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Inverse and Direct Problem of the Dynamics

of Central Motions

F. BORGHERO – G. BOZIS – A. MELIS

Riassunto: Si studia il problema inverso della Dinamica (nel senso di Szebehely)
e si stabilisce per esso un’equazione lineare del primo ordine alle derivate parziali in
cui la funzione incognita è la componente radiale F = F (r, θ) di un campo di forze
centrali (generalmente non conservativo) capace di generare, come orbite, le curve di
un’assegnata famiglia monoparametrica. Si mostra che tale equazione è utile anche per
il problema diretto ed in tal caso è interpretabile come un’equazione non lineare del
secondo ordine del tipo di Monge-Ampère. Si ottiene inoltre una condizione necessaria
e sufficiente affinché la data famiglia di orbite possa essere creata da un campo di forze
conservativo F = F (r). Inoltre si determina come la forza F = F (r), il momento
angolare e l’energia totale dipendano dalla assegnata famiglia di orbite.

Abstract: For a given monoparametric family of orbits, a Szebehely-type inverse
problem is solved i.e. a linear partial differential equation of the first order is written
giving the radial component F = F (r, θ) of a central force (in general not conservative)
creating the family. It is shown how this equation can be used also for direct prob-
lem considerations and that, in this case, it reads as second order nonlinear partial
differential equation of the Monge-Ampère type. The equation is also used to provide
conditions so that a preassigned monoparametric or two-parametric family of orbits can
be generated by a conservative central force F = F (r). The force F (r) as well as the
expressions for the angular momentum and the total energy dependence on the given
family are found.
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tions – Equation of Monge-Ampère type – Monoparametric and two-parametric families
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1 – Introduction

A simple version of the inverse problem of Dynamics referring to the

motion in the xy plane of one material point P of unit mass is formulated

as follows: A monoparametric family of curves

(1) f(x, y) = c

is given in advance and required are all potentials V = V (x, y) which can

allow for the creation of orbits with equation (1) traced by the point P .

For a preassigned dependence

(2) E = E(f(x, y)) = E(c)

of the total energy E of the moving point P on each specific orbit corre-

sponding to constant c, these potentials are given as solutions of Szebe-

hely’s first order linear partial differential equation

(3) Vx + ∞Vy +
2Γ

1 + ∞2
(E − V ) = 0 ,

where

(4) ∞ =
fy

fx

, Γ = ∞∞x − ∞y .

Lettered subscripts, throughout this paper, denote partial differentiation

with respect to the pertinent variables. The derivation of equation (3) was

offerred by Szebehely [14] and later by Broucke and Lass [7], Puel [11]

and, with the notation used here, by Bozis [2].

A free of energy second order partial differential equation, relating

merely orbits and potentials was obtained from equation (3), in view

of (2) also, by requiring that Ey = ∞Ex, (Bozis [3]). This equation reads

(5) Vxx + kVxy − Vyy + ∏Vx + µVy = 0 ,

with

(6) k =
∞2 − 1

∞
, ∏ =

Γy − ∞Γx

∞Γ
, µ = ∏∞ +

3Γ

∞
.

On the other hand Whittaker [16] defines central forces as forces

(not necessarily conservative) acting on a particle and “directed towards
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or from a fixed centre” that can be assumed as origin of the cartesian

coordinate system. He then proceeds to put the question of obtaining

the magnitude of the central force which can create the single orbit

(7) f(x, y) = 0 ,

traced with a (constant) angular momentum value L. Whittaker, comes

up with the result

(8) F (x, y) = −L2r
f2

y fxx − 2fxfyfxy + f2
xfyy

(xfx + yfy)3

where r = (x2 + y2)
1
2 . Actually Whittaker wrote this formula without

the sign minus because he considered the magnitude |−→F | of an attractive

force. Our formula (8), instead of the magnitude, give the radial com-

ponent F (x, y) = ±|−→F | of the central force and take into account both

repulsive or attractive forces.

It is understood that the single orbit (7) can be classified as a member

of various monoparametric families (1) and, in this sense, different force

fields (8) may be obtained, all creating the same orbit (7) traced with

the same value of L (Bozis and Blaga, [5]). Besides, it is meaningless

to look at formula (8) as offerring F (x, y) only at the points (x, y) of the

Oxy plane satisfying equation (7). It would also be erroneous to think

of (8) as giving the radial component of the central force at all points of

the xy plane, unless we have in mind that all the orbits (1) are traced with

the same angular momentum value. So, Whittaker’s result (8) is valid for

all members of the family (1), provided that it is interpreted as if the

dependence

(9) L = L(f(x, y)) = L(c)

is also given in advance.

The basic findings of this paper are the following:

(i) we shall show that the function F (x, y), given by (8) and supple-

mented by (9), is the general solution of a (free of L) first order linear

partial differential equation for F (x, y) (equation (12) and in polar coor-

dinates equation (20)), with coefficients depending only on the function

f(x, y) giving the orbits (1). This equation then is of the same meaning

as the second order equation (5) of the inverse problem, with the un-

derstanding that the radial component F (x, y) of the central force now

replaces the potential V (x, y) (which may not even exist).
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(ii) The significance of equation (12), as it will be explained, lies

in that it can be used for the inverse problem of Dynamics of central

motions as well as for the direct problem, i.e. to search for the totality of

families of orbits which can be generated by a central force field F (x, y).

In this case equation (12) rearranged becomes (14) that is a second order

nonlinear partial differential equation of the Monge-Ampère type.

(iii) As an application of the new equation we shall find a necessary

and sufficient condition (23) which a preassigned family (19) has to satisfy

in order that this family can result from a conservative central force field.

It will become clear that such a family is generated by one central force

field F (r) determined from (24), factored by an arbitrary constant, and

that motion of P on it takes place with a specific angular momentum

L(f) and also a specific energy dependence on the given family.

Finally we consider two-parametric families of curves and we find

conditions in order that the families can be generated by a certain central

force field.

2 – A partial differential equation for a central force field

Starting from equation (8), we can obtain a free of angular momen-

tum, linear, first order, partial differential equation for the radial compo-

nent F = F (x, y) of the central forces (not necessarily conservative) gen-

erating the given family of orbits (1), with coefficients depending merely

on the orbits. This is effectuated as follows:

In view of (4) we show directly that

f2
y fxx − 2fxfyfxy + f2

xfyy = −Γf3
x .

Thus, we write equation (8) as

(10) F (x, y) = L2r
Γ

(x + y∞)3
.

Because of (9), we can write

(11) (L2)y = ∞(L2)x .

Solving (10) for L2 and replacing in (11), we obtain after some straight-

forward algebra our first result

(12) ∞Fx − Fy + ΘF = 0 ,



[5] Inverse and Direct Problem of the Dynamics etc. 307

where

(13) Θ =
∞(x∏+ yµ)

x + y∞
+

y − x∞

x2 + y2
.

For any given family (1), the functions ∞,∏, µ appearing in (13) are

known. In view of the manner used to obtain the differential equa-

tion (12), its general solution is given by (10), where L is an arbitrary

function of f(x, y). Of course, this fact can also be verified directly.

Apart from being linear, equation (12) is also homogeneous. Thus,

if (f, F ) is a compatible pair for (12), so is the pair (f, F0F ) with F0 =

positive constant. This latter constant must be positive because with

F (x, y) given by (10), we must have X+∞Y
Γ

= F0
L2

(x+y∞)2
≥ 0, (Bozis [4]),

where X = X(x, y), Y = Y (x, y) are the cartesian components of the

force field F (x, y).

Although equation (12) is of the first order and it is applicable gen-

erally for nonconservative central forces, its meaning is similar to that of

the second order equation (5). Indeed:

(i) Both equations relate orbits to what produces these orbits, i.e. central

force fields in (12), potentials in (5).

(ii) They were both derived on the grounds of a known integral of motion,

i.e. angular momentum for (12), energy for (5).

We must observe, of course, that equation (12), as it stands, serves

for inverse-problem considerations, i.e. given the orbits (1) to find the

central force F (x, y). In this sense equation (12) seems, at first sight, of

limited significance because we already know the general solution of (12):

it is given by (10) with L an arbitrary function of the given family f(x, y).

But this is not so. Because equation (12) can be regarded also from

the direct problem viewpoint, if it is rearranged so as to have unknown

the function ∞(x, y) i.e. the orbits (1), and known the central force field

F (x, y). Indeed, in view of relations (13) and (6), equation (12) is written

as follows:

(14) ∞2∞xx − 2∞∞xy + ∞yy = H(x, y, ∞, ∞x, ∞y, F, Fx, Fy)

where

H = (∞ ∞x − ∞y)
h∞ Fx − Fy

F
+

3y(∞ ∞x − ∞y)

x + ∞ y
+

y − ∞ x

x2 + y2
− ∞x

i
.

Equation (14) is our second result and answers the following direct

problem: find all orbits created by a given central force field F (x, y)
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(equation (10) cannot answer because the angular momentum L, present

in (10), depends on the unknown families of orbits). This task of course

is far from being trivial. It amounts to solving a second order nonlinear

partial differential equation in ∞ = ∞(x, y) of the Monge-Ampère type [8].

In fact any solution ∞ = ∞(x, y) of equation (14) is a possible answer

and, in view of the first of (4), it leads to one monoparametric family

of orbits (1). After finding (1) we can use the relation (10) in order to

calculate the corresponding angular momentum L = L(f).

The above situation, in a different but similar context, reminds us

of the dispute between Sakellariou [12] and Hatzidakis [9], about

central forces of the type F = F (r, v) depending both on the radius r and

velocity v, to which Levi-Civita [10] also intervened to offer his opinion.

As an example consider the nonconserative force field

(15) F =
y2 − x2

(x2 + y2)2
.

Then equation (14) reads

(16)

∞2∞xx − 2∞∞xy + ∞yy =

= (∞∞x − ∞y)
h1 + 2x2 − 6y2

x2 + y2
(y − ∞x) + 3y

∞∞x − ∞y

x + ∞y
− ∞x

i
.

One solution of this equation is

(17) ∞ =
y(3x2 + y2)

r3 − x(x2 + 3y2)
,

leading to the monoparametric family

(18) f(x, y) = x− x2 − y2

√
x2 + y2

= c .

Replacing (15) and (17) into (10) we obtain the angular momentum de-

pendence from orbit to orbit

L2 =
1

3
c .

The example was taken, for specific selection of certain constants,

from Appell [1].
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If the family of orbits

(19) f(r, θ) = c

is given in polar coordinates r, θ, equation (12) for the central force F =

F (r, θ) becomes

(20) c1Fr + c2Fθ + c0F = 0 ,

with

c1 = −rfrfθ[fr(r
2f2

r + 2f2
θ ) + r(f2

θ frr − 2frfθfrθ + f2
r fθθ)] ,

c2 = −c1

fr

fθ
,

and

c0 = r2fr[f
3
θ frrr − 3frfθ(fθfrrθ − frfrθθ)− f3

r fθθθ]−
− 8frfθ[fr(r

2f2
r + 2f2

θ ) + r(f2
θ frr − 2frfθfrθ + f2

r fθθ)]−
− 3r2[f3

θ f
2
rr + 2f2

r fθf
2
rθ − 3frf

2
θ frrfrθ + f2

r fθfrrfθθ − f3
r frθfθθ]+

+ f2
r fθ(5r

2f2
r + 6f2

θ ) .

The general solution of equation (20), as can be verified directly also, is

the expression (10) in polar coordinates

(21) F (r, θ) =
c1

r6f4
r fθ

L2(f(r, θ)) ,

where L is an arbitrary function of f(r, θ) standing for the angular mo-

mentum which is variable, in general, from orbit to orbit.

The monoparametric family (18) and the force field (15) may be

written in polar coordinates as

f(r, θ) = r(cos θ − cos 2θ) = c, F (r, θ) = −cos 2θ

r2

and they satisfy, as expected, equation (20). The value of L2 is found

from (21) and it is of course L2 = 1
3
c.

Comment. Although (10) is the general solution of equation (12), for

direct problem considerations equation (12) is indispensable. Indeed, (12)

is the natural tool to answer questions of the following type: to find
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conditions on the families (1) so that these families can be created by

central forces given in advance or for which (forces) some sort of additional

information is given in advance.

Let us try, for instance, to find all families (1) which can be gener-

ated by constant central forces F (x, y) = F0. (Let us have in mind the

same constant F0 for all members of the family). It is immediately seen

from (12) that Θ must vanish, so Θ = 0 is the required condition for

the orbits. (Such is, e.g., the case with the family of concentric circles

x2 + y2 = c for which ∞ = y
x
, ∏ = 3

x
, µ = − 3

y
, Θ = 0. For this case we

find L2 = −F0 (x2 + y2)
3
2 from (10).

As another example, we consider as additional information about

the central force F (x, y), its divergence is zero (as e.g. in the case of the

planar force due to the presence of a finite planar material concentration,

outside the matter). In this case the problem is to find if there exist orbits

for which both equations (12) and div
−→
F = 0, i.e. xFx + yFy + F = 0

can be compatible. Notice that this latter equation cannot be written in

view of (10) because of the presence of L = L(f) in it.

Remark. The well known Binet’s formula for a unit mass

d2

dθ2

≥1

r

¥
+

1

r
= − r2

L2
F (r, θ)

is unquestionably used to offer the radial component of the central force

F (r, θ) creating one specific orbit r = r(θ) traced with a certain value

of L. To cover the case of a preassigned family (19), formula (21) is

suitable.

3 – Conservative central forces

Whittaker’s definition for the central force, that we have assumed in

this paper, is also adopted e.g. by Appell [1] and Levi-Civita [10].

In many textbooks, however, e.g. Symon [13] only conservative forces

directed to a fixed center are considered as central. In this later case, of

course, the radial component of the force is of the form F = F (r). Thus,

equation (20) becomes

(22)
F 0(r)

F (r)
= −c0

c1

,
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and it can be valid only for families of orbits (19) for which is verified the

condition

(23)
≥c0

c1

¥
θ

= 0 .

But true is also the opposite: i.e. if the condition (23) is satisfied, then

equation (20) always has one solution F = F (r). In fact, for a given

family (19) for which (23) is good, we have c0
c1

depending only of the

variable r, therefore we can write always a relation as (22), or equivalently

c1Fr + c0F = 0, and the equation (20) admit the solution F = F (r).

In conclusion we have our third result: a preassigned family of or-

bits (19) can be generated by a conservative central force field F = F (r)

if and only if the condition (23) is satisfied.

In this case, the force field is found from equation (22), in terms of

the given orbits only, by the formula

(24) F (r) = F0 exp
h
−
Z

c0

c1

dr
i
,

up to a multiplicative constant F0.

The angular momentum, found in view of (21), is given by

L2 =
r6f4

r fθ
c1

F (r) .

Finally we can calculate the total energy E of the particle using the

equation analogue to (3), in terms of polar coordinates [15], that is

frVr +
1

r2
fθVθ =

2(E − V )

f2
θ + r2f2

r

≥
frrf

2
θ − 2frfθfrθ + fθθf

2
r + rf3

r +
2

r
frf

2
θ

¥
,

and taking into account that V (r) = − R
F (r)dr we obtain the energy

E = βF (r)−
Z

F (r)dr ,

where

β =
r2f2

r fθ
2c1

(r2f2
r + f2

θ ) .
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Thus, in this case, both L and E are expressed on the grounds of the

given function f(r, θ).

A common case in Celestial Mechanics is that of a family of geomet-

rically similar orbits, that is orbits of the type

(25) f(r, θ) = rg(θ) = c

generated by conservative central forces F = F (r); in this case the con-

dition (23) becomes, after some straightforward algebra

(26)
g(g000 + g0)

g0(g00 + g)
= k0 = const ,

where the primes denote differentiation with respect the variable θ and

where k0 6= 0, g00 + g 6= 0, because g00 + g = 0 leads to family of straight

lines.

From the previous equation, introducing three constants c1, c2, c3, we

get subsequently:

g00 + g

gk0
= c1

g02 =
2c1

k0 + 1
gk0+1 − g2 + c2

and integrating we found

(27) θ + c3 =

Z
dg

≥ 2c1

k0 + 1
gk0+1 − g2 + c2

¥ 1
2

.

Remarks.

1. For k0 = 0, 1, 2,−3, the integral (27) can be done, and also for

k0 = 3 and c1c2 = 1
2
, the integral (27) can be found.

2. In the case at hand the family (25) is created of a homoge-

neous potential V = rmG(θ). Such is, for instance, the case of all

conics r[1 + e0 cos(θ − θ0)] = c of constant eccentricity e0 and orien-

tation θ0 with varying semi-major axis a resulting from Newton’s po-

tential V = −k
r
. Equation (5), write in polar coordinates, with the
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above potential, becomes an ordinary second order differential equation

in G(θ) (equation (9.8) of Bozis [6]). The result (26) is in agreement

with equation (9.8) of Bozis [6], if we put G(θ) = const., i.e. if we

assume further that the central potential V (r) is also homogeneous in

x, y which is not generally the case, of course. Actually from (26) and

equation (9.8), above mentioned, we find k0 = −(m + 1), where m is the

degree of homogeneity of V .

3. Equation (27) gives the totality of families of geometrically similar

orbits created in the central field given by

F 0(r)

F (r)
= −c0

c1

.

Condition (23) is valid e.g. for the monoparametric family of the

spirals

rθ = c ,

leading to

F = − 1

r3
, L2 = 1, E = − 1

2c2
.

The same condition (23) is not valid for the spirals

rθ2 = c ,

i.e. there is no conservative central force creating this family.

Remark. One might reach the same condition (23) as follows: write

equation (5) in polar coordinates, apply it for a potential V = V (r),

supposedly depending only on r = (x2 + y2)1/2, and express the ratio
V 00(r)
V 0(r) in terms of the orbital elements.

4 – Two-parametric families

Let a family of curves

(28) f(r, θ, b) = c

parametrized by b and c given in advance. Apparently, formula (21) is

not applicable because the resulting force must be independent of the
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two parameters and in particular of the parameter b which is, generally,

expected to survive as it appears in the function f(r, θ, b) and also in the

term L2(f(r, θ, b)). Only families (28) satisfying certain conditions may

be generated by a certain central force field F = F (r, θ). To find these

conditions we proceed as follows:

We differentiate equation (20) with respect to b and we write the

system

c1Fr + c2Fθ = −c0F ,(29)

c1,bFr + c2,bFθ = −c0,bF .(30)

Denoting by

(31) ≤ =
fr

fθ
,

taking into account that c2 = −≤c1 and solving the system (29), (30) for
Fr
F

, Fθ
F

, we find

(32)
Fr

F
=
δ1
δ0

,
Fθ
F

=
δ2
δ0

,

where

(33)
δ0 = −c2

1≤b 6= 0 , δ1 = c0(≤bc1 + ≤c1,b)− ≤c1c0,b ,

δ2 = −c1c0,b + c0c1,b .

For the system (29), (30) be compatible, the following conditions

must be satisfied:

(34) (i):
≥δ1
δ0

¥
b
= 0 , (ii):

≥δ2
δ0

¥
b
= 0 , (iii):

≥δ1
δ0

¥
θ

=
≥δ2
δ0

¥
r
.

Then the force F (r, θ) is determined from (32) up to a multiplicative

constant.

Thus, e.g. for the two-parametric family

f(r, θ, b) =
1

cos θ

≥1

r
− b cos 2θ

¥
= c
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we obtain, from (33), δ0 = −9b2 cos2 2θ(3 sin θ+sin 3θ)

2r10 cos11 θ
6= 0 and δ1

δ0
= −2

r
,

δ2
δ0

= −2 tan 2θ which satisfy the conditions (34).

We obtain the nonconservative central force F (r, θ) = cos 2θ
r2 from (32),

and we find L2 = 1
3b

from (21).

Remarks.

1. In view of equations (33) it can be shown by straightforward

algebra that if the condition (34) (ii) is valid, then so is the first con-

dition (34) (i) and vice versa. In conclusion: if and only if, for a given

two-parametric family of orbits, the last two conditions are satisfied, then

all members of the family result from a central force field determined from

the system (32).

2. If δ2 = 0, then Fθ = 0 and the force is conservative. Besides,

from (34) (iii) we understand that δ1
δ0

depends merely on r and we obtain

formula (24), from the first of (32), because δ1
δ0

= − c0
c1

.

This is e.g. the case with the two-parametric family (Appell [1])

1

r2
− b cos 2θ = c

which leads to F = −r and in the sequel to L2 = 1
c2−b2

, E = c
c2−b2

.

3. The parameter b appearing in (28) is neither additive nor mul-

tiplicative for the function f , because then (28) would be essentially

monoparametric. So, in view of (31), it is ≤b 6= 0. Then the case δ0 = 0

leads to c1 = 0 and also to δ1 = δ2 = 0. Then formulae (32) become

meaningless. Such is e.g. the case of the two parametric family

1

cos θ

≥1

r
− b sin θ + cos 2θ

¥
= c .
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