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On torsion free sheaves on singular projective curves

E. BALLICO

Riassunto: Sia X una curva proiettiva ridotta e irriducibile. Qui studiamo i fasci
coerenti senza torsione su X: esistenza di fasci stabili o generati dalle sezioni globali
e con grado assegnato e con fissata classe di isomorfismo ad ogni punto di Sing(X)
(teoremi di tipo Clifford, esistenza di fibrati stabili e classificazione di fasci di grado
basso generati da sezioni globali).

Abstract: Let X be a reduced and irreducible projective curve. Here we study
torsion free sheaves on X: existence of stable or spanned sheaves with given degree,
number of sections and fixed formal completion at each point of Sing(X) (Clifford’s
type theorems, non-emptyness of moduli spaces, and classification of low degree spanned
torsion free sheaves).

1 – Introduction

Let X be a reduced and irreducible projective curve. Here we study

torsion free sheaves on X from the point of view of stability and the

spanned ones with many sections with respect to their degree (Clifford’s

type theorems). At the beginning of Section 2 we fix the notation and

recall a very powerful tool for this topic: elementary transformations.

Then we give a Clifford’s type theorem for rank r torsion free sheaves

on a singular projective curve (see Theorem 2.2). Its proof follows easily
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from the case r = 1 proved in [6] and from the proof of the case of vector

bundles on smooth curves given in [3], Th. 2.1. Then we study the cases

in which Clifford’s inequality is an equality (see 2.4, 2.5 and 2.6). In

the third section we study spanned torsion free sheaves with low degree.

In particular we classify the rank 1 spanned torsion free sheaves with

degree 2 and 3 (see Theorems 3.1 and 3.2). For low degree spanned

torsion free sheaves of rank at least two, see Corollary 2.6, Remark 3.12,

Theorem 1.3 below and Corollary 5.4.

In the second part of this paper (Sections 4 and 5) we will use the el-

ementary transformations to prove the following existence Theorems 1.1,

1.2 and 1.3 for stable and for spanned torsion free sheaves.

Theorem 1.1. Let X be an integral projective curve with g:=

pa(X) ≥ 2. Let F be a rank r torsion free sheaf on X. Then there exists

an integer t(F ) such that for all integers t ≥ t(F ) and for all sequences

{Qi}1≤i≤t of generic points of Xreg the general torsion free sheaf obtained

from F making t general positive elementary transformations supported

at Q1, . . . , Qt is stable.

Theorem 1.2. Let X be an integral projective curve with g:=

pa(X) ≥ 2. Fix an integer r ≥ 1 and an integer d. For every P ∈
Sing(X) fix a formal isomorphism type F∧

P for rank r torsion free O∧
X,P -

modules. Then there exists a stable rank r torsion free sheaf F on X with

{F∧
P }P∈Sing(X) as formal isomorphism type at Sing(X) and deg(F ) = d.

Theorem 1.1 gives the existence, for each formal isomorphism type

along Sing(X), of sheaves with a very high degree of stability. Theo-

rem 1.2 will be an immediate corollary of it. Theorem 1.2 should be

well-known and hence we cannot claim any priority, but we stress the

proof given here which uses elementary transformations. In some sense,

Theorem 1.2 gives the non-emptyness part for the study of the moduli

schemes of torsion free sheaves with fixed formal isomorphism type along

Sing(X), i.e. of the set of all stable torsion free sheaves, F , on X such

that for every P ∈ X the formal completion F∧
P of the germ of F at P

is a fixed module of the complete local ring O∧
X,P . In [2] we gave an

upper bound for the number of irreducible components of these moduli

schemes. In Section 5 we prove the following result (in which emb(F )
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is the minimal integer such that each germ FP is generated by emb(F )

elements).

Theorem 1.3. Let G be a rank r torsion free sheaf on X. Fix an

integer ∫ ≥ max{r + 1, emb(G)} and set d := ∫ + r(g − 1). Then there

exists a rank r torsion free sheaf A on X with deg(A) = d, h1(X,A) = 0,

A spanned by its global sections and obtained from G making some positive

and some negative elementary transformation supported at smooth points

of X. Furthermore, for every integer w with r + 1 ≤ w ≤ emb(G) there

exists a rank r torsion free sheaf B on X with deg(B) = w + r(g − 1),

h1(X,B) = 0, B spanned by its global sections at each point P of X

with embP (F ) ≤ w and obtained from G making some positive and some

negative elementary transformation supported at smooth points of X.

We work over an algebraically closed field K with char(K) = 0.

2 – Clifford’s theorem

We fix some notation which we will use in this paper. Let X be an

integral projective curve of genus g and π : Y → X the normalization.

Let g00:= pa(Y ) be the geometric genus of X. For any P ∈ X (or Y ) let

KP be the skyscraper sheaf on X (resp. Y ) with {P} as support and

with h0(X,KP ) = 1 (resp. h0(Y,KP ) = 1). As usual in the literature the

degree deg(M) of a coherent sheaf, M , on X whose generic rank is r is

defined by the Riemann-Roch type formula deg(M) = χ(M) − rχ(OX).

If A is an torsion free sheaf on an integral projective curve, let µ(A):=

deg(A)/rank(A) be its slope. For any coherent sheaf F on X call G(F )

the subsheaf of F spanned by H0(X,F ). If rank(G(F )) = rank(F ),

we have deg(G(F )) ≤ deg(F ) and deg(G(F )) = deg(F ) if and only if

F = G(F ), i.e. F is spanned. For every coherent sheaf G on Y , Tors(G)

will denote its torsion part; we have G ∼= (G/Tors(G)) ⊕ Tors(G) and

G/Tors(G) is locally free (or zero). For every torsion free sheaf F on

X set F 0:= π∗(F )/Tors(π∗(F )). Assume F spanned. We have π∗(F ) ∼=
F 0⊕Tors(π∗(F )). The sheaf π∗(F ) (resp. F 0) is spanned by the image of

π∗(H0(X,F )) into H0(Y,π∗(F )) (resp. H0(Y, F 0)). If P ∈ X and F is a

coherent sheaf on X, mP will denote the maximal ideal of OX,P and FP

the OX,P -module induced by F ; set embP (F ) = dimK(FP /mP FP ); hence
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embP (F ) is the minimal integer t such that FP is the quotient of a free

rank tOX,P -module; set emb(F ) = maxP∈X{embP (F )}; hence emb(F ) is

the minimal integer t such that F is the quotient of a rank t vector bundle

on X. For any torsion free sheaf F on X, set Sing(F ):= {P ∈ X: F is

not locally free at P}. Notice that Sing(F ) ⊆ Sing(X) for every torsion

free sheaf F on X. Fix P ∈ Sing(X) and let M be a rank r torsion free

OX,P -module; as in [5], def. 2.2.3, let l(M) be the minimal integer t such

that M contains a free OX,P -module N of rank r with dimK(M/N) = t.

Hence l(M) = 0 if and only if M is free. For every rank r torsion free sheaf

F on X it is important to consider the integer l(F ):=
P

P∈Sing(X) l(FP ),

where FP is the torsion free OX,P -module of rank r induced by F (see

e.g. [5], Ch. III, for its use). Hence l(F ) = 0 if and only if F is locally free.

If P ∈ X (resp. Y ) and F is a torsion free rank r sheaf on X (resp. Y ),

F |{P} will denote the fiber of F at P . If P /∈ Sing(F ) we have F |{P} ∼=
K⊕r. Now assume P ∈ Xreg. There is a natural bijection between the

surjections u: F → KP and the linear surjective maps F |{P} → K.

Fix any such surjection u. Then ker(u) is a torsion free subsheaf of F

with deg(ker(u)) = deg(F )− 1 and Sing(ker(u)) = Sing(F ). As usual in

the case of a smooth curve we will say that ker(u) is obtained from F

making a negative elementary transformation supported at P and that

F is obtained from ker(u) making a positive elementary transformation

supported at P . The set of all sheaves obtained from a rank r torsion

free sheaf G making a positive (or negative) elementary transformation

supported at P is parametrized by Pr−1. Hence for any pair of non-

negative integers (α,β) and any fixed torsion free sheaf G the set of all

sheaves obtained from G making α positive elementary transformations

and β negative elementary transformations supported at arbitrary points

of Xreg is parametrized by an irreducible variety; any such sheaf has the

formal isomorphism type of G at every point of Sing(X).

Proposition 2.1. Let F be a rank r semistable torsion free sheaf

on X with 0 ≤ µ(F ) ≤ 2g − 2. Then h0(X,F ) ≤ deg(F )/2 + r.

Proof. If r = 1, the result was proved in [6]. Assume r ≥ 2. Let G

be a subsheaf of F with 0 < rank(G) < r and with µ(G) maximal. We

may assume h0(X,F ) > 0 and hence deg(G) ≥ 0. By the maximality

of µ(G) the sheaf G is saturated in F , i.e. F/G is torsion free. By
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the maximality of µ(G) the sheaf F/G is semistable. By Riemann-Roch

and Serre duality we may assume H0(X,Hom(F,ωY )) = h1(X,F ) > 0.

Hence there is a rank 1 subsheaf A of ωX which is a quotient of F . Since

deg(A) ≤ 2g−2, we have µ(F/G) ≤ 2g−2. By the semistability of F we

have µ(G) ≤ 2g − 2 and µ(F/G) ≥ 0. Hence we conclude by induction

on r.

Call T (g) one of the integral curves of arithmetic genus g, rational

normalization and with a unique singular point with maximal ideal as

conductor introduced in [6], Th. A, part (c). Call L(g, d), 0 ≤ d ≤ g− 1,

one of the degree d rank 1 torsion free sheaves on T (g) described in the

same statement. For a detailed description of the curves T (g) (see [6],

p. 533). We just observe that for g ≥ 2T (g) is not Gorenstein because the

conductor of its only singular point, P , is the maximal ideal of OT (g),P .

The proof of Proposition 2.1, induction on r and [6], Th. A, give

immediately the following result.

Theorem 2.2. Let X be an integral curve of arithmetic genus g

and F a rank r semistable torsion free sheaf on X with 0 ≤ µ(F ) ≤ 2g−2

such that h0(X,F ) = deg(F )/2 + r. Then:

(1) F has an increasing filtration {Fi}0≤i≤r with F0 = {0}, Fr = F ,

Fi+1/Fi rank 1 torsion free sheaf on X, 0 ≤ i < r, and such that

for every integer i with 0 ≤ i < r, Fi+1/Fi is one of the following

sheaves:

(a) Fi+1/Fi
∼= OX ;

(b) Fi+1/Fi
∼= ωX ;

(c) Fi+1/Fi is a tensor power L⊕m, 1 ≤ m ≤ g − 2, of a degree 2

spanned line bundle L inducing a degree 2 map X → P1; hence

if this case occurs X is hyperelliptic (but perhaps singular);

(d) Fi+1/Fi
∼= L(g, d) for some integer d with 0 ≤ d ≤ g − 1; hence

if this case occurs, then X ∼= T (g).

(2) For every integer i with 0 ≤ i ≤ r − 2 the rank 1 sheaf Fi+1/Fi is

a rank 1 subsheaf of maximal degree of the rank 2 torsion free sheaf

Fi+2/Fi.

(3) For all integers i, j with 0 ≤ i ≤ j−2 ≤ r−2 we have h0(X,Fj/Fi) =P
i+1≤k≤j h0(X,Fk/Fk−1).
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Now we will show how to use the last two assertions of Theorem 2.2

to obtain more precise results. First, we discuss the use of part (2) and

part (3) for j = i + 2. Hence we are in the following situation.

(2.3) E is a rank 2 semistable torsion free sheaf on X which fits in

an exact sequence

(1) 0 → A → E → B → 0

with A and B rank 1 torsion free sheaves on X, 0 ≤ µ(A) ≤ 2g − 2, 0 ≤
µ(E) ≤ 2g− 2, 0 ≤ µ(B) ≤ 2g− 2, h0(X,A) = deg(A)/2 + 1, h0(X,E) =

deg(E)/2 + 2, h0(X,B) = deg(B)/2 + 1 and A is a rank 1 subsheaf with

maximal slope of E. Furthermore, both A and B are one of the sheaves

described in [6], Th. A, i.e. one of the rank 1 torsion free sheaves Fi/Fi−1

appearing in the statement of 2.2. By assumption h0(X,E) = h0(X,A)+

h0(X,B), i.e. the natural map H0(X,E) → H0(X,B) is surjective and

the cobundary map H0(X,B) → H1(X,A) is zero. If B ∼= OX this

condition is equivalent to the splitting of the exact sequence (1) because

if B ∼= OX the image of the constant function 1 by the coboundary map

gives, up to a sign, the extension class of the extension (1).

(2.3.1) Here we assume B ∼= OX . Hence the exact sequence (1) splits.

Since E is semistable we have E ∼= O⊕2
X . Hence in the original rank r

situation there is an integer i with 1 ≤ i ≤ r − 1 and such that Fk+1/Fk

is trivial if and only if k ≤ i.

(2.3.2) Here we assume A ∼= OX and B ∼= ωX . Furthermore, we

assume g ≥ 2, i.e. we assume B not trivial. We fix P ∈ Xreg. Since

h0(X,E) = g + 1 ≥ 3, there is u ∈ H0(X,E), u 6= 0, with u(P ) = 0,

i.e. OX(P ) is a subsheaf of E. Hence A is not a maximal degree rank 1

subsheaf of E, contradiction.

(2.3.3) Here we assume A ∼= ωX and B ∼= ωX . Furthermore, we as-

sume g ≥ 2, i.e. we assume B not trivial. By Riemann-Roch we have

h1(X,E) = 2. Hence by duality on the locally Cohen-Macaulay curve X

we have h0(X,Hom(E,ωX)) = 2. We have h0(X,Hom(ωX ,ωX)) = 1 be-

cause a rank 1 torsion free sheaf is stable (see [5], part 1 of Lemma 3.5.1

or statement of Cor. 3.1.9). Hence there is a morphism E → ωX whose

composition with the inclusion in the exact sequence (1) induces a split-

ting of (1). Hence E ∼= ω⊕2
X .

(2.3.4) Here we assume that X is hyperelliptic and that both A and B

are locally free. Since X is Gorenstein (see e.g. [6], part (b) of Th. A)
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we may apply the proof of [8], Prop. 2. Hence we obtain E ∼= A ⊕ B.

Notice that the g1
2 on X is locally free (see e.g. [6], part (b) of Th. A).

(2.3.5) Notice that if A ∼= OX and h0(X,B) ≥ 2 we obtain a contra-

diction as in subcase 2.3.2.

In summary, from the subcases 2.3.1, 2.3.2, 2.3.3, 2.3.4 and 2.3.5 we

obtain the following results 2.4 and 2.5.

Theorem 2.4. Assume X hyperelliptic. Let f : X → P1 be the

associated degree 2 morphism. Let F be a rank r semistable torsion free

sheaf on X with 0 ≤ µ(F ) ≤ 2g−2 and h0(X,F ) = deg(F )/2+r. Then F

is locally free and there is a rank r semistable vector bundle U on P1 with

F ∼= f ∗ (U) and h0(X,F ) = h0(P1, U).

Proof. Since T (g) is not Gorenstein, T (g) is not hyperelliptic (see

e.g. [6], part (b) of Th. A). Hence X is not isomorphic to T (g). X is

Gorenstein (see e.g. [6], part (b) of Th. A). Let {Fi}0≤i≤r be a filtration

of F satisfying the thesis of Theorem 2.2. By assumption and part (2)

of Theorem 2.2 all the torsion free sheaves Fi+1/Fi are locally free and

are pull-backs through f of line bundles on P1. Hence F is locally free.

Furthermore, all the maps H0(X,Fi+1)) → H0(X,Fi+1/Fi) are surjective.

Hence F is spanned. We claim that part (3) of Theorem 2.2 implies that

the r extensions induced by the filtration {Fi}0≤i≤r split. A moment’s

thought shows that the claim implies all the assertions of 2.4. To check

the claim we consider the morphism u: X → Gr(r, v), v = h0(X,F ),

induced by the pair (F,H0(X,F )). Since all the spanned line bundles

Fi+1/Fi induce the hyperelliptic double covering f , we see that u factors

through f , proving the claim.

Theorem 2.5. Assume X neither hyperelliptic nor isomorphic to

the curve T (g). Let F be a rank r semistable torsion free sheaf with

0 ≤ µ(F ) ≤ 2g − 2 and h0(X,F ) = deg(F )/2 + r. Then either F ∼= O⊕r
X

or F ∼= ω⊕r
X .

Proof. Just use 2.3.1, 2.3.2 and 2.3.3.

Theorems 2.4 and 2.5 give the following result.

Corollary 2.6. Assume g ≥ 3. Let X be an integral projective

curve with g:= pa(X) ≥ 3 and not isomorphic to T (g). Let F be a rank r
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spanned torsion free sheaf with 0 < deg(F ) ≤ 2r and with no trivial

factor. Then X is hyperelliptic and F ∼= L⊕r, where L is the degree 2 line

bundle on X inducing the double covering X → P1.

3 – Spanned torsion free rank 1 sheaves of degree 2 and 3

In this section we will study low degree rank one torsion free sheaves,

F , on an integral projective curve X with g:= pa(X) ≥ 2 and such that

h0(X,F ) ≥ 2. We prove the following results; for an explanation of the

notations l(F ) and l(FP ), see Section 2.

Theorem 3.1. Let X be an integral projective curve with g:=

pa(X) ≥ 1 and F a rank one torsion free sheaf on X with deg(F ) = 2

and h0(X,F ) ≥ 2. Then one of the following cases occurs:

(i) F ∈ Pic(X), h0(X,F ) = 2, F is spanned and h0(X,F ) induces a

degree 2 morphism f : X → P1, i.e. X is hyperelliptic; in particular

X is Gorenstein;

(ii) g ≥ 2 and X is one of the genus g curves (call any of them T (g))

described in [6], part (c) of Th. A and Remark at p. 533; hence the

normalization of X is P1, X has a unique singular point with the

maximal ideal as conductor and X can be embedded into Pg+1 as an

arithmetically Cohen-Macaulay curve of degree 2g +1; F is the sheaf

described in the statement of [6], part (c) of Th. A, for the integer

d = 1; in particular we have h0(X,F ) = 2;

(iii) g = 1; for a description of all such F , see Example 3.8.

Theorem 3.2. Let X be an integral projective curve with g:=

pa(X) ≥ 3 and F a rank one torsion free sheaf on X with deg(F ) = 3

and h0(X,F ) ≥ 2. Then one of the following cases occurs:

(i) F ∈ Pic(X), h0(X,F ) = 2, F is spanned and h0(X,F ) induces a

degree 3 morphism f : X → P1, i.e. X is “trigonal”;

(ii) F is not spanned; call G(F ) the subsheaf of F spanned by H0(X,

F ); we have deg(G(F )) = 2 and the pair (X,G(F )) is one of the two

pairs listed in parts (i) and (ii) of the statement of Theorem 3.1;

(iii) F is not locally free and l(F ) = 2; card(Sing(F )) = card(Sing(X))

= 2; the normalization of X is isomorphic P1;
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(iv) F is not locally free and l(F ) = 1; let π: Y → X be the normalization

map; Y is hyperelliptic or elliptic or rational and there is a two to

one map Y → P1 which factors through π and which is induced by

two sections of the degree 2 line bundle F 0:= π∗(F )/Tors(π∗(F )).

For a complete classification of the pairs (X,F ) arising in case (iii)

of Theorem 3.2, see the last part of its proof. For a partial classification

of case (iv) of Theorem 3.2, see Remark 3.10;

Remark 3.3. Let F be a rank r torsion free sheaf on X spanned by

its global sections. We have deg(F ) ≥ 0 and deg(F ) = 0 if and only if

F ∼= O⊕r
X . If g > 0 by Riemann-Roch the sheaf OX is the only rank 1

spanned torsion free sheaf with degree at most 1.

Remark 3.4. Let F be a rank r torsion free sheaf on X spanned

by its global sections. We have h0(X,F ) ≥ r. It is easy to check that

h0(X,F ) = r if and only if F ∼= O⊕r
X .

Remark 3.5. Let F be a rank 1 torsion free sheaf on X and set

F 0:= π∗(F )/Tors(π∗(F )). By [6], Lemma 1 at p. 534, we have deg(F 0) =

deg(F )− l(F ) ≤ deg(F ) and deg(F 0) = deg(F ) if and only if F ∈ Pic(X).

The integer d appearing in the classification of the sheaves F on the

rational singular curve considered in [6], part (c) of Th. A, is the integer

deg(F 0) and we have h0(X,F 0) = deg(F 0) + 1. For the corresponding

result for a torsion free sheaf with arbitrary rank, see [5], part 2) of Prop.

3.2.4; more precisely we have deg(F 0) = deg(F )− l(F ).

From now on in this section we fix a rank 1 torsion free sheaf F on

X and set d:= deg(F ) and v:= h0(X,F ).

Remark 3.6. Here we will check that v ≤ d+1. Since d = deg(F 0)+

l(F ), the case d ≤ 0 is obvious. Hence we may assume v ≥ 2. Fix a

general P ∈ Xreg. We have deg(F (−P )) = d− 1. Since F is torsion free

and P is general we have h0(X,F (−P )) = v − 1. Hence we conclude by

induction on d. Now we assume g ≥ 1. We want to check that v ≤ d if

v > 0. We may use the same trick and reduce our task to the proof that

v ≤ 1 if d = 1. Since C is not P1, for general P and Q in Xreg the line

bundles OX(P ) and OX(Q) are not isomorphic. Using again F (−P ) with

P general we reduce to the obvious assertion that if d = 0 and v > 0,

then F ∼= OX (Remark 3.3). Now assume g ≥ 1 and v = d > 0. Since a
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proper subsheaf of F has degree < d, the result just proven implies that F

is spanned. By Riemann-Roch and Clifford’s theorem for rank 1 torsion

free sheaves we obtain h1(X,F ) = 0 and g = 1.

Remark 3.7. Let G be a subsheaf of F with length(F/G) = 1.

Hence F/G is a skyscraper sheaf supported at one point, P , of X. If

P ∈ Xreg, then F ∼= G(P ). However, if P ∈ Sing(X) the situation is much

more complicated and depends heavily on the formal isomorphism type

of the singularity of X at P . F is just given (and uniquely determined

by) a non-trivial extension

(2) 0 → G → F → KP → 0

where KP is the skyscraper sheaf of length 1 with P as support. By the

local-to-global spectral sequence of the Ext-functors, Ext1(X;KP , G) ∼=
H0(X,Ext1(KP , G)), where Ext1 is computed either over the local ring

OX,P or over its completion. For such extension (2) the sheaf F is torsion

free if and only if (2) does not split and it is spanned if and only if

h0(X,F ) > h0(X,G), while if h0(X,F ) = h0(X,G)G is the subsheaf of F

spanned by H0(X,F ). In this sense case (ii) of Theorem 3.2 is not a full

classification of all possible types. For some kind of singularities we can

give some informations using the classification of all torsion free modules

on certain complete one-dimensional local rings. For instance if X has an

ordinary node or an ordinary cusp at P the sheaf G is locally free at P

if and only if F is not locally free at P , i.e. exactly one of the sheaves G

and F are locally free at P while the other is formally isomorphic at P

to the maximal ideal of OX,P (see e.g. [5], pp. 24 and 25, and Example

3.8 below).

Example 3.8. Here we assume g = 1. If X is smooth, everything

is known. Hence we assume that X is singular, i.e. that it is rational

and with a unique singular point, P , which is either an ordinary node

or an ordinary cusp. There is a complete classification of all torsion free

modules over the completion O∧
X,P of OX,P (see e.g. [5], pp. 24 and 25):

calling m∧
P the maximal ideal of O∧

X,P any such module is isomorphic to

m∧⊕a
P ⊕ O∧⊕b

X,P for some integers a ≥ 0, b ≥ 0 uniquely determined. All

torsion free rank 1 sheaves A of degree ≥ 2 on X are not special and have

h0(X,A) = deg(A). Fix M ∈ Pict(X) with t > 0. By the local-to-global
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spectral sequence for the Ext-functors up to a multiplicative constant

there is a unique non-split extension

(3) 0 → M → F → KP → 0

The sheaf F is torsion free of rank 1 and with deg(F ) = deg(M)+1. Since

h1(X,M) = 0, we have h0(X,F ) = deg(F ). Vice versa, take any such F .

The kernel of any surjection F → KP is locally free by the classification

of modules over ordinary nodes or ordinary cusps (see e.g. [5], pp. 24 and

25). Hence any torsion free non locally free F fits in an exact sequence

(3) with deg(M) = deg(F )− 1.

Proof of 3.1. If g ≥ 2 we have h1(X,F ) > 0 (Riemann-Roch).

Hence if g ≥ 2 we conclude by [6], Th. A. Now assume g = 1. We have

v = 2 and F spanned by Remark 3.6. Vice versa, any pair (X,F ) with

pa(X) = 1 and F torsion free has v ≥ 2 by Riemann-Roch. Any such

sheaf F is described in Example 3.8 taking deg(M) = 1.

Proof of 3.2. Let Y be the normalization of X. First assume

h0(X,F ) ≥ 3. By [6], Th. A, we have h1(X,F ) = 0. Hence by

Riemann-Roch we have g = 1, contradiction. Hence we may assume

h0(X,F ) = 2. By case (ii) we may assume F spanned. If F ∈ Pic(X),

then h0(X,F ) = 2 and X is “trigonal”. Hence we may assume that F is

not locally free. Hence we have 0 ≤ deg(F 0) = 3− l(F ) ≤ 2. Notice that

the pair (F,H0(X,F )) induces a non-constant morphism u: U → P1,

where U is the open subset of X on which F is locally free and that u

induces a non-constant morphism u0: Y → P1 with F 0 as associated

line bundle. Hence deg(F 0) > 0 and if g00 > 0, then deg(F 0) = 2. If

deg(u) = 2, the curve Y is hyperelliptic (or elliptic or rational) and we

are in case (iv). From now on we assume deg(F 0) = 1 and hence Y ∼= P1

and l(F ) = 2. Fix P ∈ Sing(F ). Since v = 2, F is a quotient of O⊕2
X .

Hence l(FP ) ≤ 1, i.e. l(FP ) = 1. Thus card(Sing(F )) = 2. Since the

pair (F 0,H0(Y, F 0)) induces an isomorphism from Y to P1, we must have

Sing(F ) = Sing(X). Set {P1, P2}:= Sing(X) and let fi: Yi → X be the

partial normalization of X at Pi. Set Fi:= f∗
i (F )/Tors(f∗

i (F )). Since

l(FPi
) = 1, we have deg(Fi) = 2 for every i. By construction Fi is a

degree 2 spanned torsion free sheaf on Yi. Hence by Theorem 3.1 and the

assumption deg(F 0) = 1 there is an integer gi ≥ 2 such that Yi
∼= T (gi)

and Fi is one of the sheaves described in [6], part (c) of Th. A, for the
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integer d = 1. We have g1 + g2 = g. Vice versa, given any pair of points,

Q1 and Q2, on P1 with Q1 6= Q2 and any pair of integers g1, g2 with

g1 ≥ 2 and g2 ≥ 2, set g:= g1 + g2 and define a singular rational curve

T (g1, g2) of arithmetic genus g and with 2 unibranch singularities, say P1

and P2, with Pi formally isomorphic to the singularity of a curve T (gi)

and with Qi as counterimage of the singular point. Since the two lin-

early independent sections of OP1(1) descend to two spanning sections

of Fi on T (gi) by [6], we obtain the existence on T (g1, g2) of a unique

torsion free degree 3 sheaf, F , with h0(T (g1, g2), F ) = 2. We claim that

F is spanned and hence that it is a solution of our classification The-

orem 3.2, solving completely part (iii) of 3.2. Call G(F ) the subsheaf

of F spanned by H0(T (g1, g2), F ). Since h0(T (g1, g2), F ) = 2, we have

deg(G(F )) > 0. Since pa(T (g1, g2)) ≥ 4 > 0, we have deg(G(F )) ≥ 2.

Since the spanned line bundle F 0 obtained on the normalization P1 has de-

gree 1, and T (g1, g2) is not isomorphic to T (g), we obtain deg(G(F )) ≥ 3

using the statement of 3.1. Hence G(F ) = F , i.e. F is spanned.

Remark 3.9. Motivated by Remark 3.7, we want to discuss in detail

one of the pairs (X,F ) covered by subcase (ii) of 3.2. The curve X is

one of the genus g curves (call any of them T (g)) described in [6], part

(c) of Th. A and Remark at p. 533; hence the normalization of X is

P1, X has a unique singular point with the maximal ideal as conductor

and X can be embedded into Pg+1 as an arithmetically Cohen-Macaulay

curve of degree 2g + 1. Call L(g, d), d ≥ 0, the sheaf described in the

statement of [6], part (c) of Th. A, for the integer d. In particular we

have h0(X,L(g, d)) = d + 1, deg(L(g, d)) = 2d and the fiber of L(g, d)

at P is a vector space of dimension d + 1. There is a unique point

Q ∈ Xreg such that F ∼= L(g, 2)(−Q); we have h0(X,L(g, 2)(−Q)) = 2,

and hence L(g, 2)(−Q) is not spanned by H0(X,L(g, 2)(−Q)) at P . It is

easy to check (and it follows from 2.1) that the subsheaf of L(g, 2)(−Q)

spanned by H0(X,L(g, 2)(−Q)) is isomorphic to L(g, 1). L(g, 2)(−Q)

and L(g, 2)(−Q0), Q,Q0 ∈ Xreg, are not isomorphic if Q 6= Q0 beacause

OX(Q) and OX(Q0) are not isomorphic.

Remark 3.10. Let Y be a smooth curve of genus g00 ≥ 0. If g00 ≥ 3

we assume Y hyperelliptic. If g00 ≥ 2 we call F 0 the g1
2 on Y . If g00 = 1 we

fix F 0 ∈ Pic2(Y ). If g00 = 0 we take as F 0 the degree 2 line bundle on Y

but later we will fix a vector space W ⊂ H0(Y, F 0) with dim(W ) = 2 and
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W spanning F 0. Let X be an integral curve of arithmetic genus g > g00

with π: Y → X as normalization. Take an effective degree 2 divisor

Q + σ(Q) of F 0 (or of the projective space associated to W if g00 = 0)

such that π(Q ∪ σ(Q)) ⊂ Xreg. Hence π(Q ∪ σ(Q)) is a Cartier divisor

of X and defines L ∈ Pic2(X) with h0(X,L) > 0. For any such L we

have h0(X,L) ≤ 2 if g00 > 0 and h0(X,L) ≤ 3 if g00 = 0. We assume

h0(X,L) = 1; this is true for every such L if the degree 2 morphism

Y → P1 associated to F 0 does not factor through π. By the projection

formula we have an exact sequence on X:

(4) 0 → L → π∗(F
0) → π∗(OY )/OX → 0

where length(π∗(OY )/OX) = g− g00 and hence deg(π∗(F
0)) = 2 + g− g00.

Notice that h0(X,π∗(F
0)) ≥ h0(Y, F 0) ≥ 2 and π∗(F

0) is torsion free.

Since π is finite the functor R1π∗ is zero. Hence π∗(F
0) is spanned.

If g00 ≤ 1 for every coherent sheaf F with L ⊂ F ⊆ π∗(F
0) we have

h1(Y, F ) = 0. If g = g00 + 1 (i.e. if X has a unique singular point

which is an ordinary node or an ordinary cusp) we take F := π∗(F
0)

and obtain an example. In the general case if g00 = 0 we fix a span-

ning subspace W of H0(Y, F 0) containing π∗(H0(Y,L)) and take as F

the subsheaf of π∗(F
0) generated by π∗(W ). The triple (P1, F 0,X) gives

an example if and only if deg(F ) = 3. We see how to obtain examples

of degree ≥ 3 if g − g00 = length(π∗(OY )/OX) ≥ 2. Since we may have

h0(X,π∗(F
0)) > h0(X,L), the condition “g = g00 + 1” is not a neces-

sary condition for the existence of a spanned F with deg(F ) = 3. To

refine this sufficient condition we observe that, since F is not locally

free, the hyperelliptic pencil u: Y → P1 induced by F ’ does not factor

through the normalization map π. However, u may factor through a par-

tial normalization map, i.e. there are birational morphism π’: Y → Y 0

and π00: Y 0 → X with π = π00 ◦ π0 and such that u factors through

π0. We allow the case Y 0 = Y , π0 = IdY and we take (Y 0,π0) with

length(π0
∗(OY )/OY 0) maximal. By construction there is a hyperelliptic

pencil u0: Y 0 → P1 and in particular Y 0 is Gorenstein. By construc-

tion there is G0 ∈ Pic2(Y 0) inducing the hyperelliptic pencil and with

π00∗(F )/Tors(π00∗(F )) ∼= G0. By the maximality of length(π0
∗(OY )/OY 0)

we obtain h0(X,π00
∗ (G0)) = 2. Hence we have F = π00

∗ (G0) and hence

length(π00
∗ (OY 0)/OX) = 1. Vice versa, we start with (Y 0, G0) and take

any pair (X,π00
∗ (G0)) with length(π00

∗ (OY 0)/OX) = 1 as an example. In
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particular we may add to Y 0 a new ordinary node to Y gluing together

two points of Yreg not on the same fiber of u0 or taking a cusp at a point

of Y 0 at which u is étale. However, at singular points of Y 0 we may do

more complicated operations to obtain X starting from Y 0.

Remark 3.11. Let X be a trigonal curve with g:= pa(X) ≥ 3. Let π:

Y → X be its normalization and f : X → P1 the associated triple cover-

ing. Set h:= f ◦ π: Y → P1. The line bundle L:= π∗(ωX)/Tors(π∗(ωX))

define a morphism u: Y → P(H0(X,ωX)) ∼= Pg−1 and u(Y ) is con-

tained in a ruled rational surface, S, because every fiber of f contained

in Xreg
∼= π−1(Xreg) is contained in a line. The morphism u factors

through π if X is Gorenstein. However, in general S is just the projec-

tion of a linearly normal minimal degree ruled surface W ∼= Fe (for some

integer e ≥ 0) contained in the projective space P(H0(Y,L)) or of a cone

W over a rational normal curve contained in a hyperplane of P(H0(Y,L))

(see e.g. [9], §2). Set N := h0(Y,L) − 1. Hence deg(W ) = N and there

are non-negative integers e1 and e2 with e1 + e2 = N , e1 ≥ e2 ([9], §2). It

seems natural to call the integer e1 − e2 the Maroni invariant of X, even

when X is not Gorenstein. Notice that for every smooth trigonal curve h:

Y → P1 any factorization of f through a singular curve gives a singular

trigonal curve with Y as a normalization. If X 6= Y , then the associated

ruled surfaces of X and Y seem to be different becuse pa(X) > pa(Y ).

For a detailed study of the canonical map for a Gorenstein curve X, see

[4], §3.

Remark 3.12. For low degree spanned rank r torsion free sheaves,

F , with h1(X,F ) = 0 Theorem 1.3 gives the best possible answer (see

also the discussion in the first part of Section 5 and Corollary 5.4). For

rank r torsion free sheaves with degree at most 2r and g ≥ 3 (hence in

the special range) see Corollary 2.6.

4 – Proof of 1.1 and 1.2

In this section we prove 1.1 and 1.2. Notice that if Q ∈ Xreg and H

is a torsion free sheaf obtained from the torsion free sheaf F making a

positive or negative elementary transformation supported at Q, then F

and H have the same formal isomorphism type at each point of Sing(X).
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Remark 4.1. Let F be a torsion free sheaf on X and Q ∈ Xreg. F is

stable (resp. semistable) if and only if F (−Q) is stable (resp. semistable).

Hence if G is a rank r stable torsion free sheaf the general sheaf obtained

from G making r negative elementary transformations is stable.

Proof of 1.1. (a) Since the result is trivial if r = 1, we may assume

r > 1 and use induction on r. Fix Q ∈ Xreg. Let G be a rank r torsion

free sheaf on X and A a saturated subsheaf of G with 1 ≤ rank(A) < r,

i.e. assume the existence of an exact sequence

(5) 0 → A → G → B → 0

with B torsion free. The general sheaf, G0, obtained from G making

a positive elementary transformation supported at Q fits in an exact

sequence

(6) 0 → A → G0 → B0 → 0

in which B0 is obtained from B making a general elementary transfor-

mation supported at Q. Let A0 any sheaf obtained from A making a

positive elementary transformation supported at Q. There exists a posi-

tive elementary transformation of G which induces A0, i.e. such that the

corresponding sheaf G00 fits in an exact sequence

(7) 0 → A0 → G00 → B → 0

By the openness of stability to show that the general sheaf obtained from

G making a positive elementary transformation supported at Q is stable

it is sufficient to prove that G00 is stable.

(b) Let M be a saturated subsheaf of F with rank(M) = r−1. Hence

we have an exact sequence

(8) 0 → M → F → L → 0

with L torsion free of rank 1. Fix an integer k ≥ max{t(M), (r −
1)deg(L) − deg(M)}. We apply to M k general elementary transforma-

tions supported at Q1, . . . , Qk and make the corresponding elementary

transformations of F . Then we apply to the sheaf obtained from F in this

way some (say, x) general positive elementary transformations supported
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at Qk+1, . . . , Qk+x. Here we take x = [(deg(M)+k+1)/(r−1)]−deg(L).

Set L0:= L(
P

k<j≤k+x Qj). In this way we obtain an exact sequence

(9) 0 → M 0 → F 0 → L0 → 0

with µ(M 0) < µ(L0) ≤ µ(M 0)+1/(r−1). M 0 is stable because k ≥ t(M).

Since g > 0 it is easy to check that for general elementary transformations

the extension (9) does not split. By Remark 4.1 to prove the theorem

it is sufficient to prove that F 0 is stable. In order to obtain a contra-

diction we assume that F 0 is not stable. Let U be a saturated subsheaf

of F 0 with µ(U) ≥ µ(F 0) and rank(U) < r. Taking µ(U) maximal and

rank(U) minimal we may assume that U is stable. Set u:= rank(U). Since

µ(M 0) < µ(F 0) and M 0 is stable, U is not contained in M 0. Hence the

image, R, of U in L0 has rank 1. Since µ(L0)−1 < µ(F 0), we have R = L0.

Since rank(U ∩M 0) = u−1 ≤ r−2, we have deg(U ∩M 0) < (u−1)µ(M 0).

(c) Here we give the only case which we are able to prove 1.1 using

only numerical tricks with the slope of all sheaves involved in the con-

struction. We assume to be in the set-up of step (b). In particular we

assume that we have the exact sequences (8) and (9) with rank(M) =

rank(M 0) = r−1. We assume deg(M 0) ≡ 0 mod(r−1). This assumption

is equivalent to the existence of an integer y such that deg(M 0) = y(r−1)

and deg(L0) = y + 1, i.e. to the condition deg(F 0) ≡ 1 mod(r). Take

any F 0 fitting in a non-split extension (9) with these numerical invari-

ants; such a sheaf exists because Ext1(X;L0,M 0) 6= 0 by Riemann-Roch.

We claim that F 0 is stable. Assume the existence of a saturated subsheaf

U of M 0 with µ(U) ≥ µ(F 0) = y+1/r and 1 ≤ rank(U) < rank(F 0). Tak-

ing U minimal, we may assume U stable. Hence the induced map U → L0

is either 0 or surjective. In the latter case (9) splits, contradiction. In

the former case U 0 is a subsheaf of M 0 and hence µ(U 0) ≤ y, contradic-

tion. Hence in this way we obtain the result for all large numbers, say z,

of general positive elementary transformations supported at Q and with

z + deg(F ) ≡ 1 mod(r) (see Remark 4.1, too). In particular for r = 2 we

proved the theorem for the case t + deg(F ) odd.

(d) By local duality (see e.g. [5], Prop. 3.1.6, part 1) for every tor-

sion free sheaf G on X the natural map G → Hom(Hom(G,ωX),ωX) is

an isomorphism. Furthermore, we have Exti(G,ωX) = 0 for every i ≥ 1

([5], Lemma 2.5.3). Hence the functor Hom(−,ωX) sends short exact
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sequences of torsion free sheaves on X into short exact sequences. Fur-

thermore, we have deg(Hom(G,ωX)) = −deg(G) + (2g − 2)rank(G) even

when ωX is not locally free ([5], Prop. 3.1.6, part 2). Hence the functor

Hom(−,ωX) preserves the conditions of stability and semistability.

(e) Let A be a rank r torsion free sheaf and P ∈ Xreg. Then A is

stable if and only if A(P ) is stable. Furthermore, A(P ) is obtained from

A making r positive elementary transformations supported at P , while

A is obtained from A(P ) making r negative elementary transformations

supported at P . Hence, for fixed F with rank(F ) = r, the proof of 1.1

is finished if we may find r stable sheaves F1, . . . , Fr, each of them ob-

tained from F making positive and negative elementary transformations

supported at points of Xreg and such that the integers deg(Fi), 1 ≤ i ≤ r,

cover all the congruence classes of integers modulo r. We assume that

the theorem is false for some rank r torsion free sheaf and among such

“bad” sheaves we take one, called F , with the property that there is a

congruence class modulo r such that for all large integers t with t+deg(F )

in that congruence class the general sheaf, G, obtained from F making t

general positive elementary transformations supported at Q1, . . . , Qt has

a proper subsheaf, U , with µ(U) ≥ µ(G) and with w:= rank(U) mini-

mal among all such “bad” rank r sheaves. Since rank(U) is minimal, U

is stable. By part (d) we have µ(Hom(G,ωX)) ≥ µ(Hom(U,ωX)). By

part (d) Hom(G,ωX) has a rank w torsion free quotient sheaf isomorphic

to Hom(U,ωX). Hence by the minimality of w we obtain the inequality

w ≤ r − w. We distinguish two subcases according to the value of w.

(e1) Here we assume 2w < r. We start with an exact sequence

(8) with L torsion free and with rank(L) = w. Thus here we have

rank(M) = r − w. We make the construction of part (b) starting from

this filtration. After a large number, t, of positive elementary transfor-

mations supported at Q1, . . . , Qt we arrive at an exact sequence (9) with

rank(M 0) = r − w, rank(L0) = w, M 0 obtained from M making some of

the t positive elementary transformations applied to F and L0 obtained

from L making the remaining positive elementary transformations. In-

deed, the positive elementary transformations which send L into L0 may

be considered general, while each of the positive elementary transforma-

tion, say supported at Qi, which is used to transform M into M 0 are very

particular positive elementary transformations of F : a positive elemen-

tary transformation of F induces a positive elementary transformation
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of M if and only if the kernel of the associated map F ∗|{Qi} → KQi

contains L∗|{Qi}. Notice that deg(F 0) = t + deg(F ) = deg(G) and in

particular deg(F 0) falls in a prescribed in advance congruence class mod-

ulo r. Since F is a “bad” sheaf, F 0 is not stable. Hence there is a proper

saturated subsheaf U of F 0 with µ(U) ≥ µ(F 0). Taking u:= rank(U)

minimal we may assume U stable. Since the positive elementary trans-

formations we did are not general, we have u ≤ w, but in general we

cannot claim the equality u = w. We distinguish two subcases, (e1.1)

and (e1.2), according to the value of u.

(e1.1) Here we assume u = w < r/2 and distinguish two further

possibilities.

(e1.1.1) Here we are in the situation of (e1.1) with the further as-

sumption µ(U) > µ(F 0/U), i.e. F 0 not semistable. We have µ(M 0) <

µ(L0) ≤ µ(U) and rank(U) = rank(L0). We obtain a contradiction to

the stability of U , M 0 and L0 unless the map U → L0 induced by the

composition of the inclusion of U in F 0 and of the surjection F 0 → L0 is

an isomorphism, i.e. unless the extension (9) splits. For general positive

elementary transformations we may easily avoid this case.

(e1.1.2) Here we are in the situation of (e1.1) with the further assump-

tion µ(U) = µ(F 0/U), i.e. F 0 semistable. Here we stop at an exact se-

quence (9) with deg(L0) = deg(U)+1, i.e. µ(L0)−1/w = µ(F 0)+1/(r−w).

We obtain that U is a subsheaf of L0 with L0/U skyscraper sheaf with

h0(X,L0/U) = 1. Hence the inclusion U → L shows that F 0 has a sub-

sheaf, F 00, with F 00 ∼= M 0 ⊕ U . Set P := Supp(F 0/F 00) ∈ X. We may

divide the set {Q1, . . . , Qt} into two disjoint subsets, say {Q1, . . . , Qk}
and {Qk+1, . . . , Qt}, according to the fact that the corresponding posi-

tive elementary transformation of F induces a positive elementary trans-

formation of M or not. Since Xreg is irreducible, moving the points

Qi, i ≥ 1, we reduce to the case P /∈ {Q1, . . . , Qt}. Now we use that

every positive elementary transformation supported at a smooth point,

Qi, of X has as inverse a negative elementary transformation supported

at Qi and that two positive elementary transformations supported at

distinct points commute (in the sense made clear in [7], Prop. 2.2).

Hence making backward t suitable negative elementary transformations

at Qt, . . . , Q1 we obtain that F has a subsheaf, A, with rank(A) = r,

deg(A) = deg(F )− 1 and A ∼= M ⊕L00 with L00 subsheaf of L with L/L00

skyscraper sheaf. Obviously, this is a very restrictive condition on F .
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We may find a contradiction in the following way. To cover simulta-

neously the corresponding part of case (e1.2) and the subcase (e2.1.2)

which we will met later we write s:= rank(M). It is sufficient to find a

contradiction taking instead of F the sheaf, H, obtained from F mak-

ing n suitable positive elementary transformations supported at generic

points of X. We take as positive elementary transformations n−s general

positive elementary transformations and s positive elementary transfor-

mations which induce positive elementary transformations of M and are

general with this restriction. Call T the sheaf obtained from M making

these positive elementary transformations. Hence H has a subsheaf, B,

with B ∼= T ⊕ R and T/B skyscraper sheaf with h0(X,T/B) = 1. The

composition of the inclusions of A in F and of F in T induces an inclu-

sion M ⊕ L00 ∼= A → B ∼= T ⊕ R whose restriction to {0} ⊕ L00 is the

inclusion of {0}⊕L00 into {0}⊕R. However, L00 is saturated in the sheaf

obtained from F making s positive elementary transformations inducing

positive elementary transformations of M and it remains saturated when

we make n−s further general positive elementary transformations. Hence

the saturation of L00 in H cannot contain R, contradiction.

(e1.2) Here we assume u < w < r/2. We start from a filtration

M1 ⊂ M2 ⊂ F with M2 saturated subsheaf of F , M1 saturated subsheaf

of M2 and F and with rank(M1) = u, rank(M2) = w. Set u1:= u,

M := M1 and L:= F/M . Hence we have an exact sequence (8) and in the

usual way we obtain an exact sequence (9) making t positive elementary

transformations. Call again U a saturated proper subsheaf of F 0 with

maximal slope and minimal rank. Set u2:= rank(U). The t positive

elementary transformations we would make starting with M2 are more

general than the ones we can make starting from M1. Hence we have

u2 ≤ u1 (e.g. by the properness of relative Quot-schemes). If u2 = u1,

then we may repeat the proof of part (e1.1). If u2 < u1 we start with

a 3-steps filtration of F by saturated subsheaves of F respectively with

rank u2, u1 and w. Again we find an integer u3 ≤ u2 and such that if

u3 = u2 we may repeat the proof given in (e1.1). If u3 < u2, we repeat the

construction starting from a 4-step filtration of F by saturated subsheaves

of F respectively with rank u3 u2, u1 and w. After at most w steps this

construction must stop with an integer ui+1 with ui+1 = ui and hence we

conclude.

(e2) Here we assume 2w = r. In particular r is even. Using the
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functor Hom(−,ωX) and the minimality of w we obtain easily that G/U

is stable. Now we make the construction of part (c) starting from a

filtration (8) with rank(M) = rank(L) = r/2. After a large number, t, of

positive elementary transformations supported at Q1, . . . , Qt we arrive at

an exact sequence (9). Notice that deg(F 0) = t + deg(F ) = deg(G) and

in particular deg(F 0) falls in a prescribed in advance congruence class

modulo r. Since F is a “bad” sheaf, F 0 is not stable. Hence there is

a proper saturated subsheaf U of F 0 with µ(U) ≥ µ(F 0). Taking u:=

rank(U) minimal we may assume U stable. Since the positive elementary

transformations we did are not general, we have u ≤ w = r/2, but in

general we cannot claim the equality u = w. Hence we distinguish again

two subcases.

(e2.1) Here we assume u = w = r/2. Call f : U → L0 the composition

of the inclusion of U in F 0 and the surjection F 0 → L0 given by (9). We

distinguish two subsubcases.

(e2.1.1) Here we assume µ(U) > µ(F 0), i.e. deg(U) ≥ deg(L0). Since

rank(U) = rank(L0) and U is stable, either f = 0 or f induces a splitting of

(9). The first case is impossible because M 0 is stable and µ(M 0) < µ(U).

We may easily avoid the second case taking not too special the t positive

elementary transformations.

(e2.1.2) Here we assume µ(U) = µ(F 0). Hence deg(F 0) is even. By

the maximality of µ(U)F 0 is semistable and F 0/U is semistable. Here we

stop at an exact sequence (9) with deg(L0) = deg(M 0) + 2. We obtain

that U is a subsheaf of L0 with L0/U skyscraper sheaf with h0(X,L0/U) =

1. Hence the inclusion U → L shows that F 0 as a subsheaf, F 00, with

F 00 ∼= M 0 ⊕ U . We conclude as in subcase (e1.1.2) taking s = r/2.

Since for each torsion free sheaf F we are interested only in sheaves

obtained from F making a fixed number (larger but bounded) of positive

elementary transformations, in the statement of Theorem 1.1 we may take

the word “generic” for the sequence in the sense that for every integer

t > 0 there is a Zariski open dense subset ≠ of the cartesian product

(Xreg)
t such that the statement is true if (Q1, . . . , Qt) ∈ ≠.

Proof of 1.2. Just use Remark 4.1 and the statement of 1.1.

Remark 4.2. Assume g:= pa(X) = 1 and X singular, i.e. let X be

a rational curve with one ordinary node or one ordinary cusp. Then the

proofs of Theorems 1.1 and 1.2 give the existence of semistable torsion
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free sheaves with a fixed formal isomorphism type at the singular point

of X and with prescribed degree. Obviously, taking r and d coprime, we

obtain also the existence of a stable torsion free sheaf with prescribed

formal isomorphism type at the singular point of X. These results are

well-known.

5 – Proof of 1.3

Here we classify low degree spanned non special torsion free sheaves

on an integral curve X with g:= pa(X) ≥ 2. Thus in this section we

are interested in “general” non-special sheaves, i.e. in sheaves for which

Clifford’s type theorems are not true. We will prove Theorem 1.3. Let F

be a rank r torsion free sheaf on X spanned by its global sections and

with h1(X,F ) = 0. Set d:= deg(F ). We have d > 0 because F is not

the trivial bundle O⊕r
X since g > 0. For the same reason F has not OX

as a direct factor. Since F is not trivial, we have h0(X,F ) ≥ r + 1.

Furthermore, we have h0(X,F ) ≥ emb(F ). By Riemann-Roch we have

h0(X,F ) = d+1−g. Hence d ≥ max{r−g, emb(F )+1−g}. Theorem 1.3

shows that for every X this inequality is the only numerical restriction.

To obtain this result we need the following well-known lemma.

Lemma 5.1. Let H be a torsion free sheaf and H 0 (resp. H 00) the

general sheaf obtained from H making a general negative (resp. positive)

elementary transformation. Then we have:

(a) h0(X,H 0) = max{h0(X,H)− 1, 0};
(b) h1(X,H 00) = max{h1(X,H)− 1, 0}.

Proof. Take σ ∈ h0(X,H), σ 6= 0 and let R be the saturation in H

of the subsheaf σ(OX). Take Q ∈ Xreg such that R is spanned by σ

at Q; for instance take Q general. Thus σ in not a section of the sheaf

obtained from H making a general negative elementary transformation

supported at Q. Hence by semicontinuity we have part (a). Part (b)

follows from Serre duality and part (a) applied to the torsion free sheaf

Hom(H,ωX).

Remark 5.2. Let F and G be rank r torsion free sheaves on X and

f : F → G a morphism such that for every P ∈ Sing(X)f induces an

isomorphism f∧
P : F∧

P → G∧
P of O∧

X,P -modules. Using the corresponding
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result on the normalization of X we obtain that f is the composition of

positive and negative elementary transformations supported at points of

X − reg.

Proof of 1.3. Call T(x) the irreducible variety parametrizing all

sheaves of degree x obtained from G making positive and negative ele-

mentary transformations supported at points of Xreg. For every integer

i ≥ i, set T(x, i):= {F ∈ T(x): h1(X,F ) ≥ i} and Y(x, i):= {F ∈ T(x):

h1(X,F ) = i}. By semicontinuity T(x, i) is a closed subset of T(x).

By part (b) of Lemma 5.1 for every integer u ≥ r(g − 1) the general

sheaf F ∈ T(u) has h1(X,F ) = 0. For every integer u ≥ r(g − 1) set

T(u)0:= {F ∈ T(u): h1(X,F ) = 0}. Hence for every u ≥ r(g − 1) T (u)0

is a Zariski open dense subset of T (u). We divide the remaining part of

the proof into 6 steps.

Step 1. Here we will check that for every integer x ≥ rg a general

F ∈ T(x)0 is generically spanned, i.e. H0(X,F ) spans a subsheaf, G(F ),

of F with rank(G(F )) = r. The result is obvious if r = 1. Hence we

assume r ≥ 2 and use induction on the rank to check this assertion. There

is a rank 1 torsion free sheaf L such that H fits in an exact sequence

(10) 0 → L → G → H → 0

We apply to G several positive and negative elementary transformations

supported at points of Xreg, some of them very particular. The non-

general positive elementary transformations correspond to the subspace

L|{P} of G|{P} and hence each of them induces a positive elemen-

tary transformation of L. The non-general negative elementary trans-

formations have as kernel the kernel of the surjection G|{P} → H|{P}
and hence induce a negative transformation of H. The general positive

elementary transformations preserve L and induce positive elementary

transformations of H. The general negative elementary transformations

preserve H and induce negative elementary transformations of L. At the

end of this process we may obtain an exact sequence

(11) 0 → L00 → G00 → H 00 → 0

with deg(L00) = g − 1, deg(H 00) = x− g + 1, h1(X,L00) = h1(X,H 00) = 0

and with L00 and H 00 generically spanned. Since h1(X,L00) = 0, G00 is

generically spanned.
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Step 2. Here we assume r = 1 and prove that for every integer

d0 ≥ g +1 we may find a degree d0 torsion free sheaf, D, obtained from G

making positive and negative elementary transformations supported at

points of Xreg, with h1(X,D) = 0 and such that H0(X,D) spans D at

every point of Xreg. By Serre Theorem B for any Q ∈ Xreg there is a large

integer y such that for every z ≥ y we have h1(X,G(zQ)) = 0. Hence the

general sheaf, B, obtained from G making z general positive elementary

transformations has h1(X,B) = 0 and hence h0(X,B) = deg(G)+z+1−g.

By part (b) of Lemma 5.1 for every integer u ≥ g − 1 the general sheaf

F ∈ T(u) has h1(X,F ) = 0. We need to check that for the general such

G the vector space H0(X,G) spans G at every point of Xreg. We consider

the case u = g + 1, the general case following by induction on u using

exact sequences

(12) 0 → G → G00 → KP → 0

with P ∈ Xreg, G spanned at every point of Xreg and h1(X,G) = 0.

If this is false, then for every F ∈ T(g + 1) with h1(X,F ) = 0 and

h0(X,F ) = 2 there is P ∈ Xreg such that h0(X,F ) = h0(X,F (−P )).

We have h1(X,F (−P )) = 1. Since dim(Xreg) = 1, in order to obtain a

contradiction it is sufficient to check that T(g, 1) has codimension ≥ 2 in

T(g). By the proof of Lemma 5.1 we obtain that T(g − 1, 1) is a proper

closed subset of T(g−1) and that every element of Y(g, i) induces a one-

dimensional family of elements of T(g − 1, i). Vice versa, every element

of Y(g − 1, i) is induced by at most finitely many elements of Y(g, i).

Hence it is sufficient to check that T(g − 1, 2) has codimension at least

two in T(g − 1). Since T(g − 1, 1) is a proper closed subset of the ir-

reducible variety T(g − 1), it is sufficient to prove that for all integers

i ≥ 2 every element of Y(g− 1, i) is the flat limit of an irreducible family

of elements of Y(g − 1, i − 1). Fix A ∈ Y(g − 1, i). For any Q ∈ Xreg

we have A ∼= A(−Q)(Q). Hence A is the flat limit of a family bundles,

say {Am}m∈M , obtained from A first making a one-dimensional family of

“moving” general negative elementary transformations and then a one-

dimensional family of general positive elementary transformations (i.e.

each Am is obtained from A making one sufficiently general negative ele-

mentary transformation and one sufficiently general positive elementary

transformation). By the proof of Lemma 5.1 we have Am ∈ Y(g−1, i−1)

for general m ∈ M ; here we use the assumption g ≥ 2.
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Step 3. Here we assume r ≥ 1. We will show that for every integer

x ≥ r +1+ r(g− 1) there is a sheaf, Z, obtained from G making positive

and negative elementary transformations supported at points of Xreg,

with h1(X,Z) = 0 and such that H0(X,Z) spans Z at every point of X at

which Z is locally free (i.e. at the points at which G is locally free) and in

particular at every point of Xreg. By Step 2 this assertion is true if r = 1.

Hence we may assume r > 1 and use induction on r. As in Step 2 using the

exact sequence (12) we reduce to the case x = r+1+r(g−1). As in Step

2 we start from an exact sequence (10) and obtain an exact sequence (11)

with F 00 ∈ T(rg)0, deg(L00) = g, rank(L00) = 1, deg(H 00) = (r − 1)g,

rank(H 00) = r − 1. We make a similar filtration for H 00 and obtain an

increasing filtration, say {Gi}0≤i≤r, of F 00 with G0 = {0}, Gr = F 00,

rank(Gi) = i, each Gi saturated subsheaf of F 00, Lj:= Gj/Gj−1, 1 ≤ j ≤
r, torsion free rank 1 sheaf of degree g with h1(X,Lj) = 0. Furthermore,

it is easy to check as in the proof of Step 2 the following fact: there is

an integer z ≥ 0 such that for every j, 1 ≤ j ≤ r, the unique (up to a

constant) non-zero section of Lj has z simple zeroes on Xreg, say P (j, w),

1 ≤ w ≤ z. Notice that h0(X,F 00) = r, that F 00 is spanned outside

Sing(X) and the zr points P (j, w), 1 ≤ j ≤ r, 1 ≤ w ≤ z, and at each

P (j, z) the vector space H0(X,F 00) spans a linear subspace of dimension

r−1 of the fiber F 00|{P (j, w}. Every positive elementary transformation,

M , of F 00 has h1(X,M) = 0 and it is spanned outside Sing(X) and the

set {P (j, w)}1≤j≤r,1≤w≤z. Let W ∼= P(F 00|Xreg) be the parameter space for

one positive elementary transformation supported at one point of Xreg.

We need to check that the general such M is spanned at every point

of P (j, w). Call B(j, z) the subset W formed by the positive elementary

transformations such that the corresponding M is not spanned at P (j, z).

Every B(j, z) is a closed subset of the irreducible variety W . Since a

general positive elementary transformation of Lj is spanned (for general

Lj) by Step 2 and h1(X,Gj) = 0 for every j, one can see by induction on

j that B(j, w) is a proper closed subset of W . Hence
S

j,w B(j, w) 6= W ,

as wanted.

Step 4. Fix P ∈ Sing(X) and Q ∈ Xreg. Here we will show that for

every integer x ≥ embP (F )+r(g−1) a general element of T(x)0 is spanned

at P . Fix F ∈ T(r(g − 1))0. By Riemann-Roch we have h0(X,F ) = 0.

By Serre Theorem A there is a large integer t such that F (tQ) is spanned

by its global sections and h1(X,F (tQ)) = 0. Hence a general bundle, H,
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obtained from F making rt general positive elementary transformations

supported at smooth points of X is spanned at P . Call e(1), . . . , e(rt)

a choice of such sufficiently general positive elementary transformations.

Any two positive elementary transformations supported at distinct points

commute (in the sense made clear in [7], Prop. 2.2). Hence there must

be at least one such elementary transformation, say e(1), such that the

sheaf F1 obtained from F making the positive elementary transformation

e(1) has a section, s1, whose value s1(P ) in the fiber F1|{P} ∼= F |{P} ∼=
Ke, e:= embP (F ), is not zero; here we use that e(1) is supported at

a point of X − reg and hence not by P and thus making e(1) induces

a fixed isomorphism of F |{P} with F1|{P}. If e = 1 (i.e. r = 1 and

G is locally free at P ) we stop. Assume e > 0. For the same reason

there is at least one among the positive elementary transformations e(2),

. . . , e(rt), say e(2), such that the sheaf F2 obtained from F1 making the

elementary transformation e(2) has a section s2 whose value s2(P ) in the

fiber F2|{P} ∼= F1|{P} is linearly independent from s1(P ). And so on.

After embP (F ) steps we conclude.

Step 5. Since Sing(X) is finite, we obtain that for every integer

x ≥ emb(F ) + r(g − 1) a general element of T(x)0 is spanned by its

global sections at each point of Sing(X) and in particular at each point

of Sing(F ).

Step 6. The proof of Step 4 gives without any modification the last

assertion of 1.3.

Remark 5.3. Notice that “spannedness” is an open condition in a

flat family of torsion free sheaves on X which have constant cohomol-

ogy. Hence by semicontinuity if the sheaf A whose existence is claimed

in Theorem 1.3 is obtained from A making t positive elementary trans-

formations and deg(G)− d + t negative elementary transformations, the

thesis of 1.3 is true for the general sheaf obtained from G making t general

positive elementary transformations and deg(G)− d + t general negative

elementary transformations.

Notice that the sheaves G and A considered in the statement of Theo-

rem 1.3 have the same formal isomorphism type at every point of Sing(X).

Hence Theorem 1.3 implies the following result.

Corollary 5.4. Let t be a formal singularity type for rank r torsion

free sheaves at Sing(X). Set e:= emb(τ). Fix an integer ∫ ≥ max{r+1, e}
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and set d:= v + r(g − 1). Then there exists a rank r torsion free sheaf

A on X with deg(A) = d, h1(X,A) = 0, A spanned by its global sections

and with formal isomorphism type τ along Sing(X).
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