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Remarks on a variational problem

in Laguerre geometry

B. PALMER

Riassunto: Si studia la stabilità delle superficie minime di Laguerre, con i metodi
della geometria di Lorentz.

Abstract: We study the stability of Laguerre minimal surfaces using methods
from Lorentzian geometry.

1 – Introduction

Recently there has been some renewed interest in Laguerre differential

geometry [1], [2], [3]. This geometry was to a large extent developed by

Blaschke and his school and a large amount of material about it can

be found in [4]. Additional material may be found in [5].

Consider the set of oriented spheres in Euclidean 3-space. If we add to

this set the space of oriented planes, i.e. the spheres of infinite radii, then

we obtain the space of the Moebius (conformal) geometry. This space can

be identified with the deSitter space which is a Lorentzian 4-manifold of

constant curvature +1. If, on the other hand, we add the spheres of zero

radii, i.e. “point spheres” then we obtain the Laguerre space which can

be identified with the four dimensional Minkowski space IE4
1.
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Any smooth immersion X of an oriented surface into 3-space has a lift

to the unit sphere bundle of IE3 called the Legendre lift. The unit sphere

bundle may also be considered as the space of null lines in Minkowski

space. Thus the isometry group of Minkowski space acts on the set of

Legendre surfaces. The principle aim of Laguerre geometry is to study

properties of the immersion which are invariant under this action. The

simplest way to do this is to define at each point p of the surface an

oriented 2-sphere or point sphere Y (p) which is in some sense invariant

under this action. The map Y will be called the L-Gauss map. It is

analogous to the conformal Gauss map of Moebius geometry and defines

a spacelike immersion of the surface into Minkowski space. The geometric

invariants of this spacelike immersion are exactly the Laguerre invariants

of the original surface. In particular, its area defines a Laguerre invariant

functional:

L[X] =

Z

Σ

dAY =

Z

Σ

H2 −K

|K| dAX .

Blaschke realized that studying the critical points of this functional, which

he called L-minimal surfaces would lead to surfaces having a particularly

interesting properties.

In this note we begin by developing the basics surface theory of La-

guerre geometry. We take a new geometric approach based on that used

in [7] to study conformal geometry. Our main contribution here is to

investigate the stability of the critical points of the functional L. The

method we use to do this is analogous to that used to study the stability

of Willmore surfaces in [6] and, more generally, to study the stability

for zero mean curvature surfaces in Lorentzian manifolds [8]. Since the

value of the functional L is given by the area of the L-Gauss map, we

study the second variation of area for the spacelike, zero mean curvature

immersion Y . One must restrict the class of variations to those arising

as variations of Y through L-Gauss maps. We obtain in Theorem 3.2 a

necessary and sufficient condition for the stability of L-minimal surfaces.

A consequence of this result is that L minimal surfaces are indeed local

minima of the functional L. For the special case of a minimal surface Σ

in IE3, we show that if its Gauss map ∫ : Σ → S2 is injective then the

surface is a stable L-minimal surface.
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2 – Preliminaries

Let S ≈ IE3×S2 denote the unit sphere bundle of IE3. Elements of S
will be called contact elements. Each contact element (X, ∫) corresponds

to a null line in Minkowski space via

(X, ∫) ←→ {(X − ∏∫, ∏)|∏ ∈ IR}.

For p ∈ IE3 and r ∈ IR let σr(p) denote the oriented sphere of

radius |r| centered at p which is oriented by its outward (respectively

inward) pointing normal if r > 0 (respectively r < 0) holds. We also allow

spheres of zero radius and call them (unoriented)point spheres. Note that

there is a bijection

Φ : {oriented spheres and point spheres} −→ IE4
1

defined by Φ(σr(p)) = (p, r). Note that if r > 0 (resp. r < 0) then

(p, r) is the vertex of the backward (resp. forward) pointing light cone

which intersects IE3 ≈ {(x, t) ∈ IE4
1|t = 0} in exactly the the sphere σr(p).

From this one can easily see that two spheres σr(p), σ0
r(p

0) are in oriented

contact (i.e. they are tangent to each other and have the same normal at

the point of tangency) if and only if

h(p, r)− (p0, r0), (p, r)− (p0, r0)iIE4
1

= 0

i.e. (p − p0, r − r0) is a null vector. Thus each contact element (X, ∫)

determines a null line of 2-spheres all of which are in oriented contact at

X with unit normal ∫.

Let X : Σ −→ IE3 be an immersion of an oriented surface with nor-

mal ∫. There is a natural lift f := (X, ∫) : Σ −→ S satisfying the contact

condition hdX, ∫i ≡ 0. In general, a smooth map into S satisfying this

condition is called a Legendre surface. Clearly the Poincare group Iso(IE4
1)

permutes the null lines in Minkowski space. Since we have identified S
with the manifold of null lines in IE4

1 we have that Iso(IE4
1) acts on S

and we wish to show that this action permutes Legendre surfaces. Let

f = (X, ∫) be a Legendre surface and for each p ∈ Σ let lf(p) denote

the null line ∏ → (X − ∏∫, ∏). Then the contact condition can be ex-

pressed h@∏l, dli ≡ 0 where d is differentiation on Σ. Since this equation

is invariant under the Poincare group, the contact condition is preserved.
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Let X : Σ −→ IE3 be an oriented immersion with normal ∫. We

denote its fundamental forms by I = hdX, dXi, II = −hdX, d∫i and

III = hd∫, d∫i. We also let H and K denote the mean and Gauss curva-

tures respectively. Following [1] we will say that X is nondegenerate if II

and III are lineraly independent at each point. Because of the classical

equation

(1) III = 2HII −KI

this implies that K is nowhere vanishing. For a nondegenerate X, define

the L-Gauss map

Y : Σ −→ IE4
1

by Y := (X + H
K
∫,−H

K
). For each point p, Y (p) represents the middle

sphere of Σ at p which is the sphere of radius 1
2
(1/k1 + 1/k2) having

oriented first order contact with the surface at X(p). Compute

hdY, dY iIE4
1

=
D
dX +

H

K
d∫, dX +

H

K
d∫
E

IE3
= I +

≥H2

K2

¥
III − 2

H

K
II.

Using (1), we obtain

ds2
Y =

H2 −K

K2
III =

1

4
(1/k1 − 1/k2)

2III.

Any map Z : Σ −→ IE4
1 can be interpreted as a two parameter family

of spheres. Classically such a map was called a spherical congruence.

A Legendre surface (X, ∫) is said to envelope Z if for each p ∈ Σ, the

sphere Φ−1(Z(p)) is in oriented contact with the Legendre surface at

X(p). Analytically, this just means that Y (p) lies on the null line lf(p) :

∏→ (X(p)− ∏∫(p), ∏).

Proposition 2.1. Let f = (X, ∫) : Σ −→ S be the Legendre surface

associated to the nondegenerate immersion X. Then the L-Gauss map Y

is the unique spherical congruence satisfying

(i) f envelopes Y

(ii) Y : (Σ, III) −→ IE4
1 is conformal.
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Proof. We have shown above that Y satisfies (i) and (ii). Any

spherical congruence satisfying (i) is of the form Z = (X, 0) + u(∫,−1)

for some smooth function u. However,

hdZ, dZiIE4
1

= I − 2uII + u2III.

For this to be proportional to III at each point, there must follow

I − 2uII ∼ III = (−K)
≥
I − 2

≥H

K

¥
II
¥
.

Since K is nonvanishing on a nondegenerate surface, we have that u = H
K

and so Z = Y .

At this point we need to describe more precisely how Iso(IE4
1) trans-

forms Legendre surfaces. Let f = (X, ∫) and lf(.) be as above. For each

g ∈ Iso(IE4
1) and each p ∈ Σ, g(lf(p)) is a null line which intersects IE3

in a unique pointX 0(p). Denote the (null) tangent line to g(lf(p)) by

(∫0(p),−1). Then gf := (X 0, ∫0) defines another Legendre surface.

Proposition 2.2. Let f = (X, ∫) : Σ −→ S be the Legendre surface

associated to the nondegenerate immersion X. Let Y denote its L-Gauss

map and let g ∈ Iso(IE4
1). Then gY is the L-Gauss map of gf .

Proof. It is clear that gf envelopes gY and it is also clear that

the metrics induced be Y and gY agree. By the previous proposition,

it is enough to show that the third fundamental forms of f and gf are

conformally related.

Let C denote the light cone in IE4
1 and note that C is a (trivial) real

line bundle over S2. For g ∈ Iso(IE4
1), dg defines a map [dg] so that the

following diagram commutes.

C
dg−→C

↓ ↓
S2 [dg]−→S2

It is well known that for g ∈ Iso(IE4
1) i.e. dg ∈ O(3, 1), [dg] is a con-

formal map of S2 to itself. Since ∫0 = [dg](∫) holds the result follows.
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Since the L-Gauss map is invariant in the sense described above,

we can use its area to define the invariant Laguerre functional. If Σ is

compact we define

L[X] =

Z

Σ

dAY =

Z

Σ

1

4
(1/k1 − 1/k2)

2dA∫ =

Z

Σ

H2 −K

|K| dAX ,

since dA∫ = |K|dAX . Note that we have taken the liberty here of nor-

malizing the sign of the Laguerre functional to be non-negative. Since

the surface is assumed to be non-degenerate there is no problem with

doing this. The critical points of L are called Laguerre minimal surfaces.

They are characterized by the property that Y has zero mean curvature

in Minkowski space (see [1] or [4]).

3 – Stability of L-minimal surfaces

Let X : Σ −→ IE3 be an immersion of an oriented surface and let

∫ : Σ −→ S2 be its Gauss map. We will assume the immersion is nonde-

generate in the sense of [1].

Note that nondegeneracy implies that

(2) (k1 − k2)
2 > 0

holds where kj; j = 1, 2 denote the principal curvatures. Since

(3) ds2
Y = (1/k1 − 1/k2)

2III

we see that the L-Gauss map Y is then a spacelike immersion into IE4
1.

Using formula (109), page 318 of [4], one sees that the mean curvature

field H of Y is given by

(4) 2H =
≥
∆Y

H

K

¥
(∫,−1),

where ∆Y denotes the Laplacian of the metric ds2
Y . In particular, for

nondegenerate surfaces satisfying (2), the mean curvature field is isotropic

hH,Hi ≡ 0.
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Let X be a nondegenerate surface satisfying (3) which is a critical

point of L, i.e.

δL[X] = 0.

This condition is equivalent to the equation ∆Y (H/K) = 0, [1]. Let X≤

be a smooth variation of X in IE3 and let Y≤ denote the corresponding

L-Gauss maps. Let ξ := (@≤(Y≤)≤=0)
⊥ where the superscript ⊥ denotes

projection to the normal bundle of Y . Then with the obvious notation,

we have

(5) 2@≤(H≤) = J [ξ]

where J denotes the Jacobi operator for the critical immersion Y . On

the other hand

(6)
2@≤(H≤)≤=0 =

≥
@≤
≥
∆Y

H

K

¥¥
(∫,−1) +

≥
∆Y

H

K

¥
@≤(∫≤,−1) =

=
≥
@≤
≥
∆Y

H

K

¥¥
(∫,−1)

since X is critical. This shows that

(7) hJ [ξ], (∫,−1)i ≡ 0

for any variation of Y through L-Gauss maps. We will now prove the

converse, under the above conditions on X, that is if a section ξ of the

normal bundle of Y satisfies (7) then there exists a variation X≤ of X

such that the corresponding L-Gauss maps satisfy ξ := (@≤(Y≤)≤=0)
⊥.

Since Y is spacelike, there is a section q of the normal bundle T⊥(Y )

such that hq, qi ≡ 0 and hq, ∫i ≡ 1 hold, where ∫ := (∫,−1). Define a

quadratic form B on T⊥(Y ) as follows. For any u, v ∈ T⊥
p (Y ), let ũ and

ṽ be any locally defined, smooth extensions to sections of T⊥(Y ). Let

D denote covariant differentiation on IE4
1 and let DT denote covariant

differentiation followed by projection to dY (TΣ). Then

B(u, v) := hDT ũ,DT ṽi =
X

i

hDT
ei

ũ,DT
ei

ṽi

for any orthonormal frame {ei}i=1,2. The definition is independent of the

extension. Then we see that B(∫, ∫) > 0 holds since the immersion is
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nondegenerate. We then change frame in the normal bundle by defining

a := (B(∫, ∫))−1/2∫, b := (B(∫, ∫))1/2q.

Note that B(a, a) ≡ 1 holds. We now write an arbitrary smooth section

of the normal bundle as ξ =: σa + τb. Following eq. (10) of [8], we see

that the condition hJ [ξ], ∫i ≡ 0 allows us to write

σ = −Λ[τ ]

for a particular second order elliptic operator Λ. Let τ̃ := τB(∫, ∫))1/2

and consider the variation of X given by X≤ := X + ≤τ̃∫. Write the

L-Gauss map of X≤ as Y≤ =: (X≤ + ∏≤∫≤,−∏≤) = (X≤, 0) + ∏≤∫≤. We have

h(@≤Y≤)≤=0, ∫i = (@≤X≤)≤=0, ∫i = τ̃

and hence ((@≤Y≤)≤=0)
⊥ =: αa + τb for some function α. Obviously Y≤ is

a variation of Y through L-Gauss maps and hence must satisfy (7) or

equivalently hJ [(@≤Y≤)≤=0)
⊥], ai ≡ 0. Consequently, we have α = −Λ[τ ] =

σ and therefore (@≤Y≤)≤=0)
⊥ = ξ as desired. We have shown:

Proposition 3.1. Let X be as above, let Y be L-Gauss map of X,

and let ξ be a section of the normal bundle of Y . Then the necessary and

sufficient condition that there exists a variation Y≤ of Y through L-Gauss

maps such that (@≤Y≤)≤=0)
⊥ = ξ is that hJ [ξ], ∫i ≡ 0 holds.

As a consequence, we have the following.

Theorem 3.2. Let X : Σ −→ IE3 be a nondegenerate critical point

of L. Then X is a stable critical point of L if and only if

−
Z

Σ

hξ, J [ξ]idAY ≥ 0

holds for every smooth, compactly supported section of T⊥(Y ) satisfying

hJ [ξ], ∫i ≡ 0.
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The following result shows that critical points of L do indeed locally

minimize the functional. This is really not at all obvious if we consider

the fact that L is given by the area of a surface in a Lorentzian 4-manifold.

Corollary 3.3. Let X : Σ −→ IE3 be a nondegenerate critical

point of L. Then each point p ∈ Σ has a neighborhood U on which X

minimizes L among all immersions agreeing with X near @U .

Proof. The result follows from the previous theorem and the main

result of [8]. There it is shown that a spacelike zero mean curvature

surface in a Lorentzian 4-manifold satisfying the null convergence con-

dition, Ric(N,N) ≥ 0 for all null tangent vectors N , locally minimizes

area among all nearby surfaces whose mean curvature is isotropic (null).

Since IE4
1 is Einstein, the theorem applies here.

4 – Minimal surfaces

We apply the preceding to the case of an oriented minimal immersion

X : Σ −→ IE3. Note that by (4), any nondegenerate minimal surface is

also L-minimal. In this case Y is given by Y = (X, 0). The vectors

a := (∫,−1)/
√

2, b := (∫,+1)/
√

2

define a null framing of the normal bundle T⊥(Y ) of Y in IE4
1. Let A

denote the endomorphism field of T⊥(Y ) defined by B(u, v) =: hAu, vi .

Note that

hDT a,DT ai = hDT a,DT bi = hDT b,DT bi = |d∫|2/2 = −K,

from which it follows that

Aa = −Ka−Kb, Ab = −Ka−Kb

hold. Let D⊥ denote covariant differentiation in T⊥(Y ). The Jacobi

operator is then given by (see [10])

J [ξ] = ∆⊥ + A
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where

∆⊥ :=
X

j=1,2

(D⊥
ej

D⊥
ej
−D⊥

∇ej ej
)

is the rough Laplacian in T⊥(Y ). Let ξ be a section of T⊥(Y ). Then

writing ξ =: σa+ τb and using that a and b are parallel in T⊥(Y ), we see

that ∆⊥ξ = (∆σ)a + (∆τ)b, and so

J [ξ] = (∆σ −Kσ −Kτ)a + (∆τ −Kσ −Kτ)b.

Therefore the condition hJ [ξ], ∫i ≡ 0 reduces to

(8) ∆τ −Kσ −Kτ ≡ 0.

Now the nondegeneracy assumption for X implies that K is nonvanishing

on Σ and so we can make the conformal change of metric ds̃2 = −Kds2.

Then (8) becomes ∆̃τ + σ + τ ≡ 0 and we have

−
Z

Σ

hJ [ξ], ξidA = −
Z

Σ

hξ, aihJ [ξ], bidA =

= −
Z

Σ

τ(∆σ −Kσ −Kτ)dA =

= −
Z

Σ

τ(∆̃σ + σ + τ)dÃ =

=

Z

Σ

τ((∆̃ + 1)(∆̃ + 1)τ − τ)dÃ =

=

Z

Σ

τ(∆̃(∆̃ + 2)τ)dÃ.

We obtain the following.

Theorem 4.1. Let X : Σ −→ IE3 be a minimal immersion of an

oriented surface with injective Gauss map. Then the surface is a stable

L-minimal surface.
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Proof. Since the Gauss map is injective the immersion is nonde-

generate. The necessary and sufficient condition of the previous theorem

will be satified if we succeed in showing that

0 ≤
Z

Σ

u(∆̃(∆̃ + 2)u)dÃ =

Z

Σ

(∆̃u)2 − 2|∇̃u|2dÃ.

holds for all compactly supported functions u. Since the metric ds̃2 is the

pull back of the metric on S2 under ∫, we may identify (Σ, ds̃2) with a

subset of S2.

If u is any smooth function with compact support in some open set

≠ ∈ S2, then we can extend u to be identically zero outside ≠. Denote

this extension again by u and expand u in terms of eigenfunctions of the

Laplacian on S2,

u =
X

aifi

where ∆S2fi = −∏ifi and {fi}1
1 is a complete orthonormal set in L2(S2).

Then Z
(∆S2u)2 − 2

Z
|∇S2u|2 =

X
(a2

i (∏i(∏i − 2)) ≥ 0

since the Laplacian on S2 has no eigenvalues in the interval (0, 2).

Enneper’s surface and the catenoid are examples of complete mini-

mal surfaces in IE3 with injective Gauss map (although no completeness

assumption is required in the theorem). Note that both these surfaces

are unstable as minimal surfaces in IE3.

5 – Laguerre curvature

Two obvious Laguerre invariants of a nondegenerate immersion X

are the curvature of the L-Gauss map and the curvature of its normal

bundle. We will denote them by KL and K⊥
L respectively. In order to

state the next result we recall that a 2-dimensional Riemannian manifold

is called parabolic if it does not support any nonconstant subharmonic

function which is bounded above. In dimension two, parabolicity only

depends on the conformal structure of the surface. In particular, any

closed surface with a finite number of points removed is parabolic.

Theorem 5.1. Let X : Σ −→ IE3 be a nondegenerate L-minimal

surface. Assume that (Σ, III) is parabolic and that KL ≥ 0 holds. Then
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KL ≡ 0 ≡ K⊥
L holds and all the middle spheres of X are tangent to a

fixed plane.

Proof. It was shown in [9] that If X is a spacelike zero mean cur-

vature conformal immersion of a parabolic surface into IE4
1 with non-

negative curvature K, then K ≡ 0 holds and the normal bundle is flat.

Further, the surface must lie in a null hyperplane. We may assume there-

fore, by first making a Lorentz transformation, that

(10) 0 ≡ hY, (1, 0, 0, 1)iIE4
1

= y1 − y4

holds. Recall that Y = (m, r) ∈ IE3 × IR represents the 2-sphere in IE3 of

radius r centered at m = (m1,m2,m3). Hence a result of (10) implies that

the radius is given by |m1| and so all of the middle spheres are tangent

to the plane {m1 = 0} ⊂ IE3.

The hypothesis that (Σ, III) is parabolic is a natural one. As men-

tioned above, in two dimensions parabolicity is a conformal invariant

and the conformal class of III is a Laguerre invariant by Proposition 2.2.

Also the hypothesis of parabolicity is essential since there exist zero mean

curvature surfaces in IE4
1 which have positive curvature and which are

conformal to a disc.

The surfaces appearing in the conclusion of the theorem were studied

by Blaschke ([4], p. 375).
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[9] L. Aĺıas – B. Palmer: Curvature properties of zero mean curvature surfaces in
four dimensional Lorentzian space forms, Math. Proc. Cambridge, 124 (1998),
315-327.

[10] B. Dieter – F. Flaherty: Frank Isolated maximal surfaces in spacetime, Comm.
Math. Phys., 50 (1976), no. 2, 157-165.

Lavoro pervenuto alla redazione il 24 febbraio 1998
ed accettato per la pubblicazione il 22 febbraio 1999.

Bozze licenziate il 19 agosto 1999

INDIRIZZO DELL’AUTORE:

B. Palmer – Department of Mathematical Sciences – University of Durham – Durham DH1
3LE, England


