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On convergence of first derivatives of certain

Szasz-Mirakyan type operators

L. REMPULSKA – M. SKORUPKA

Riassunto: Si espongono quattro teoremi di convergenza delle derivate prime di
certi operatori di tipo Szasz-Mirakyan per funzioni di una o due variabili. Alcune
proprietà di approssimazione per questi operatori sono state date in lavori precedenti
citati in bibliografia.

Abstract: In this paper we present four theorems on the convergence of first
derivatives of certain Szasz-Mirakyan type operators for functions of one and two vari-
ables. Some approximation properties of these operators are given in some previous
papers quoted in bibliography.

The approximation of function by linear positive operators is an im-

portant problem in many mathematical theories.

In the papers [1] and [2] were examined the Szasz-Mirakyan operators

for functions of one variable with polynomial and exponential weighted

spaces.

Recently, we can observe many published papers devoted various

modified Szasz-Mirakyan operators of functions of one and several vari-

ables (e.g. [4], [8]). The authors study the degree of approximation, the
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Voronovskaya type theorem and the convergence of derivatives sequences

of these operators.

In [3] and [5]-[7] we have introduced certain Szasz-Mirakyan type

operators An, Bn, Am,n and Bm,n for functions of one and two variables

with polynomial and exponential weighted spaces. In these papers we

proved theorems on the degree of approximation, the Vronovskaya type

theorems and other approximation properties of considered operators.

In the present paper we study the convergence of first derivatives of

these operators for functions with polynomial and exponential weighted

spaces. In Section 1 we consider operators of function of one variable.

Section 2 constains certain results for functions of two variables.

1 – The operators of functions of one variable

1.1 – Let us consider as in [1], for a fixed p ∈ N0 := {0, 1, . . . } and

for all x ∈ R0 := [0,+1) the function

w0(x) := 1, wp(x) := (1 + xp)−1 if p ≥ 1 ,

and the polynomial weighted space C1;p of all real-valued functions f

continuous on R0 for which fwp is uniformly continuous and bounded

on R0. The norm in C1;p is given by || f ||1;p := supx∈R0
wp(x) | f(x) |.

Moreover let Cm
1;p := {f ∈ C1;p : f (k) ∈ C1;p, k = 1, . . . ,m}, for fixed

p ∈ N0 and m ∈ N := {1, 2, . . . }.
Analogously, by the function ∫q(x) := e−qx, x ∈ R0, with a fixed

q ∈ R+ := (0,+1), we define the exponential weighted space C2;q with

the norm ||f ||2;q = supx∈R0
∫q(x) | f(x) | and the class Cm

2;q, m ∈ N

(see [2]).

1.2 – In the papers [3], [5] and [6] we have introduced in C1;p and C2;q

the following operators of the Szasz-Mirakyan type

An(f(t);x) : = (An(f))(x) :=
1X

k=0

an,k(x)f

µ
2k

n

∂
,(1)

Bn(f(t);x) : = (Bn(f))(x) := f(0)dn(x) +
1X

k=0

bn,k(x)f

µ
2k + 1

n

∂
,(2)
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x ∈ R0, n ∈ N , where

an,k(x) : =
1

coshnx

(nx)2k

(2k)!
,(3)

bn,k(x) : =
1

1 + sinhnx

(nx)2k+1

(2k + 1)!
,(4)

dn(x) : =
1

1 + sinhnx
,(5)

for all k ∈ N0, n ∈ N and x ∈ R0, and sinhx, coshx and tanhx are

elementary hyperbolic functions. In these papers was proved that if f ∈
C1;p or f ∈ C2;q (p ∈ N0, q ∈ R+), then for every x ∈ R0

(6) lim
n→1

An(f(t);x) = f(x) = lim
n→1

Bn(f(t);x) .

In the present paper we shall give the analogue of (6) for the first

derivatives of these operators. We shall write Ln ∈ {An, Bn} if the oper-

ator Ln = An for all n ∈ N or Ln = Bn for all n ∈ N.

1.3 – In the papers [3] and [6] was proved that An and Bn, n ∈ N ,

are linear positive operators from the space into C1;p into C1;p, p ∈ N0.

Moreover in [5] was proved that An and Bn are operators from the space

C2;q into C2;r with r > q > 0, provided that n ≥ n0 > q(ln r
q
)−1.

Let Ln ∈ {An, Bn}. In this paper we shall apply the following prop-

erties of the operator Ln proved in [3], [5] and [6]: for every x ∈ R0

Ln(1;x) = 1 , n ∈ N ,(7)

lim
n→1

nsLn(t− x;x) = 0 , s ≥ 0 ,(8)

lim
n→1

nLn((t− x)2;x) = x ,(9)

lim
n→1

n2Ln((t− x)3;x) = x ,(10)

lim
n→1

n2Ln((t− x)4;x) = 3x2 .(11)

Moreover, for every fixed x ∈ R0 there exists a positive constant M1(x),

depending only on x, such that

(12) n4Ln((t− x)8;x) ≤ M1(x) for all n ∈ N .
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1.4 – Now we prove two main theorems.

Theorem 1. Let Ln ∈ {An, Bn} and let f ∈ C1
1;p or f ∈ C1

2;q with

fixed p ∈ N0 or q ∈ R+. Then

(13) lim
n→1

(Ln(f))0(x) = f 0(x) for every x > 0 .

Proof. a) First let Ln ≡ An, n ∈ N , and let f ∈ C1
1;p. By (1), (3)

and (7) we have An(t−x;x) = x(tanhnx−1) for x ∈ R0 and n ∈ N, and

further

(14)
(An(f(t)))0(x)=−(n tanhnx)An(f(t);x)+

n

x
An(tf(t);x)=

=−n

x
An(t−x;x)An(f(t);x)+

n

x
An((t− x)f(t);x) ,

for x > 0 and n ∈ N . Fix x > 0. By the Taylor formula for f ∈ C1
1;p we

have

(15) f(t) = f(x) + f 0(x)(t− x) + ϕ(t, x)(t− x) , t ∈ R0 ,

where the function ϕ(t) ≡ ϕ(t, x) belongs to C1;p and limt→x ϕ(t) = 0.

From (14), (15) and (7) we get for n ∈ N

(16)

(An(f(t)))0(x) =

= −n

x
An(t−x;x) {f(x)+f 0(x)An(t−x;x)+An(ϕ(t)(t−x);x)}+

+
n

x
{f(x)An(t− x;x)+

+f 0(x)An((t− x)2;x) + An(ϕ(t)(t− x)2;x)
™

.

By the properties of ϕ(·) and by (6) we have

(17) lim
n→1

An((t− x)ϕ(t);x) = 0, lim
n→1

An(ϕ2(t);x) = 0 .

Applying the Hölder inequality, we get

|An(ϕ(t)(t− x)2;x)| ≤ ©An(ϕ 2(t);x)
™1/2 ©

An((t− x)2;x)
™1/2

,
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which by (17) implies

(18) lim
n→1

nAn(ϕ(t)(t− x)2;x) = 0 .

Using (8), (9), (17) and (18) to (16), we immediately obtain (13) for An.

b) Now let Ln ≡ Bn and let x > 0 be a fixed point. From (2), (4),

(5) and (7) it follows that Bn(t− x;x) = x(dn(x) coshnx− 1) for x ∈ R0

and n ∈ N, and further

(Bn(f(t)))0(x) = (−ndn(x) coshnx) Bn(f(t);x) +
n

x
Bn(t f(t);x) =

= −n

x
Bn(t− x;x) Bn(f(t);x) +

n

x
Bn((t− x) f(t);x) ,

for x ∈ R+ and n ∈ N , which by (15) and (7) and by elementary calcu-

lations yields

(19)

(Bn(f(t)))0(x) = f 0(x)

Ω
−n(Bn(t− x;x))2 +

n

x
Bn((t− x)2;x)

æ
+

+
n

x
Bn(ϕ(t)(t− x)2;x)−

− n

x
Bn(t− x;x)Bn((t− x)ϕ(t);x) .

Arguing as in the case of An and applying (6)-(9), we derive (13) for

Bn from (19).

The proof of (13) for f ∈ C1
2;q is identical.

Theorem 2. Let Ln ∈ {An, Bn} and let f ∈ C3
1;p or f ∈ C3

2;q with

a fixed p ∈ N0 or q ∈ R+. Then for every x > 0

(20) lim
n→1

n {(Ln(f))0(x)− f 0(x)} =
1

2
f 00(x) +

x

2
f 000(x) .
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Proof. Let x > 0 be a fixed point, Ln ≡ An and let f ∈ C3
1;p. By

the Taylor formula we have

(21) f(t) =
3X

k=0

f (k)(x)

k!
+ √ (t, x) (t− x)3 , t ∈ R0 ,

where √(t) ≡ √(t, x) is the function with the space C1;p and limt→x √(t) =

0. From (14), (21) and (7), we get for n ∈ N

(An(f(t)))0(x) =

= −n

x
An(t− x;x)

(
3X

k=0

f (k)(x)

k!
An((t−x)k;x)+An(√(t)(t−x)3;x)

)
+

+
n

x

(
3X

k=0

f (k)(x)

k!
An((t− x)k+1;x) + An(√(t)(t− x)4;x)

)
.

Consequently,

(22)

n {(An(f)0(x)− f 0(x)} =

= f 0(x)
n2

x

Ω
−(An(t− x;x))2 + +An((t− x)2;x)− x

n

æ
+

+ f 00(x)
n2

2x

©−An(t− x;x) An((t− x)2;x) + An((t− x)3;x)
™

+

+ f 000(x)
n2

6x

©−An(t− x;x)An((t− x)3;x) + An((t− x)4;x)
™

+

+
n2

x

©−An(t−x;x)An(√(t)(t−x)3;x)+An(√(t)(t−x)4;x)
™

.

By the properties of function √ and by (6) we have

lim
n→1

An(√(t) (t− x)3;x) = 0 ,(23)

lim
n→1

An(√2(t);x) = 0 .(24)

The inequality

|An(√(t)(t− x)4;x)| ≤ ©An(√2(t);x)
™1/2 ©

An((t− x)8;x)
™1/2

, n ∈ N ,

and (24) and (12) imply

(25) lim
n→1

n2An(√(t)(t− x)4;x) = 0 .
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Applying the formula An((t−x)2;x) = x
n

+ ( 1
n
− 2x)An(t−x;x) and (8)-

(11), (23) and (25), we obtain from (22)

lim
n→1

n {(An(f))0(x)− f 0(x)} =
1

2
f 00(x) +

x

2
f 000(x) .

The proof of (20) for Bn is analogous.

2 – The operators of functions of two variables

2.1 – Using notation of Section 1, we define for fixed p1, p2 ∈ N0 the

function wp1,p2
(x, y) := wp1

(x)wp2
(y), (x, y) ∈ R2

0 := R0 × R0, and the

polynomial weighted space C1;p1,p2
of all real-valued functions f continu-

ous and bounded on R2
0. The norm in C1;p1,p2

is defined by ||f ||1;p1,p2
:=

sup(x,y)∈R2
0

wp1,p2
(x, y) | f(x, y) |. Similarly as in Section 1, for a fixed

m ∈ N , let Cm
1;p1,p2

be the class of all f ∈ C1;p1,p2
having partial deriva-

tives of the order ≤ m and them belong to C1;p1,p2
also.

Analogously we define the exponential weighted space C2;q1,q2 , q1, q2 ∈
R+, of functions of two variables, with the norm ||f ||2;q1,q2 := sup(x,y)∈R2

0

∫q1,q2(x, y) | f(x, y)| and the weighted function ∫q1,q2(x, y) := ∫q1(x)∫q2(y),

and the class Cm
2;q1,q2

, m ∈ N .

2.2 – In [3], [5] and [7] were examined some approximation properties

of the operators

(26)

Am,n(f(t, z);x, y) : = (Am,n(f))(x, y) :=

=
1X

j=0

1X

k=0

am,j(x)an,k(y)f

µ
2j

m
,
2k

n

∂
,

(27)

Bm,n(f(t, z);x, y) : = (Bm,n(f))(x, y) := dm(x)dn(y)f(0, 0)+

+ dm(x)
1X

k=0

bn,k(y)f

µ
0,

2k + 1

n

∂
+

+ dn(y)
1X

j=0

am,j(x)f

µ
2j + 1

m
, 0

∂
+

+
1X

j=0

1X

k=0

bm,j(x)bn,k(y)f

µ
2j + 1

m
,
2k + 1

n

∂
,
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for (x, y) ∈ R2
0, m,n ∈ N and f ∈ C1;p1p2

or f ∈ C2;q1,q2 , where an,k(·),
bn,k(·) and dn(·) is defined by (3)-(5). Similarly as in Section 1 we write

Lm,n ∈ {Am,n, Bm,n} if Lm,n = Am,n for all m,n ∈ N or Lm,n = Bm,n for

all m,n ∈ N . From (26), (27) and (3)-(5) it follows that

(28) Lm,n(1;x, y) = 1 for (x, y) ∈ R2
0 , m, n ∈ N ,

and if f ∈ C1;p1,p2
or f ∈ C2;q1,q2 and f(x, y) = f1(x)f2(y) for all (x, y) ∈

R2
0 then

(29)
Lm,n(f(t, z);x, y) = Lm(f1(t);x)Ln(f2(z); y),

(x, y) ∈ R2
0,m, n ∈ N .

In [3] and [7] was proved that Lm,n is a linear positive operator from the

space C1;p1p2
into C1;p1,p2

, p1, p2 ∈ N0.

In [5] and [7] was proved that Lm,n is an operator from the space

C2;q1,q2 into C2;r1,r2 with r1 > q1 > 0, r2 > q2 > 0, and m ≥ m0 >

q1(ln
r1
q1

)−1 and n ≥ n0 > q2(ln
r2
q2

)−1. Moreover in these papers was

proved that if f ∈ C1;p1,p2
or f ∈ C2;q1,q2 then for every (x, y) ∈ R2

0

(30) lim
m,n→1

Lm,n(f(t, z);x, y) = f(x, y) .

2.3 – From (26) and (27) we derive the formulas for first partial

derivatives of Lm,n ∈ {Am,n, Bm,n}

(31)
(Lm,n(f))0x(x, y) = −m

x
Lm(t− x;x)Lm,n(f(t, z);x, y)+

+
m

x
Lm,n((t− x)f(t, z);x, y) ,

(32)

(Lm,n(f))0y(x, y) = −n

y
Ln(z − y; y)Lm,n(f(t, z);x, y)+

+
n

y
Lm,n((z − y)f(t, z);x, y) ,

for all (x, y) ∈ R2
+ := R+ ×R+ and m,n ∈ N .

Now we shall prove the analogue of Theorem 1.
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Theorem 3. Let f ∈ C1
1;p1,p2

or f ∈ C1
2;q1,q2

(p1, p2 ∈ N0, q1, q2 ∈
R+) and let Lm,n ∈ {Am,n, Bm,n}. Then for every (x, y) ∈ R2

+

lim
n→1

(Ln,n(f))0x(x, y) = f 0
x(x, y) ,(33)

lim
n→1

(Ln,n(f))0y(x, y) = f 0
y(x, y) .(34)

Proof. The formulas (31) and (32) show that the proofs of (33)

and (34) are identical. We shall prove only (33) for f ∈ C1
1;p1,p2

and a

fixed (x, y) ∈ R2
+. By the Taylor formula we have

(35)

f(t, z) = f(x, y) + f 0
x(x, y)(t− x) + f 0

y(x, y)(z − y)+

+ ϕ(t, z;x, y)
q

(t− x)2 + (z − y)2

for (t, z) ∈ R2
0, where ϕ(t, z) ≡ ϕ(t, z;x, y) is function belonging to C1;p1,p2

and ϕ(x, y) = 0. From (31) and (35) and by (28), (29) and (7) we get

(36)

(Ln,n(f(t, z)))0x(x, y) = −n

x
Ln(t− x;x)

Ω
f 0

x(x, y)Ln(t− x;x)+

+f 0
y(x, y)Ln(z − y; y)+Ln,n(ϕ(t, z)

q
(t− x)2+(z − y)2;x, y)

æ
+

+
n

x

Ω
f 0

x(x, y)Ln((t− x)2;x)+ f 0
y(x, y)Ln(t− x;x)Ln(z − y; y)+

+ Ln,n(ϕ(t, z)(t− x)
q

(t− x)2 + (z − y)2;x, y)

æ
, n ∈ N .

The properties of ϕ and (30) imply

lim
n→1

Ln,n(ϕ(t, z)
q

(t− x)2 + (z − y)2;x, y) = 0 ,(37)

lim
n→1

Ln,n(ϕ2(t, z);x, y) = 0 .(38)
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By the Hölder inequality and by (29) and (7) we have for n ∈ N

ØØØØLn,n(ϕ(t, z)(t− x)
q

(t− x)2 + (z − y)2;x, y)

ØØØØ ≤

≤ ©Ln,n(ϕ 2(t, z);x, y)
™1/2×

× ©Ln((t− x)4;x) + Ln((t− x)2;x)Ln((z − y)2; y)
™1/2

,

which by (9), (11) and (38) implies

(39) lim
n→1

nLn,n(ϕ(t, z)(t− x)
q

(t− x)2 + (z − y)2;x, y) = 0 .

Using (8), (9), (37) and (39) to (36), we immediately obtain (33). Thus

the proof is completed.

Arguing similarly as in the proofs of Theorem 2 and Theorem 3, we

can prove the following

Theorem 4. Suppose that f ∈ C3
1;p1,p2

or f ∈ C3
2;q1,q2

(p1, p2 ∈ N0,

q1, q2 ∈ R+) and Lm,n ∈ {An,n, Bn,n}. Then for every (x, y) ∈ R2
+

lim
n→1

n{(Ln,n(f))0x(x, y)−f 0
x(x, y)}=

1

2
f 00

x2(x, y)+
x

2
f 000

x3(x, y)+
y

2
f 000

xy2(x, y),

lim
n→1

n{(Ln,n(f))0y(x, y)−f 0
x(x, y)}=

1

2
f 00

y2(x, y)+
y

2
f 000

y3(x, y)+
x

2
f 000

x2y(x, y).
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