists a constant C such that ku(t)kL1 ≤ Ce
∏1

p−1 t for all t > 0. Properties (i)

and (ii) now follow from Properties (i) and (ii) of Theorem 1.2.

Finally, if ∏ > ∏∗ then Sm < 1 by Theorem 1.2 (iii), thus Tm < 1.

This completes the proof.

5 – Comparison with the case q = 1

Suppose p <
N + 2

N − 2
and consider the equation (1.1) with now q = 1,

i.e.

(5.1)





vt −∆v = ∏v + vp (t, x) ∈ (0, T )× ≠,

v = 0 (t, x) ∈ (0, T )× @≠,

v(0, x) = v(x) x ∈ ≠,
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and the corresponding elliptic problem

(5.2)

(
−∆v = ∏v + vp x ∈ ≠,

v = 0 x ∈ @≠.

It is well known that for every 0 ≤ ∏ < ∏1 the equation (5.2) has a

unique positive solution v∏. For ∏ ≥ ∏1, the equation (5.2) has no positive

solution, even in the weak sense of Definition 2.1, as follows immediately

by using the test function ϕ1 and Jensen’s inequality. Furthermore, the

solution v∏ for 0 ≤ ∏ < ∏1 is an unstable solution of (5.1) in the sense

that ∏1(−∆− ∏− pvp−1
∏ ) < 0. In fact, the following holds: if 0 ≤ v ≤ v∏

and v 6≡ v∏, then the solution v of (5.1) is global and converges to 0 as

t → 1; if v ≥ v∏ and v 6≡ v∏, then the solution v of (5.1) blows up in

finite time (see [4], exercises).

The above instability phenomenon is surprising in view of the sta-

bility properties for q < 1, i.e. Corollary 1.3 (i) and the fact that

∏1(−∆ − ∏quq−1
∏ − pup−1

∏ ) ≥ 0 (see [1]). What happens here is that

v∏ is not the limit of u∏(q) as q ↑ 1. More precisely, we have the following

result.

Theorem 5.1. Let p > 1. Given 0 < q < 1, let u∏(q) be the

minimal positive solution of (1.2), defined for all ∏ in the maximal interval

(0, ∏∗(q)). It follows that

(5.3) ∏∗(q)−→
q↑1

∏1,

and that for all 0 < µ < ∏1,

(5.4) u∏(q)−→
q↑1

0,

in L1(≠), uniformly for ∏ ∈ (0, µ).

Proof. We first show that

(5.5) lim sup
q↑1

∏∗(q) ≤ ∏1.
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Indeed, given ∏ < ∏∗(q), it follows from (1.2) that

Z

≠

up
∏ϕ1 + ∏

Z

≠

uq
∏ϕ1 = ∏1

Z

≠

u∏ϕ1.

On the other hand, it follows easily from Young’s inequality that

∏1u ≤ up +
p− 1

p− q

≥1− q

p− q

¥ 1−q
p−1
∏

p−q
p−1
1 uq;

and so,

∏ ≤ p− 1

p− q

≥1− q

p− q

¥ 1−q
p−1
∏

p−q
p−1
1 .

Since ∏ < ∏∗(q) is arbitrary and the right-hand side of the above inequal-

ity converges to ∏1 as q ↑ 1, we deduce (5.5).

Fix now 0 < ∏ < ∏1 and ε > 0. Let ξ be the solution of

(
−∆ξ = ∏ξ + 1 in ≠,

ξ = 0 in @≠.

Let M = kξkL1 and let η be small enough so that ξ ≥ ηϕ1. Given δ > 0,

let w = δξ. Since uq ≤ u + (1− q)q
q

1−q , we have

(5.6) ∏wq + wp ≤ ∏w + ∏(1− q)q
q

1−q + δpMp.

We now fix δ > 0 small enough so that δpMp ≤ δ/2 and δM ≤ ε. Next,

let q0 < 1 be such that ∏(1 − q)q
q

1−q ≤ δ/2 for q0 ≤ q < 1. Using (5.6),

we see that for all q0 ≤ q < 1,

∏wq + wp ≤ ∏w + δ = −∆w.

Therefore, w is a supersolution of (1.2), with w ≥ δηϕ1. Since σϕ1 is

clearly a subsolution of (1.2) for σ > 0 small enough, it follows that there

exists a positive solution u of (1.2), with u ≤ ξ (see [1]). Thus, ∏(q) > ∏

for q0 ≤ q < 1, which, together with (5.5) implies (5.3). Next, since

δM ≤ ε, we have w ≤ ε, thus u∏(q) ≤ ε for q0 ≤ q < 1. Since ε > 0 is

arbitrary, and since u∏ is nondecreasing in ∏, (5.4) follows.
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6 – Appendix

We present existence and uniqueness results for equations of the

type (1.1). The proofs are inspired by the papers of Fujita and Watan-

abe [9] and Escobedo and Herrero [8].

Let g : [0,1) → [0,1) be continuous and consider the equation

(6.1)





ut −∆u = g(u) (t, x) ∈ (0,1)× ≠,

u = 0 (t, x) ∈ (0,1)× @≠,

u(0, x) = u0(x) x ∈ ≠.

We assume that the initial value u0 is nonnegative, and we consider non-

negative solutions u.

Given u0 ∈ L1(≠), u0 ≥ 0, we call a solution of (6.1) a function

u ∈ L1((0, T )× ≠) for some T > 0, u ≥ 0 which satisfies

(6.2) u(t) = T (t)u0 +

Z t

0

T (t− s)g(u(s)) ds,

for all t ∈ [0, T ]. Note that the above definition makes sense. Indeed, if

u ∈ L1((0, T )× ≠), then g(u) ∈ L1((0, T )× ≠), so that the right-hand

side of (6.2) is well-defined.

Remark 6.1. We collect below some immediate properties of the

solutions of (6.1).

(i) Since g(u) ∈ L1((0, T ) × ≠), standard regularity results imply that

u ∈ C([0, T ], Lr(≠)), that u−T (t)u0 ∈ Lr((0, T ),W 2,r(≠)∩W 1,r
0 (≠))∩

W 1,r((0, T ), Lr(≠)) for every r < 1 and that u satisfies the equa-

tion (6.1) for a.a. t ∈ (0, T ).

(ii) The property g(u) ∈ L1((0, T ) × ≠) also implies that u − T (t)u0 ∈
C([0, T ], C0(≠)). In particular if u0 = 0 (or more generally if u0 ∈
C0(≠)) then u ∈ C([0, T ], C0(≠)).

(iii) If g is locally Lipschitz (0,1) → [0,1) and if u > 0 in (0, T ) × ≠,

then it also follows from parabolic regularity that u is smooth in

(0, T )× ≠, i.e. u is C1 in t ∈ (0, T ) and C2 in x ∈ ≠.
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(iv) It follows from (6.2) that

(6.3) u(t) = T (t− s)u(s) +

Z t−s

0

T (t− s− σ)g(u(s + σ)) dσ,

for all 0 ≤ s ≤ t < T .

(v) It follows in particular from (6.3) that

(6.4) u(t) ≥ T (t− s)u(s),

for all 0 ≤ s ≤ t < T . Therefore, if u(s) 6= 0 for some s ∈ [0, T ), then

by the strong maximum principle u(t+s) ≥ δ(t)d≠ for 0 < t < T −s,

with δ ∈ C([0,1)) and δ(t) > 0 for t > 0. In particular, there exists

t0 ∈ [0, T ] such that u(t) = 0 for all t ∈ (0, t0) and u(t) ≥ δ(t− t0)d≠

for all t ∈ (t0, T ) with δ ∈ C([0,1)) and δ(t) > 0 for t > 0.

(vi) Consider any solution u of (6.1) on (0, T ). If u0 ≥ δd≠ for some

δ > 0, then it follows from (6.4) above (applied with s = 0) that

u(t) ≥ δ(t)d≠ for all t ∈ [0, T ] with δ ∈ C([0,1)) and δ(t) > 0

for all t ≥ 0. If u0 6≡ 0, then u(t) ≥ δ(t)d≠ for all t ∈ [0, T ] with

δ ∈ C([0,1)) and δ(t) > 0 for all t > 0. If u0 = 0 and g(0) > 0,

then it follows from (6.3) that u(t) 6= 0 for all t ∈ (0, T ). Therefore,

by (v) above, we also obtain that u(t) ≥ δ(t)d≠ for all t ∈ [0, T ] with

δ ∈ C([0,1)) and δ(t) > 0 for all t > 0.

We are interested in the case where g is possibly not locally Lipschitz

at 0, so that we may not apply the standard theory. We assume that

(6.5) g : [0,1) → [0,1) is continuous.

In addition, depending on the results, we will assume that g satisfies some

of the following hypotheses.

(6.6)
∀ M > 0, ∃ LM < 1 such that

g(u)− g(v) ≤ LM

v
(u− v) ∀ 0 < v ≤ u ≤ M,

(6.7) ∃ a > 0 such that

Z a

0

ds

g(s)
< 1.
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(6.8) ∃ a > 0 such that g is concave and nondecreasing on (0, a).

Note that (6.6) is a one-sided condition, which means when g is C1 that

g0(u) ≤ LM/u for all u ∈ (0,M). (6.7) and (6.6) imply that g(u) > 0 for

0 < u < a. Our main result of this section is the following.

Theorem 6.2. Suppose g satisfies (6.5), (6.6), (6.7) and (6.8). For

all u0 ∈ L1(≠), u0 ≥ 0, there exists a unique, positive solution u of (6.1)

defined on a maximal time interval [0, Tm), u ∈ L1((0, T ) × ≠) for all

T < Tm. Moreover, the following properties hold.

(i) There is the blow up alternative: either Tm = +1 or else Tm < 1
and ku(t)kL1 −→

t↑Tm
1.

(ii) There is a maximum principle: suppose u is a subsolution of (6.1)

and v is a positive supersolution of (6.1) on some interval [0, T ]. If u

and v are smooth enough (i.e. u, v ∈ L1((0, T ) × ≠) ∩ C([0, T ], L2(≠))

and u, v ∈ L2
loc((0, T ),H1(≠)) ∩ W 1,2

loc ((0, T ),H−1(≠))), then u(t) ≤ v(t)

for all 0 ≤ t ≤ T .

Remark 6.3. Here are some comments on the assumptions of The-

orem 6.2. The continuity assumption (6.5) is natural. The assump-

tion (6.7) is essential for the existence of a positive solution when u0 = 0,

see Remark 6.8. (6.8) is essential for our proof of uniqueness, but we

do not know if it is necessary. On the other hand, the conclusions of

Theorem 6.2 hold in the case where g(u) + Cu is nondecreasing for some

C, if one replaces the assumption (6.6) by the weaker one

for every 0 < ε < M < 1, ∃ L such that g(u)− g(v) ≤ M(v − u)

for all ε ≤ v ≤ u ≤ M .

See [7].

Remark 6.4. Theorem 6.2 states in particular the uniqueness of

positive solutions of (6.1). Note that if u0 6≡ 0 or if u0 ≡ 0 and g(0) > 0,

then any solution of (6.1) is positive by Remark 6.1 (vi). Thus positivity

is not an actual limitation to the uniqueness property in that case. On

the other hand, if u0 ≡ 0 and g(0) = 0, then there is the solution u ≡
0. Applying Theorem 6.2 and Remark 6.1 (v), we can describe all the
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solutions of (6.1) with the initial value u0 = 0: denoting by u the (unique)

positive solution, any solution v has the form

v(t) =

(
0 0 ≤ t ≤ t0,

u(t− t0) t0 ≤ t < t0 + Tm,

for some t0 ≥ 0.

Before proceeding to the proof of Theorem 6.2, we establish some

preliminary results. We first show a general existence result of a (unique)

larger solution under the assumption (6.5).

Proposition 6.5. Assume (6.5). Suppose further that

(6.9) there exists M > 0 such that g(s) = g(M) for all s ≥ M.

Given any u0 ∈ L1(≠), u0 ≥ 0, there exists a unique larger solution u ≥ 0

of (6.1) defined for all t ≥ 0, u ∈ L1((0,1)×≠). u is the larger solution

in the sense that if v ≥ 0 is any subsolution of (6.1) on some interval [0, T ]

and if v is smooth enough (i.e. v ∈ L1((0,1) × ≠) ∩ C([0, T ], L2(≠))

and v ∈ L2
loc((0, T ),H1(≠)) ∩W 1,2

loc ((0, T ),H−1(≠))), then v(t) ≤ u(t) for

all t ≤ T .

Proof. We proceed in four steps.

Step 1. Approximation of g by smooth functions. Consider a reg-

ularizing sequence (ρε)ε>0 and extend g to IR by setting g(s) = g(0) for

s ≤ 0. In particular, g ∈ C(IR) and g(s) is constant for both s ≤ 0 and

s ≥ M . It follows that ρε ? g → g in L1(IR). For convenience, we define

α(ε) = kg − ρε ? gkL1 −→
ε↓0

0.

We define the sequence (gn)n≥1 as follows. Given n ≥ 1, let εn be small

enough so that α(εn) ≤ 2−n/3, and set gn = 2−n + ρεn ? g. It follows that

g +
2

3
2−n ≤ gn ≤ g +

4

3
2−n.

In particular, we see that gn+1 ≤ gn, so that (gn)n≥1 is nonincreasing in

n, and that gn converges to g uniformly as n →1.
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Step 2. Construction of approximate solutions. Given n ≥ 1, we

consider the solution un of the problem

(6.10)





@un
@t

−∆un = gn(un) t ≥ 0, x ∈ ≠,

un = 0 x ∈ @≠,

un(0, x) = u0(x) x ∈ ≠.

Since gn is smooth and gn > 0, un is well-defined and positive. In addition,

gn is bounded, so that un exists globally in time and sup
t≥0

kun(t)kL1 <

1. Finally, gn being nonincreasing in n, it follows from the maximum

principle that un is also nonincreasing in n.

Step 3. Passage to the limit. By Step 2, un is nonnegative, bounded

in t and nonincreasing in n. Thus un has a limit u as n →1, which clearly

satisfies (6.1). We deduce easily from (6.1) that

(6.11) ku(t)kL1 ≤ ku0kL1 + tkgkL1 ,

for all t ≥ 0.

Step 4. Conclusion. Consider the solution u constructed in Step 3.

Next, consider a subsolution v as in the statement. Since gn ≥ g, it

follows that v is a subsolution of (6.10); and so, v(t) ≤ un(t) for all t ≤ T

and all n ≥ 1. By letting n →1 we deduce that v(t) ≤ u(t).

Remark 6.6. In the proof of Proposition 6.5, we approximate g

by a nonincreasing sequence of smooth, positive nonlinearities (gn)n≥1.

We may as well approximate g by a nondecreasing sequence of smooth,

nonnegative nonlinearities (egn)n≥1. One can take for example egn of the

form egn = (−2−n + ρεn ? g)+. Arguing as in the proof of Proposition 6.5,

we obtain the existence of a smaller solution u of (6.1). u is the smaller

solution in the sense that if v ≥ 0 is any supersolution of (6.1) on some

interval [0, T ], then v(t) ≥ u(t) for all t ≤ T .

If u0 6≡ 0, then it follows from Remark 6.1 (vi) that the corresponding

larger solution u is positive. Under the additional assumptions (6.7)

and (6.8), we show that the same property holds for u0 = 0.

Proposition 6.7. Assume (6.5), (6.9), (6.7) and (6.8). Set u0 ≡ 0

and let u be the corresponding larger solution of (6.1). It follows that

u(t) > 0 for all t > 0.
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Proof. We show that u is positive by constructing appropriate sub-

solutions. Note that we need only consider small times by Remark 6.1 (v).

We claim that there exists c > 0 such that

(6.12) u(t) ≥ cα(t)d≠.

for t sufficiently small, where α is defined below by (6.13). Set

h(s) =

Z s

0

dσ

g(σ)
.

It follows from (6.7) that h ∈ C([0, a]), h(0) = 0 and h is increasing on

[0, a]. Set now

(6.13) α(t) = h−1(t),

and let w(t, x) = α(t)T (t)1≠ for 0 ≤ t ≤ h(a). It follows that

wt −∆w = α0(t)T (t)1≠ = g(α(t))T (t)1≠.

Since T (t)1≠ ≤ 1 and α(t) ≤ a, it follows from (6.8) that g(α(t))T (t)1≠ ≤
g(α(t)T (t)1≠) = g(w); and so wt −∆w ≤ g(w). We deduce that w is a

subsolution of (6.1) on [0, h(a)], so that u ≥ α(t)T (t)1≠ for all 0 ≤ t ≤
h(a) by Proposition 6.5. Finally, since 1≠ ≥ ∞ϕ1 for some ∞ > 0, it follows

that T (t)1≠ ≥ ∞e−∏1tϕ1, and we obtain (6.12).

Remark 6.8. If g(0) = 0, then the assumption (6.7) is necessary for

the existence of a positive solution with the initial value u0 = 0. Indeed,

suppose that (6.7) fails, i.e.

Z a

0

ds

g(s)
= +1,

for all a > 0 and let u be a solution of (6.1) with u0 = 0. We claim

that u ≡ 0. Given 0 < ε ≤ 1, consider the solution zε of the equation

z0
ε = ε + g(zε) with the initial condition zε(0) = ε. It is clear that zε is

an increasing function of ε. Since zε is a supersolution of (6.1), we have

u ≤ zε by Lemma 6.9. On the other hand,

Z zε(t)

ε

ds

g(s) + ε
= t,
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so that zε(t) ↓ 0 as ε ↓ 0. Thus u ≡ 0 on some time interval. The

conclusion follows by iteration.

For the uniqueness property, we will make use of the following com-

parison principle.

Lemma 6.9. Assume (6.5) and (6.6) and let u0 ∈ L1(≠), u0 ≥ 0.

Suppose u is a supersolution of (6.1) and v is a subsolution of (6.1)

on some interval [0, T ]. If u and v are sufficiently smooth, i.e. u, v ∈
L1((0, T ) × ≠) ∩ C([0, T ], L2(≠)) and u, v ∈ L2

loc((0, T ),H1(≠)) ∩
W 1,2

loc ((0, T ), H−1(≠)) and if u(0) ≥ δd≠ for some δ > 0, then u(t) ≥ v(t)

for all t ∈ [0, T ].

Proof. The proof is based on Hardy’s inequality

(6.14)

Z

≠

ϕ2

d2
≠

≤ C

Z

≠

|∇ϕ|2,

for all ϕ ∈ H1
0 (≠). Note that ut − ∆u ≥ 0, so that u(t) ≥ T (t)u(0).

In particular, there exists ∞ > 0 such that u(t) ≥ ∞d≠ for all t ∈ [0, T ].

Multiplying by (v − u)+ the difference of the inequalities satisfied by v

and u, we obtain

1

2

d

dt

Z

≠

(v − u)+2 +

Z

≠

|∇(v − u)+|2 ≤
Z

{v>u}
(g(v)− g(u))(v − u)+ ≤

≤ LM

Z

{v>u}

(v − u)+2

u
,

by (6.6), with M = max{kukL1((0,T )×≠), kvkL1((0,T )×≠)}. Since u−1 ≤
(∞d≠)−1 ≤ εd−2

≠ + C(ε) for all ε > 0, we deduce that

1

2

d

dt

Z

≠

(v − u)+2 +

Z

≠

|∇(v − u)+|2 ≤ ε
Z

≠

(v − u)+2

d2
≠

+ C(ε)

Z

≠

(v − u)+2.

Applying (6.14) and choosing ε > 0 sufficiently small, we then obtain

1

2

d

dt

Z

≠

(v − u)+2 ≤ C

Z

≠

(v − u)+2,

from which the result follows.
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Corollary 6.10. Assume (6.5) and (6.6). Let u0 ≡ 0 and T > 0.

Let u, v∈L1((0, T )×≠)∩C([0, T ], L2(≠)) with u, v ∈ L2
loc((0, T ),H1(≠))∩

W 1,2
loc ((0, T ),H−1(≠)). If u is a positive supersolution of (6.1) and if v is

a subsolution, then u(t) ≥ v(t) for all 0 ≤ t ≤ T .

Proof. Since ut −∆u ≥ 0, we see that u(t) ≥ T (t − s)u(s) for all

0 ≤ s ≤ t ≤ T . Since u is positive, it follows from the strong maximum

principle that u(t) ≥ δ(t)d≠ for all t ∈ (0, T ) with δ(t) > 0. Applying

Lemma 6.9, we conclude that u(t + s) ≥ v(t) for all 0 ≤ t < t + s ≤ T .

The result follows by fixing 0 ≤ t ≤ T and letting s ↓ 0.

The last ingredient we need for proving Theorem 6.2 is the following

elementary lemma.

Lemma 6.11. Let g ∈ C([0,1), IR) with g(0) ≥ 0. If g is concave

on (0, a) for some a > 0, then the following properties hold.

(i) If g(u)− g(v) = g(u− v) for some 0 < v < u ≤ a, then g(0) = 0 and

g is linear on [0, u].

(ii) If in addition
d+g

dx
(0) = +1, then for every M > 0, there exists

0 < ε ≤ a such that

(6.15) g(u)− g(v) ≤ g(u− v),

for all 0 ≤ v ≤ u ≤ M with u− v ≤ ε, and

(6.16) g(w)− g(u) + g(v) ≥ g(w − u + v)

for all 0 ≤ v ≤ u ≤ M , 0 ≤ w ≤ u with u− v ≤ w ≤ ε.

Proof. We first prove (i). By concavity, g(u)−g(v) ≤ g(u−v)−g(0).

Thus, g(0) = 0. Next, if g is not linear on [0, u], then there exists z ∈ (0, u)

such that

(6.17) g(z) >
z

u
g(u).

By concavity, we deduce that (6.17) holds for all z ∈ (0, u). Apply-

ing (6.17) with successively z = v and z = u − v, we obtain g(u − v) +

g(v) > g(u), which is absurd.
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We now show (ii). Since
d+g

dx
(0) > 0, g is nondecreasing near 0.

Thus (6.8) holds and

g(x + α)− g(y + α) ≤ g(x)− g(y),

for all 0 ≤ y ≤ x ≤ x+α ≤ a. Letting x = v, α = u−v and y = w−u+v,

we deduce that (6.16) holds for all 0 ≤ v ≤ u ≤ a, 0 ≤ w ≤ a such that

u−v ≤ w ≤ u. Fix now 0 < ε ≤ a and let 0 ≤ w ≤ ε and 0 ≤ v ≤ u ≤ M

such that u−v ≤ w ≤ u. We then know that (6.16) holds when in addition

u ≤ a. Since the case u = v is trivial, we now suppose a ≤ u ≤ M and

u > v. Note that by concavity,

(6.18)

g(w)− g(w − u + v)

u− v
≥ g(ε+ u− v)− g(ε)

u− v
≥ g(2ε)− g(ε)

ε
≥

≥ d+g

dx
(ε).

Set

(6.19) K(a,M) = sup
a≤x≤M
0≤y≤x

g(x)− g(y)

x− y
≤ max

Ω
MLM

a/2
,
kgkL1(0,M)

a/2

æ
<1,

and choose 0 < ε ≤ a small enough so that
d+g

dx
(ε) ≥ K(a,M). We

deduce from (6.18) and (6.19) that

g(w)− g(w − u + v)

u− v
≥ K(a,M) ≥ g(u)− g(v)

u− v
.

Hence (6.16). (6.15) follows from (6.16) by letting w = u− v.

Proof of Theorem 6.2. We proceed in two steps.

Step 1. The case where g satisfies (6.9). The existence of a (global

in time) larger solution follows from Proposition 6.5. The positivity of

the solution follows from Proposition 6.7 in the case u0 ≡ 0 and from

Remark 6.1 (vi) in the case u0 6≡ 0.

We now show uniqueness in the case u0 ≡ 0. Let u be the larger

solution and let v be another positive solution on some time interval
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[0, T ]. We have in particular v(t) ≤ u(t) for all 0 ≤ t ≤ T . Since v is

positive, we may apply Corollary 6.10 and we deduce that v(t) ≥ u(t) for

0 ≤ t ≤ T . Thus u = v.

We next show uniqueness in the general case. Since this is a local

property, we need only show uniqueness for a small time interval. Note

that if g0
+(0) < 1, then we deduce from (6.6) that for every M > 0 there

exists KM such that g(u)− g(v) ≤ KM(u− v) for all 0 < v ≤ u ≤ M , so

that uniqueness is immediate by the standard technique. (Multiply the

difference of the equations satisfied by u and v by (u − v)+.) We thus

assume g0
+(0) = 1, and we may apply Lemma 6.11 (ii). Let u be the

larger solution and let v be another solution of (6.1) on some interval

[0, T ]. It follows that

(6.20) u(t) ≥ v(t),

for all 0 ≤ t ≤ T . Set M = max{kukL1((0,T )×≠), kvkL1((0,T )×≠)} and let

ε > 0 be given by Lemma 6.11 (ii). We have

(6.21) (u− v)t −∆(u− v) = g(u)− g(v),

with (u − v)(0) = 0. By choosing T possibly smaller, we may assume

that u(t)− v(t) ≤ ε (see Remark 6.1 (ii)), so that g(u)− g(v) ≤ g(u− v)

by (6.15). We now may apply Corollary 6.10 and we see that

(6.22) u(t)− v(t) ≤ w(t),

for all 0 ≤ t ≤ T , where w denotes the positive solution of (6.1) with the

initial value w(0) = 0. Note that by Remark 6.1 (ii) we have, by possibly

choosing T smaller,

(6.23) w(t) ≤ ε,

for all 0 ≤ t ≤ T ; and by Corollary 6.10,

(6.24) w(t) ≤ u(t),

for all 0 ≤ t ≤ T . Finally, set z(t) = w(t) − u(t) + v(t). It follows

from (6.16) that

(6.25) zt −∆z = g(w)− g(u) + g(v) ≥ g(z) ≥ 0.
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(Note that the assumptions of (6.16) are satisfied by (6.20), (6.22), (6.23)

and (6.24).) We deduce in particular from (6.25) that z(t) ≥ T (t−s)z(s)

for all 0 ≤ s ≤ t ≤ T . By the strong maximum principle, it follows that

either z(t) > 0 for all 0 < t < T , or else there exists t0 > 0 such that

z(t) = 0 for 0 ≤ t ≤ t0. In the first case, it follows from (6.25) and

Corollary 6.10 that z(t) ≥ w(t) for all 0 < t < t + s ≤ T . Therefore,

u(t) ≤ v(t), thus u ≡ v by (6.20). We finally show that the second case

is impossible. Indeed, we would have w(t) ≡ u(t) − v(t) on (0, t0). In

particular,

(6.26) (u− v)t −∆(u− v) = g(u− v),

by definition of w. Note that g ≥ 0 and that g(s) > 0 for s > 0 and small.

Thus if u 6≡ v, then g(u− v) 6≡ 0. It follows from the maximum principle

that u(t0) > v(t0) in ≠. Comparing (6.26) with (6.21), we obtain that

g(u)− g(v) ≡ g(u− v) on (0, t0)× ≠. Note that v > 0 on (0, t0)× ≠ by

Remark 6.1 (vi). Therefore, we may apply Lemma 6.11 (i) and we deduce

that u ≡ v on the set {(t, x) ∈ (0, t0)× ≠; u(t, x) ≤ a}. This is absurd.

It remains to prove the maximum principle, i.e. statement (ii). Let

u and v be as in statement (ii) and denote by u the positive solution

of (6.1). In the case u0 ≡ 0, the result follows from Corollary 6.10. We

now assume u0 6≡ 0. Since the smaller solution u of (6.1) is positive by

Remark 6.1 (vi), we have that u = u. It follows from Proposition 6.5 that

u ≤ u and from Remark 6.6 that v ≥ u. Hence the result.

Step 2. The general case. Given M > 0, we set

gM(s) =

(
g(s) for 0 ≤ s ≤ M,

g(M) for s ≥ M,

so that gM satisfies (6.9). Let u0 ∈ L1(IRN), u0 ≥ 0, and consider the

equation

(6.27)





uM
t −∆uM = gM(uM) (t, x) ∈ (0,1)× ≠,

uM = 0 (t, x) ∈ (0,1)× @≠,

uM(0, x) = u0(x) x ∈ ≠.

We first show uniqueness. Let u, v be two solutions of (6.1) on some

interval [0, T ] and set M = max{kukL1((0,T )×≠), kukL1((0,T )×≠)}. It fol-
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lows that both u and v are solutions of (6.27) on [0, T ]. Thus u = v by

Step 1.

We now prove existence. Set M = ku0kL1 + 1 and consider the

positive solution uM of (6.27). It follows from (6.11) that kuM(t)kL1 ≤
ku0kL1 + tkgkL1(0,M) for all t ≥ 0. In particular, if we set

T = T (ku0kL1) =
1

kgkL1(0,M)

,

then kuM(t)kL1 ≤ M for all t ≤ T . It follows that uM is indeed a solution

of (6.1) on [0, T ], which we denote by u. By uniqueness, we may extend

the solution u to the maximal time interval [0, Tm). Since T only depends

on ku0kL1 , the blow up alternative (i) follows from a standard argument.

Finally, we show the maximum principle (ii). Let u and v be as in

statement (ii) and set M = max{kukL1((0,T )×≠), kukL1((0,T )×≠)}. It fol-

lows that u is a subsolution of (6.27) and that v is a positive supersolution

of (6.27) on [0, T ]. Thus u(t) ≤ v(t) for all 0 ≤ t ≤ T by Step 1.

Proposition 6.12. Assume (6.5), (6.6), (6.7) and (6.8). If u is

the positive solution of (6.1) with the initial value u(0) = 0, then ut ≥ 0

a.e. in (0, Tm)× ≠. If g is nondecreasing, then ut > 0 in (0, Tm)× ≠.

Proof. Fix T < Tm. Arguing as in Step 2 of the proof of Theo-

rem 6.2, we may assume that g satisfies (6.9).

Note that ut ∈ L2((0, T )×≠) by Remark 6.1 (i). Since u(s) > δ(s)d≠

with δ(s) > 0 for all s ∈ (0, T ), it follows from Lemma 6.9 that u(t+s) ≥
u(t) for 0 ≤ t < t + s < T , which implies that ut ≥ 0 a.e. in (0, T )× ≠.

Since T < Tm is arbitrary, this proves the first part of the result.

We now assume that g is nondecreasing. It then follows from (6.6)

that g : (0,1) → [0,1) is locally Lipschitz. Since u > 0, we deduce

from Remark 6.1 (iii) that ut ∈ C((0, T ) × ≠). Suppose s ∈ (0, T ) is

such that ∆u(s) + g(u(s)) ∈ L2(≠), set eu0 = u(s) and eu(t) = u(t + s) for

0 ≤ t < T −s and let eun be the corresponding solution of (6.10). We have

∆eu0 + gn(eu0) ≥ ∆eu0 + g(eu0) ≥ 0. Since gn is locally Lipschitz, it follows

from the maximum principle that (eun)t ≥ 0. Setting evn = (eun)t, we see

that (evn)t −∆evn = g0
n(eun)evn ≥ 0. It follows that evn(t) ≥ T (t)evn(0), thus

evn(t) ≥ T (t)(∆u(s) + g(u(s))). Letting n →1, we deduce easily that

(6.28) ut(t + s) ≥ T (t)(∆u(s) + g(u(s))).
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Since u ∈ L2((0, T ),H2(≠)∩H1
0 (≠)), u(t) > 0 for t ∈ (0, T ) and u(0) = 0,

it follows that there exists sn ↓ 0 such that ∆u(sn) + g(u(sn)) ∈ L2(≠),

∆u(sn) + g(u(sn)) ≥ 0 and ∆u(sn) + g(u(sn)) 6= 0. By (6.28) and the

strong maximum principle, we deduce that ut > 0 for all t ∈ (sn, T ).

Letting n →1, we obtain that ut > 0 for all t ∈ (0, T ). Since T < Tm is

arbitrary, the result follows.
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