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Existence and partial regularity results

for the gradient flow

for a variational functional of degenerate type

MASASHI MISAWA

Riassunto: Si dimostra l’esistenza e la regolarità parziale della soluzione del pro-
blema di evoluzione associato ad un funzionale variazionale di tipo degenere. Si usa
il metodo di penalizzazione di Chen e Struwe per ottenere una approssimazione delle
soluzioni e si riconosce che per queste vale uniformemente un teorema di ε-regolarità.
Si ottiene una formula di monotonia per la crescita quadratica delle densità di energia
all’infinito e si ricava una stima di Harnack dalla formula di Bochner.

Abstract: We establish the existence and partial regularity of a weak solution
to the evolution problem associated to a variational functional of degenerate type. We
use the penalty method due to Chen and Struwe to make approximation of solutions.
The main ingredient is to show that the ≤-regularity theorem holds uniformly for ap-
proximating solutions. For this purpose, we derive the monotonicity formula using the
quadratic growth of the energy density at infinity. We also obtain the Bochner formula
in somewhat technical way and take some cares to derive the Harnack estimate from it.

1 – Introduction

Let M,N be compact, smooth Riemannian manifolds of dimen-

sion m, l with metrics g, h respectively and suppose that @M, @N = ∅.

Key Words and Phrases: Degenerate parabolic system – p-harmonic map – Gradient
flow.
A.M.S. Classification: 35K65 – 35B65 – 58E20
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Since N is compact, N may be isometrically embedded into a Euclidean

space Rn for some n. For a C1-map u : M → N ⊂ Rn, we define a

variational functional I(u) by

(1.1) I(u) =

Z

M

f(|Du|)dM ,

where, in local coordinates on M , with (gαβ) = (gαβ)
−1, |g| = |det(gαβ)|

and Dα = @/@xα (α = 1, · · · ,m),

dM =
q

|g|dx, |Du|2 =
mX

α,β=1

nX

i=1

gαβDαu
iDβu

i

and f is the real valued convex C2-function defined on [0,1) such that,

for p > 2,

f(τ) =





1

p
τp, 0 ≤ τ ≤ 1

p− 1

2
τ 2 − (p− 2)τ +

(p− 1)(p− 2)

2p
, τ ≥ 1.

The Euler-Lagrange equation of the variational functional I is

(1.2) −4f
Mu + Af(u)(Du,Du) = 0 ,

where 4f
M denotes the differential operator on M

4f
Mu =

1p
|g|Dα

≥q
|g|gαβ f 0(|Du|)

|Du| Dβu
¥

which is a degenerate elliptic operator and, by the second fundamental

form A(u)(Du,Du) of N in Rn at u, Af(u)(Du,Du) is given by

Af(u)(Du,Du) =
f 0(|Du|)

|Du| gαβA(u)(Dαu,Dβu) .

Here and in what follows, the summation notation over repeated indices

is adopted.
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We are concerned with critical points defined as solutions of (1.2).

One method to look for critical points is to make use of the gradient flow

for the functional I. The gradient flow is described by a system of second

order nonlinear degenerate parabolic partial differential equations with

initial condition

@tu−4f
Mu + Af(u)(Du,Du) = 0 in (0,1)×M ,(1.3)

u(0, x) = u0(x) for x ∈M .(1.4)

The partial regularity of minimizing harmonic maps was achieved

in [15], [23]. The results were generalized to obtain the partial regularity

of minimizing p-harmonic maps (p > 1) in [16] and similar results were

also treated in [14] (also see references in [16], [14]). These results become

fundamental to the regularity theory of harmonic maps. The partial reg-

ularity of p-harmonic maps (p ≥ 2) was also investigated in [22], [12].

On the other hand, Chen and Struwe established the global existence

and partial regularity for gradient flows for harmonic maps by combining

Struwe’s monotonicity formula with the penalty method (see [4], [24]).

The gradient flows for p-harmonic maps are given by nonlinear degen-

erate parabolic system. The regularity of weak solutions of degenerate

parabolic systems with only principal terms was discussed and the C1,α-

regularity of solutions was accomplished in [2], [9], [10], [11] (also see [6],

[7] and [25], [26] for corresponding elliptic systems). The global existence

of a weak solution to the gradient flow for p-harmonic maps was shown

provided the target manifold is a sphere [1]. This result was also extended

to the case that the target manifold is a homogeneous space [17], [18],

[19]. The m-harmonic flow is investigated in [20] and the global existence

and the partial C1,α-regularity of a weak solution are obtained. However

the partial regularity of gradient flows for p-harmonic maps remains a

difficult problem to be settled. The key estimate to investigate a partial

regularity is the so-called monotonicity formula (refer to [4], [24]). In

contrast with harmonic flows, we only know that, for p-harmonic flows,

even if p = m, the monotonicity type inequality holds under some “small-

ness”condition (see [20], Theorem 1). In this paper we make an extension

of Struwe’s results [4], [24], which may be of some use for attacking the

partial regularity problem for p-harmonic flows.
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To state our results, we need some preminalies: Let us define the

parabolic metric δq by δq(z1, z2) = max{|t1− t2|1/q, |x1−x2|} for any zi =

(ti, xi) ∈ (0,1) × Rm, i = 1, 2, and denote by Hk(·) the k-dimensional

Hausdorff measure with respect to δ2. For any bounded domain B ⊂ Rm,

we use the usual function spaces: Ck
α(B,Rn), Lq(B,Rn) and W 1

q (B,Rn).

For any bounded domain Q ⊂ (0,1)×Rm, we denote by Cα/q,α(Q,Rn)

the space of locally Hölder continuous functions in Q with exponent α,

0 < α < 1, on the metric δq. We now give the definition of the energy

space, on which we consider the variational functional I:

(1.5) W 1,2(M,N)={u ∈W 1,2(M,Rn) : u(x) ∈ N for almost all x ∈M}.

The global weak solutions of (1.3) and (1.4) is defined as follows:

u ∈ L1((0,1); W 1,2(M,N)) ∩ W 1,2((0,1); L2(M,Rn)) satisfying, for

all φ ∈ L2((0,1); W 1,2(M,Rn)) ∩ L1((0,1) ×M,Rn) the support of

which is compactly contained in (0,1) × U for a coordinate chart U

on M

(1.6)

Z

(0,1)×M

Ω
φ·@tu+

f 0(|Du|)
|Du| gαβDβu·Dαφ+φ·Af(u)(Du,Du)

æ
dMdt=0

and satisfying the initial condition

|u(t)− u0|L2(M) → 0 as t→ 0 .

Then our main theorem is the following:

Theorem 1. Suppose u0 ∈W 1,2(M,N). Then there exists a global

weak solution u ∈ L1((0, 1);W 1,2(M,N)) ∩ W 1,2((0,1);L2(M,Rn))

with the energy inequality

(1.7)

Z

(0,1)×M

|@tu|2dMdt + sup
0≤t<1

I(u(t)) ≤ I(u0) .

Moreover there exist an open set Q0 ⊂ (0,1)×M (with respect to a met-

ric δ2) and a positive number α, 0 < α < 1, such that u ∈ Cα/p,α(Q0, R
n)

and Du ∈ Cα/2,α(Q0, R
mn) and it holds that

(1.8) @tu−4f
Mu + Af(u)(Du,Du) = 0 almost everywhere in Q0
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and that

(1.9) Hm((0, T )×M \ Q0) <1 for any T > 0 .

Some standard notations: For z0 = (t0, x0) ∈ (0,1)×Rm and r, τ > 0,

(1.10) Br(x0)={x ∈ Rm : |x− x0| < r} , Qr,τ(z0)=(t0−τ, t0)×Br(x0)

and Qr(z0) = Qr,r2(z0). The center points x0, z0 are omitted when no

confusion may arise. For vectors u, v ∈ Rn and P,Q ∈ Rmn, put

(1.11) u · v =
nX

i=1

uivi, hP,Qi = gαβPα · Qβ, |P |2 = hP,P i .

This paper is arranged as follows: Section 2 contains some auxil-

iary lemmata. In Section 3, we exploit an approximating scheme, called

the “penalty method”, similar to [4] to construct weak solutions to (1.3)

and (1.4). To prove an existence of weak solutions to the penalized equa-

tions (3.2) and (3.3), we use Galerkin’s method and the “monotonicity

trick” similar as in [1]. We also investigate the smoothness of weak so-

lutions of the penalized equations. All estimates obtained there are de-

pending on an approximating number and, however, are fundamental to

showing a priori estimate for them. Section 4 is a most significant part in

this paper. Here we obtain a priori estimate for weak solutions of the pe-

nalized equations. To show the validity of the monotonicity formula, we

crucially use the fact that the density f has quadratic growth at infinity.

We choose the constant C, which is the coefficient of the penalty term of

the penalized functional (3.1), to be large and then we obtain the Bochner

formula. Finally, we show that the ≤-regularity theorem holds uniformly

for approximating solutions. Here we derive a Harnack type estimate

from the Bochner formula. Because of the degeneracy of the equation,

we take some cares to obtain a Harnack type inequality. In Section 5, we

argue similarly as in [4] to pass to the limit of approximating solutions.

Here we use the compactness results for degenerate parabolic systems.
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2 – Preliminaries

First we simply state the estimates for f , which is used in later sec-

tions:

1

p
(τ 2 − 1) ≤ f(τ) ≤ (p− 1)τ 2 for all τ ≥ 0 ,(2.1)

1

p
τ 2 ≤ f(τ) for all τ ≥ 1 .(2.2)

For brevity, we set

(2.3) F (τ) =
f 0(τ)

τ
, H(τ) = −f 0(τ)

τ
+ f 00(τ) for all τ ≥ 0 .

By direct calculation, we see that

(2.4)

F (τ) =

(
τp−2 for 0 ≤ τ ≤ 1

(p− 1)− p− 2

τ
for τ ≥ 1,

H(τ) =





(p− 2)τp−2 for 0 ≤ τ ≤ 1

p− 2

τ
for τ ≥ 1.

Then we note that (F (τ))
0
= H(τ)/τ for all τ ≥ 0 .

We now gather some algebraic inequalities.

Lemma 2.1. There exist positive constants ∞i (i = 1, 2) depending

only on p and (gαβ) such that, for any vector P = (P i
α) ∈ Rmn, Q =

(Qi
α) ∈ Rmn,

min{|P |p−2, 1} ≤ F (|P |) ≤ (p− 1)min{|P |p−2, 1} ,(2.5)

|H(|P |)| ≤ (p− 2)min{|P |p−2, 1} ,(2.6)

∞1 min{|P |p−2, 1}|Q|2 ≤ |Q|2F (|P |) +
D
Q,

P

|P |
E2

H(|P |) ≤

≤ ∞2 min{|P |p−2, 1}|Q|2 .(2.7)
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Lemma 2.2. There exist positive constants ∞, ∞̄ depending only on p

and (gαβ) such that, for all vectors P,Q ∈ Rmn with V (s) = Q+s(P −Q)

for any s, 0 ≤ s ≤ 1,

hP−Q,F (|P |)P−F (|Q|)Qi≥∞|P−Q|2
Z 1

0

min{|V (s)|p−2, 1}ds ,(2.8)

|F (|P |)P−F (|Q|)Q|≤ ∞̄|P−Q|
Z 1

0

min{|V (s)|p−2, 1}ds ,(2.9)

|F (|P |)|P |−F (|Q|)|Q||≤ ∞̄|P−Q|
Z 1

0

min{|V (s)|p−2, 1}ds .(2.10)

Proof. Noting that

(2.11)

F (|P |)P − F (|Q|)Q =

Z 1

0

Ω
F (|V (s)|)(P −Q)+

+ H(|V (s)|)
D
P −Q,

V (s)

|V (s)|
E V (s)

|V (s)|

æ
ds ,

we have, by (2.7) and (2.6), (2.8) and (2.9). Since

(2.12)

F (|P |)|P | − F (|Q|)|Q| =

= (p− 1)

Z 1

0

D
P −Q,

V (s)

|V (s)|
E

min{|V (s)|p−2, 1}ds ,

we immediately have (2.10) by Schwarz’s inequality.

We use the distance function to the target manifold N to approximate

the equation (1.3). Since N is smooth and compact, there exists a uniform

tubular neighborhood O(N) ⊂ Rn of N of width 2δN such that each

point p ∈ O(N) has a unique nearest point q = πN(p) with a distance

dist(p,N) = |p− q| and the projection πN from O(N) to N is smooth.

We use the same regularization as in [4], p. 87. Let χ be a smooth,

non-decreasing function such that χ(s) = s for s ≤ δ2N and χ(s) = 2δ2N
for s ≥ 4δ2N . Then the function χ(dist2(p,N))/2 is C2-function on every

p ∈ Rn and, at points p with dist(p,N) ≤ δN , its gradient is orthogonal

to the tangential space TπN (p)N of N at πN(p) ∈ N in Rn.

Let us give an estimate for χ(dist2(u,N)) with u ∈ Rn without the

proof.
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Lemma 2.3. There exists a positive constant ∞ depending only on N

such that, for all vectors u, v ∈ Rn,

|χ(dist2(u,N))− χ(dist2(v,N))| ≤ ∞(|u| + |v|)|u− v| ,(2.13)
ØØØ d

du
χ(dist2(u,N))

ØØØ ≤ 4δN ,(2.14)

ØØØ d

du
χ(dist2(u,N))− d

dv
χ(dist2(v,N))

ØØØ ≤ ∞|u− v| .(2.15)

We recall the result concerning to the compactness of Sobolev em-

bedding (for the proof, refer to [1], p. 28, Lemma 1.4).

Lemma 2.4. Let T > 0 be fixed. Suppose that {ul} is bounded

in L1((0, T );W 1,q(M,Rn)), q ≥ 1, and {@tul} is bounded in L2((0, T );

L2(M, Rn)). Then there exist subsequence {ul} and a function u ∈
L1((0, T );W 1,q(M,Rn)) ∩ W 1,2((0, T );L2(M,Rn)) such that {ul} con-

verges to u strongly in Lr((0, T )×M,Rn) for each r, q ≤ r < mq/(m−q).

3 – Approximating solutions

In this section we explain the approximate scheme to construct solu-

tions to (1.3) and (1.4). For a C1-map v defined on M with value in Rn,

we define the penalized functional (refer to [4], p. 87) with parameters k,

k →1, by

(3.1) Ik(v) =

Z

M

{f(|Dv|) + Ckχ(dist2(v,N))}dM ,

where C is a positive constant stipulated later. We approximate a solution

of (1.3) and (1.4) by gradient flows for the penalized functionals (3.1).

For each positive number k, the gradient flows for (3.1) are described by

a system of nonlinear degenerate parabolic partial differential equations

with initial data

@tu−∆f
Mu + Ck

d

du
χ(dist2(u,N)) = 0 in (0,1)×M ,(3.2)

u(0, x) = u0(x) for x ∈M .(3.3)

We call the equation (3.2) the penalized equation.
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Now we prove the existence of weak solutions to the penalized equa-

tion with initial data u0 ∈W 1,2(M,N).

Lemma 3.5. For every k ≥ 1, there exists a weak solution for (3.2)

and (3.3).

Proof. We argue similarly as in [1], pp. 29-31, Theorem 1.5, to

construct weak solutions (3.2) and (3.3). Choose a fundamental system of

functions {wk} ⊂ W 1,2(M,Rn), which is orthonormalized in L2(M,Rn).

For u, v ∈ L2(M,Rn) and U, V ∈ L2(M,Rmn), we put

[u, v] =

Z

M

u · vdM, [U, V ] =

Z

M

hU, V idM .

Fix k ≥ 1. For any positive integer l, we find an approximate solution

(3.4) ul(t) =
lX

i=1

c i
l (t)wi

such that c j
l (t), 1 ≤ j ≤ l, satisfy the system of ordinary differential

equations

d

dt
c j

l + [F (|Dul|)Dul,Dwj] + Ck
h d

du
χ(dist2(ul, N)), wj

i
= 0 ,(3.5)

c j
l (0) = [u0, wj] .(3.6)

Observe from Schwarz’s inequality and (2.9), (2.14) and (2.15) that

the second and third terms in (3.5) are locally bounded and Lipschitz

continuous on the real variables ci
l (i = 1, · · · , l). Thus we can choose

a positive number T = T (l) such that (3.5) and (3.6) have solutions

ci
l ∈ C1((0, T )), 1 ≤ i ≤ l, satisfying

(3.7)

Z

(0,T )×M

|@tul|2dMdt + Ik(ul(T )) = Ik(ul(0)) .

By (2.13), we make estimation

(3.8)

Z

M

χ(dist2(ul(0), N))dM ≤ 2∞(N)

Z

M

|u0|2dM .

By (2.1), we also have, for any V ∈ Rmn,

(3.9)
1

p
(|V |2 − 1) ≤ f(|V |) ≤ (p− 1)|V |2 .
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By substitution of (3.8) and (3.9) to (3.7), we have the uniform bound-

edness with respect to T > 0 and l ≥ 1:

(3.10)

Z

(0,T )×M

|@tul|2dMdt+

Z

M

°|Dul(T )|2+Ckχ(dist2(ul(T ), N)
¢
dM ≤

≤ ∞
≥
|M | +

Z

M

(|Du0|2 + Ck|u0|2)dM
¥

.

By the usual extensive methods, we obtain a time-global solution ul ∈
L1((0,1);W 1,2(M,Rn))∩W 1,2((0,1);L2(M,Rn)) satisfying the energy

equality (3.7) for any T > 0.

We consider how to pass to the limit of ul as l →1 and obtain a solu-

tion to the penalized equation (3.2) and (3.3). Argue with (3.10) similarly

as in [1], pp. 29-31, to have a subsequence {ul}⊂L1((0,1);W 1,2(M,Rn))

∩W 1,2((0,1), L2(M,Rn)) such that

@tul → @tu weakly in L2((0,1)×M,Rn) ,(3.11)

Dul → Du weakly* in L1((0,1);L2(M,Rn))(3.12)

and

(3.13)

d

du
χ(dist2(ul, N))→ d

du
χ(dist2(u,N))

weakly in L2
loc((0,1);L2(M,Rn)) .

Noting that f(|P |) is convex on P ∈ Rmn, by (3.11), (3.12) and (3.13), we

pass to the limit as l →1 in (3.5) and (3.7) to find that u satisfies (3.2)

in the weak sense and

(3.14)

Z

(0,T )×M

|@tu|2dMdt + Ik(u(T )) ≤ I(u0) for any T > 0 .

Now we consider the smoothness of weak solutions uk, k ≥ 1, to (3.2).

For brevity, put u = uk. To make local estimation for u, we fix some no-

tations (refer to [4], p. 96). Let RM > 0 be a lower bound for the injective

radius of the exponential map on M such that, for any R, 0 < R < RM ,

the geodesic ball BR(x0) of radius R around x0 is well-defined and dif-

feomorphic to the Euclidean ball BR(0) ⊂ Rm through the exponential

map. Take a point (t0, x0) ∈ (0,1)×M arbitrarily and fix it. Then we

find that, for any t ∈ [0, t0], the map

(3.15) u(t, expx0
·) : Rm ⊃ BRM

(0) 3 x→ u(t, expx0
x) ∈ Rn
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is well-defined. Replace u(t, expx0
x) by u(t, x) for any (t, x) ∈ [0, t0] ×

BRM
(0) and, moreover, by translation and an appropriate extension of u

to Rm \ BRM
(0), regard u as a map defined on [−t0, 0]× IRm with values

in Rn. Put PRM
= (−t0, 0)×BRM

.

First we state the result concerning the twice differentiability of so-

lutions.

Lemma 3.6. The function min{|Du|p/2−1, 1}Du has weak spatial

derivatives which lie in L2
loc(PRM

) and there exists a positive constant ∞

depending only on C, p,M and N such that, for all Q2r ⊂ PRM
,

(3.16)

sup
−r2≤t≤0

Z

{t}×Br

|Du|2dM +

Z

Qr

min{|Du|p−2, 1}|D2u|2dMdt ≤

≤ ∞(k + r−2)

Z

Q2r

|Du|2dMdt .

Proof. For a positive number h, we denote, by ∆h,iu(t, x) = (u(t, x+

hei)−u(t, x))/h and ∆h,iu(t, x) = (u(t, x)−u(t, x−hei))/h, the difference

quotients in the i-th direction (i = 1, · · · ,m). Let η ∈ C1
0(B3r/2) be

0 ≤ η ≤ 1, η = 1 in Br and |Dη| ≤ 4/r, and σ ∈ C1((−1, 0]) be

0 ≤ σ ≤ 1, σ = 1 on [−r2, 0], σ = 0 on (−1,−(2r)2) and |@tσ| ≤ 4/r2. We

choose h, 0 < h < dist{supp η, @B2r}. Taking a test function (
p

|g|)−1∆h,i

(
p

|g|ση2∆h,iu) for (3.2), we have, by change of variables,

(3.17)

0 =

Z

Q2r

Ω
ση2∆h,i(@tu) · ∆h,iu+

− F (|Du|)gαβDβu · Dα
≥ 1q

|g|
∆h,i

≥q
|g|ση2∆h,iu

¥¥
+

+ Ckση2(∆h,iu) · ∆h,i

≥ d

du
χ(dist2(u,N))

¥æ
dMdt =

= I + II + III .

We now estimate the each term in (3.17). Simply,

(3.18) I =
1

2

Z

{t=0}×B2r

|∆h,iu|2η2dMdt− 1

2

Z

Q2r

|∆h,iu|2η2@tσdMdt .

Use the abbreviation: u∏ = u + ∏h∆h,iu for h > 0. Noting that

(3.19)
∆h,i(F (|Du|)gαβDβu) =

= (∆h,ig
αβ)(F (|Du|)Dβu)(t, x + hei) + gαβ∆h,i(F (|Du|)Dβu),
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we have, by (2.8), (2.9) with vectors P = Du(t, x+hei) and Q = Du(t, x),

Schwarz’s and Young’s inequality,

II =−
Z

Q2r

F (|Du|)gαβDβuDα
≥ 1p

|g|∆h,i

≥q
|g|ση2∆h,iu

¥¥
dMdt=

=−
Z

Q2r

(F (|Du|)gαβDβu)(t, x+hei)∆h,iu∆h,i

≥ 1p
|g|Dα

q
|g|

¥
ση2dMdt+

+

Z

Q2r

∆h,i

°
F (|Du|)gαβDβu

¢ · Dα
°
ση2(∆h,iu)

¢
dMdt ≥(3.20)

≥−e∞
Z

Q2r

σ(η2+|Dη|2+|∆h,iu|2)(|Du(t, x+hei)|2+|Du|2) ·

·
1Z

0

min{|Du∏|p−2, 1}d∏dMdt+

+ ∞

Z

Q2r

ση2|∆h,i(Du)|2
1Z

0

min{|Du∏|p−2, 1}d∏dMdt ,

where the positive constant e∞ is depending on the bounds for the

metric (gαβ) and the derivative and we used that, by (2.10) with

P = Du(t, x + hei) and Q = Du∏, 0 ≤ ∏ ≤ 1,

(F (|Du|)|Du|)(t, x + hei) =

=

Z 1

0

F (|Du∏|)|Du∏|d∏+

Z 1

0

(F (|Du|)|Du|(t, x+hei)−F (|Du∏|)|Du∏|)d∏≤

≤ ∞
Z 1

0

min{|Du∏|p−2, 1}|Du∏|d∏+

+ ∞h|∆h,i(Du)|
Z 1

0

(1− ∏)
Z 1

0

min{|Du∏+s(1−∏)|p−2, 1}dsd∏ =

=∞

Z 1

0

min{|Du∏|p−2, 1}|Du∏|d∏+∞h|∆h,i(Du)|
Z 1

∏

min{|Dus|p−2, 1}ds .

Using (2.15) with u = u(t, x + hei) and v = u(t, x), we obtain, from

Young’s inequality,

(3.21) |III| ≤ ∞(N)Ck

Z

Q2r

ση2|∆h,iu|2dMdt .
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Gathering (3.18)-(3.21) and recalling |Dη| ≤ 4/r and |@tσ| ≤ 4/r2, we

have

1

2

Z

{t=0}×B2r

ση2|(∆h,iu)|2dM+

+

Z

Q2r

ση2|∆h,i(Du)|2
Z 1

0

min{|Du∏|p−2, 1}d∏dMdt ≤

≤ ∞r−2

Z

Q2r

η2|∆h,iu|2dMdt + ∞

Z

(t0−(2r)2,t0)×B3r/2

σ(η2 + |Dη|2)·

· (|Du(t, x + hei)|2 + |Du|2 + Ck|∆h,iu|2)dMdt .

Choosing a cut off function σ such that suppσ = [−(2r)2, τ ] for any τ > 0,

we arrive at (3.16).

We now derive local boundedness of the spatial derivative of u in PRM
.

Lemma 3.7 (Local boundedness). We have Du ∈ L1
loc (PRM

).

Proof. We claim that a partial differential inequality for |Du|2 holds:

(3.22)

@t

≥1

2
|Du|2

¥
− 1p

|g|Dα
nq

|g|
≥
gα∞F (|Du|)+

+ H(|Du|)g
αβg∞∞Dβu · D∞̄u

|Du|2
¥
D∞

≥1

2
|Du|2

¥o
+

+ ∞min{|Du|p−2, 1}|D2u|2 ≤
≤ ∞(M,N)(min{|Du|p−2, 1}|Du|2 + k|Du|2) .

Proof of Claim. First we make formal estimation, which is justi-

fied later. We assume that (gαβ) = Id, since, in the general case, we have

only the term containing derivatives of the metric (gαβ) which is bounded

by ∞min{|Du|p−2, 1}|Du|2 with a positive constant ∞ depending only on

M,p. We calculate, by (3.2),

(3.23)

@t

≥1

2
|Du|2

¥
−Dα

n≥
δα∞F (|Du|)+H(|Du|)Dαu·D∞u

|Du|2
¥
D∞

≥1

2
|Du|2

¥o
=

= −F (|Du|)|D2u|2 −H(|Du|)hD
2u,Dui2
|Du|2 −

−Du · D
n
Ck

d

du
χ
°
dist2(u,N)

¢o
= I + II .
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By (2.7)

(3.24) I ≤ −∞min{|Du|p−2, 1}|D2u|2 .

Noting that χ0 = 0 if dist(u,N) ≥ 2δN and that, for u ∈ O(N),

ØØØdist(u,N)
d2

du2
dist(u,N)

ØØØ ≤ ∞(N) ,

we have

(3.25)

II = −2Ck
≥°
χ0 + 2dist(u,N)χ00¢ØØDdist(u,N)

ØØ2+

+ χ0dist(u,N)
mX

α=1

nX

i,j=1

Dαu
iDαu

j d2

duiduj
dist(u,N)

∂
≤

≤ ∞(N)Ck|Du|2 .

Substituting (3.24) and (3.25) into (3.23), we obtain the desired estimate.

We proceed with our estimates by Moser’s iteration [9]. Put v =

|Du|2. Take the test function φ = ση2va, a ≥ 0, in (3.22), where let r

be 0 < r < RM/2 and η ∈ C1
0(B2r) be 0 ≤ η ≤ 1, η = 1 in Br and

|Dη| ≤ 4/r and σ be a function defined in the proof of Lemma 3.6. Make

routine estimate to have, for any τ , 0 < τ < 1,

sup
t0−(1−τ2)r2<t<t0

Z

B2r

va+1η2dM +

Z

Q2r

ØØØD
≥

min{|Du| p−2
2 , 1}v a+1

2

¥ØØØ
2

η2dMdt ≤

≤ ∞(M,N, k,C)

Z

Q2r

va+1
≥

min{|Du|(p−2), 1}|Dη|2 + η|@tη|
¥
dMdt.(3.26)

Hölder’s and Sobolev’s inequality give, for a positive number δ determined

later,

(3.27)

Z

B2r

min{|Du|p−2, 1}v1+a+δη2(1+ 2
m )dM ≤

≤
µZ

B2r

ØØØD
≥
min{|Du| p−2

2 , 1}v a+1
2 η

¥ØØØ
2

dM

∂µZ

B2r

v
mδ
2 η2dM

∂ 2
m

.
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Integrating (3.27) in (−2r2, 0) and applying (3.26) to the resulting in-

equality, we have

(3.28)

Z

Q2r

min{|Du|p−2, 1}v1+a+δη2(1+ 2
m )dMdt ≤

≤∞(M,N, k,C)

ΩZ

Q2r

va+1
≥
min{|Du|p−2,1}|Dη|2+η|@tη|

¥
dMdt

æ1+ 2
m

.

We take δ = 2(1 + a)/m with a ≥ 0. Then, by (3.28), we have, for any

τ , 0 < τ < 1,

(3.29)

Z

Qr(1−τ)
v(1+a)(1+ 2

m )dMdt ≤

≤ |Qr(1−τ)| +
Z

Qr∩{v≥1}
min{|Du|p−2, 1}v1+a+δdMdt ≤

≤|Qr|+∞
µ
(τr)−2

Z

Qr

≥
v1+a+min{|Du|p−2, 1}v1+a

¥
dMdt

∂1+ 2
m

≤

≤ ∞
µ

(τr)−2

Z

Qr

(1 + v1+a + min{|Du|p−2, 1}v1+a)dMdt

∂1+ 2
m

.

Thus

(3.30)

Z

Qr(1−τ)

≥
1 + v(1+a)(1+ 2

m )
¥
dMdt≤∞

µ
(τr)−2

Z

Qr

(1 + v1+a)dMdt

∂1+ 2
m

.

We now define sequences {b∫}, {r∫} and {φ∫} for ∫ = 0, 1, 2, · · · , by

(3.31) b∫=
≥
1+

2

m

¥∫
, r∫=

RM

2
(1+2−∫), φ∫=

≥Z

Qr∫

(1+vb∫ )dMdt
¥ 1

b∫ .

Then, from (3.30), we obtain

(3.32) φ∫+1 ≤ (∞R−2
M )(1+

2
m )−∫22(∫+1)(1+ 2

m )−∫φ∫ ,

where ∞ depends only on k, C, m,M and N . Starting from ∫ = 0 and

iterating (3.32), we have

(3.33) sup
Qr

v ≤ ∞(M,N, k,C)
1

|Q2r|

Z

Q2r

(1 + v)dMdt .
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Now we formally completed the proof of Lemma 3.7. It remains

to justify the above calculations. We argue similarly as in [9], p. 95. By

Lemma 3.5, we note that u ∈ L1((−t0,0); W 1,2(BRM
, Rn))∩W 1,2((−t0,0);

L2(BRM
, Rn)) and that

(3.34)

Z

QRM

φ·@tu+F (|Du|)hDu,Dφi+Ckφ· d

du
χ(dist2(u,N))dMdt = 0

holds for any φ ∈ L2((−t0, 0); W 1,2(BRM
, Rn)). Since @tu ∈ L2(PRM

, Rn)

and d
du
χ(dist2(u,N)) ∈ L1(PRM

, Rn), we find from (3.34) that ∆f
Mu ∈

L2(PRM
, Rn) and that

(3.35) @tu−∆f
Mu + Ck

d

du
χ(dist2(u,N)) = 0

holds almost everywhere in PRM
. Let take a difference-quotient of (3.35)

with respect to a variable xα, 1 ≤ α ≤ m, and multiply the resulting

equation by ση2∆h,αu and integrate it in Qr. Then we make estimation

similarly as in (3.26) to have an analogue of (3.26) with a = 0. In this

stage, since the right hand in (3.26) with a = 0 is finite, we take the limit

as h → 0 to see that (3.26) is valid for a = 0. Using Sobolev embedding

theorem, similarly as in (3.26)-(3.30) with a = 0, we have (3.30) with

a = 0 and then find that v = |Du|2 belongs to L
1+ 2

m
loc (PRM

). Thus we are

able to repeat the above process for a > 0, where, for a, 0 < a < 1, we

use a test function ση2(v + ≤)a∆h,αu with a positive number ≤ tending to

0 and we estimate the lower order term similarly as in (3.25). Step by

step, we proceed with the above procedure to obtain (3.33).

We claim that u and Du is locally Hölder continuous in PRM
.

Lemma 3.8. u ∈ Cα/p,α(PRM
, Rn) for any α, 0 < α < 1, where the

Hölder constant depends only on M,p, I(u0), t0, α and the approximating

number k. Also Du ∈ Cβ/2,β(PRM
, Rmn) with β, 0 < β < 1, depending

on m,p and the Hölder constant depending only on M,p, t0, the approxi-

mating number k and L1-norm of Du.

Proof. We argue similarly as in [2], p. 104, Theorem 1 and [8],

p. 245, Theorem 1.1 (see also [7], [9], [10]). Here we can regard our penal-

ized equation as a degenerate parabolic system of p-harmonic type with

lower order term of a bounded function, since the function d
du
χ(dist2(u,N))

defined for u ∈ Rn is bounded.
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4 – Bochner and monotonicity formula

Let u = uk be a weak solution to (3.2) and (3.3). Let us take z0 =

(t0, x0) ∈ (0,1)×M and argue in the same settings as in Section 3. We

recall the definitions of u and RM and use the notation

(4.1)
ek(u) = f(|Du|) + Ckχ(dist2(u,N)),

ẽk(u) = f(|Du|) + kχ(dist2(u,N)) .

First we state the Bochner formula for the energy density ẽ(u) = ẽk(uk).

Lemma 4.9. It holds, with a uniform positive constant ∞̃, ∞ and eC,

for any φ ∈ L2((−t0, 0);W 1,2
0 (BRM

))∩W 1,2((−t0, 0);L2(BRM
)) with φ ≥ 0

in PRM
and all t1, t2, −t0 < t1, t2 ≤ 0,

(4.2)

Z

{t}×BRM

ẽ(u)φdM

ØØØØ
t=t2

t=t1

−
Z

(t1,t2)×BRM

ẽ(u)@tφdMdt+

+

Z

(t1,t2)×BRM

≥
gα∞F (|Du|)+

+ H(|Du|)g
αβg∞∞̄Dβu · D∞̄u

|Du|2
¥
D∞ ẽ(u)DαφdMdt+

+ ∞̃

Z

(t1,t2)×BRM

2φ(F (|Du|))2gαβg∞∞̄D∞Dβu · D∞̄Dαu dMdt+

+∞̃

Z

(t1,t2)×BRM

1

2
φF (|Du|)H(|Du|)g

∞∞̄D∞|Du|2D∞̄|Du|2
|Du|2 dMdt+

+ eCk2

Z

(t1,t2)×BRM

φ
ØØØ d

du
χ
°
dist2(u,N)

¢ØØØ
2

dMdt ≤

≤∞(M,N)

Z

(t1,t2)×BRM

φ(min{|Du|p−2, 1})2|Du|2(1+|Du|2)dMdt .

Proof. Similarly as the proof of (3.22), we assume that (gαβ) = Id

and make formal calculation. Using Lemmata 3.6, 3.7 and 3.8, we can jus-

tify the formal calculation similarly as in [12], pp. 390-393, Lemmata 2.3
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and 2.4. For brevity, we put w = dist(u,N) and, if no confusion arises,

we omit the arguments of F,H and χ. First we multiply the both hand

side of (3.23) in the proof of Lemma 3.7 by F (|Du|) to have

(4.3)

@tf(|Du|)−Dα(A
α∞D∞f(|Du|)} =

= −F (|Du|)
≥
F (|Du|)|D2u|2 + H(|Du|)hD

2u,Dui2
|Du|2

¥
−

− H(|Du|)
|Du|2 Aα∞Dα

≥1

2
|Du|2

¥
D∞

≥1

2
|Du|2

¥
−

− F (|Du|)Du · D
n
Ck

d

du
χ
o

,

where we put

Aα∞ = δα∞F (|Du|) + H(|Du|)Dαu · D∞u
|Du|2 .

Estimate similarly as in (3.25) to see that the third term is bounded by

(4.4) ∞(N)F (|Du|)Ckχ0w|Du|2 .

Use Young’s inequality so that (4.4) is bounded by

(4.5)
C

2
(k2(χ0)2w2 + ∞(N)(F (|Du|))2|Du|4) .

A substitution of (4.5) into (4.3) gives

(4.6)

@tf(|Du|)−Dα(A
α∞D∞f(|Du|)}+

+ F (|Du|)
≥
F (|Du|)|D2u|2 + H(|Du|)hD

2u,Dui2
|Du|2

¥
≤

≤ C

2

≥
k2(χ0)2w2 + ∞(N)(F (|Du|))2|Du|4

¥
,

where we used that

H (|Du|)
|Du|2 Aα∞Dα

≥1

2
|Du|2

¥
D∞

≥1

2
|Du|2

¥
≥ 0 .
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Next

(4.7)

@t(kχ(w2))− div(F (|Du|)D(kχ(w2))) =

= −Ck2
ØØØdχ
du

ØØØ
2

− 2kF (|Du|)(χ0 + 2w2χ00)|Dw|2−

− 2kF (|Du|)wχ0
nX

ij=1

Dui · Duj d2w

duiduj
.

By direct calculation, we have

(4.8)

div
n
H(|Du|) 1

|Du|2 Du ·
mX

∞=1

D∞uD∞(kχ)
o

=

=
mX

∞=1

≥
D∞u ·

mX

α=1

DαuDα|Du|(τ−2H(τ))0|τ=|Du| + H(|Du|)×

× div(Du · D∞u)

|Du|2
¥
D∞(kχ)+

+ H(|Du|)
mX

α,∞=1

Dαu · D∞u
|Du|2 2

µ
k(χ0 + 2w2χ00)|Dw|2+

+ kχ0w
nX

k,l=1

Dαu
kD∞u

l d2w

dukdul
+ kχ0wDαD∞u · dw

du

∂
.

By substitution of (4.8) into (4.7), we obtain, from simple calculation,

(4.9)

@t(kχ(w2))−Dα(A
α∞D∞(kχ(w2))) =

= −Ck2
ØØØdχ
du

ØØØ
2

− 2k(χ0 + 2w2χ00)Aα∞DαwD∞w−

− 2kχ0w
nX

i,j=1

Aα∞Dαu
iD∞u

j d2w

duiduj
−

− k
mX

∞=1

≥
D∞u ·

mX

α=1

DαuDα|Du|(τ−2H(τ))0|τ=|Du|+

+ H
div(Du · D∞u)

|Du|2
¥
D∞χ− kH

mX

α,∞=1

Dαu · D∞u
|Du|2 DαD∞u · dχ

du
=

= I1 + I2 + I3 + I4 + I5 .

Let us evaluate the each term in the right hand in (4.9). If dist(u,N) ≥
2δN , then χ0 = 0, and the right hand of (4.9) is equal to zero. We deal
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with the remaining case. By (2.7), we have, similarly as (4.5),

(4.10)
|I3| ≤ ∞(N)kχ0w|Du|2 min{|Du|p−2, 1} ≤

≤ 1

4
k2(χ0)2w2 + ∞(N)(min{|Du|p−2, 1})2|Du|4 ,

where we used that χ0 ≥ 0 and that, for u ∈ O(N) and u /∈ N, with

a positive constant ∞(N) depending on a bound for the curvature of N ,
d2w
du2 ≤ ∞(N). Noting the growth of f , we have, by Schwarz’s and Young’s

inequality,

(4.11)

|I4+I5|≤k
ØØØdχ
du

ØØØ(3H|D2u|+|(τ−2H(τ))0|τ=|Du|||Du|3|D|Du||)≤

≤∞k
ØØØdχ
du

ØØØ|D2u|min{|Du|p−2, 1} ≤

≤ 1

4
(min{|Du|p−2, 1})2|D2u|2 + ∞k2

ØØØdχ
du

ØØØ
2

.

Combining (4.10) and (4.11) with (4.9) and adding the resulting inequal-

ity by (4.6), we arrived at (4.2), where, since the third term in the left

hand side of (4.6) is bounded below by

∞(min{|Du|p−2, 1})2|D2u|2 ,

the first term in (4.11) is absorbed into this quantity and we choose a

positive constant C to be large dependently only of M,N and p and then

absorb the second term in (4.11) into the first term I1 in (4.9).

Secondly we derive the monotonicity type inequality (refer to [4],

[24]). This is a crucial estimate to obtain the partial regularity. Let

φ ∈ C1
0 (BRM

) be a cut-off function such that 0 ≤ φ ≤ 1 and φ = 1 in

some neighborhood of BRM
. Then we define

Φ(R, u) = R2

Z

{t=−R2}×Rm
ek(u)Gφ2

q
|g|dx for 0 < R ≤

√
t0

™(R, u) =

Z −R2

−(2R)2

Z

{t}×Rm
ek(u)Gφ2

q
|g|dxdt for 0 < R ≤

r
t0
2

where, with ω = 2(p− 1),

G(t, x) = (4π(−t))−
m
2 exp

≥
− |x|2

2ω(−t)

¥
for −1 < t < 0 .
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Lemma 4.10. There exist positive constants ∞ and ≤, 0 < ≤ < 1,

depending only on M,N and p such that, for any R0, R1, 0<R0≤R1 <√
t0,

(4.12) Φ(R0, u) ≤ exp(∞(R1−≤
1 −R1−≤

0 ))Φ(R1, u) + ∞I(u0)(R1 −R0)

and, for any R0, R1, 0 < R0 ≤ R1 <
p

t0/2,

(4.13) ™(R0, u) ≤ exp(∞(R1−≤
1 −R1−≤

0 ))™(R1, u) + ∞I(u0)(R1 −R0) .

Proof. We give the proof of (4.12). (4.13) is similarly proven. Let

R be 0 < R <
√

t0. For brevity, we assume that (gαβ) = Id. In the

general case, we can argue similarly as in [4], pp. 97-99. Using a scaling

transformation: t = R2s, x = Ry and putting uR(s, y) = u(R2s,Ry),

and φR(y) = φ(Ry), the equation (3.2) in (−t0, 0)×BRM
is rewritten as

follows: In (−t0/R2, 0)×BRM /R,

(4.14) @suR − div(F (R−1|DuR|)DuR) + CkR2 d

du
χ(dist2(uR, N)) = 0 .

Also note that

(4.15)
Φ(R, u) = R2

Z

{s=−1}×Rm
{f(R−1|DuR|)+

+ Ckχ(dist2(uR, N))}Gφ2
Rdy .

We now calculate d
dR

Φ(R, u)|R for any R, 0 < R <
√

t0. We demon-

strate only formal calculation, since we can justify it by testing (3.35) by

Gx·Du and Gt@tu with the usual cutoff function (refer to [13], Proposition

10). If no confusion arises, we omit writing the arguments of functions

χ, f and F .

(4.16)

d

dR
Φ(R, u)|R =

= 2R

Z

{s=−1}×Rm

n
f − R−1|DuR|

2
f 0 + Ckχ

o
Gφ2

R dy+

+

Z

{s=−1}×Rm

n
FD

duR

dR
· DuR + CkR2 duR

dR
· dχ

du

o
Gφ2

R dy +

+ 2R2

Z

{s=−1}×Rm
ek(u)GφR y · (Dφ)(R·)dy = I1 + I2 + I3 .
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We now make estimation of I1. Split the integrations into two parts:

(4.17) I1 = 2R

µZ

{s=−1}×Rm∩{R−1|DuR|<1}
· · ·+

Z

{s=−1}×Rm∩{R−1|DuR|≥1}
· · ·
∂

By the definition of f and Young’s inequality with (2.2), the second term

of (4.17) is bounded below by

(4.18) −p(p− 2)

2
R2

Z

{s=−1}×Rm
fGφ2

Rdy − p− 2

2

Z

{s=−1}×Rm
Gφ2

Rdy .

Thus we have

(4.19)

I1 ≥ −
p(p− 2)

2
R2

Z

{s=−1}×Rm
fGφ2

Rdy−

−
≥
R +

p− 2

2

¥ Z

{s=−1}×Rm
Gφ2

Rdy .

Using (4.14) and DαG = −yαG/ω(−s), we have, by integration by

parts,

(4.20)

I2 =

Z

{s=−1}×Rm

d

dR
uR ·

n
−∆f

MuR + CkR2 dχ

du

o
Gφ2

Rdy−

−
Z

{s=−1}×Rm
F

duR

dR
· DuR · D(Gφ2

R)dy ≥

≥ 1

2R

Z

{s=−1}×Rm
|2s@suR + y · DuR|2Gφ2

Rdy−

− 1

4R

Z

{s=−1}×Rm

ØØØ1− 2F

ω

ØØØ
2

|y · DuR|2Gφ2
Rdy .

Noting that

ØØØτ
≥
1− 2F (τ)

ω

¥ØØØ ≤





p− 2

p− 1
, τ ≥ 1

p

p− 1
, 0 ≤ τ ≤ 1 ,

we have

(4.21) I2 ≥ −
p2

2(p− 1)2
R

Z

{s=−1}×Rm
|y|2Gφ2

Rdy .
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Exactly similarly as in [3], p. 10 (also refer to [4], pp. 98-99), we evalu-

ate (4.21) and I3.

I2 ≥ −∞(p,m,RM)R(1 + R−2δ) .(4.22)

|I3| ≤ Φ(R, u) + R2

Z

{s=−1}×Rm
ek(u)G|y · (Dφ)(R·)|2

q
|gR|dy ≤

≤ Φ(R, u) + ∞(m,M)I(u0) .

From combination of (4.19) and (4.22) with (4.16), we obtain

(4.23)
d

dR
Φ(R, u) ≥ −∞(p)Φ(R, u)−∞(m,p,M)(1+I(u0)+R(1+R−δ))

from which the desired estimate follows, if δ is selected to be so small.

Finally we prove ≤-regularity theorem for weak solutions u to (3.2)

and (3.3). We note Lemmata 3.7 and 3.8 and recall RM , u = uk and the

notation: ẽk(u) = f(|Du|) + kχ(dist2(u,N)).

Lemma 4.11 (≤-regularity theorem). There exist a positive constant

≤0 depending only on I(u0), M,N and p such that, for any weak solution u

to (3.2) and (3.3), the following holds: If, for R, 0 < R < min{RM , 1},
there holds

(4.24) ™(R, u) =

Z −R2

−(2R)2

Z

{t}×Rm
ek(u)Gφ2dMdt < ≤0 ,

then, with a uniform positive constant ∞,

(4.25) sup
QR/2

ek(u) ≤ ∞R−2 .

Proof. We argue similarly as in [4], [24]. By our monotonicity

formula (4.12) and (4.13) and the smallness condition (4.24), we have,

for positive numbers r, σ, 0 < r, σ < R and r + σ < R, and z0 ∈ Pr,

(4.26) σ−m

Z

Qσ(z0)

ek(u)dMdt ≤ ≤ .
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Since u ∈ C0 ((−t0, 0);C1(BRM
)) , there exists σ0, 0 ≤ σ0 < R, such that

(4.27) (R− σ0)
2 sup

Qσ0

ẽk(u) = max
0≤σ≤R

{(R− σ)2 sup
Qσ

ẽk(u)} .

Here, if σ0 = R, the desired estimate (4.25) follows. We can also choose

(t0, x0) ∈ |Qσ0 | such that

sup
Qσ0

ẽk(u) = ẽk(u)(t0, x0) .

Set ẽ0 = ẽk(u)(t0, x0) and ρ0 = (1/2)(R−σ0). By choice of σ0 and (t0, x0),

(4.28) sup
Qρ0 (t0,x0)

ẽk(u) ≤ sup
Qσ0+ρ0

ẽk(u) ≤ 4ẽ0 .

Introduce

(4.29) r0 = ρ0

√
ẽ0, v(s, y) = u

≥
t0 +

s

ẽ0

, x0 +
y√
ẽ0

¥

and we use the original notation gαβ(·) for gαβ(·/
√

ẽ0). Let us show that

r0 ≤ 1. First note by (3.2) in Qρ0 that v satisfies, almost everywhere

in Qr0 ,

(4.30) @sv−
1q
|g|

Dα
≥
F (
√

ẽ0|Dv|)
q

|g|gαβDβv
¥
+

Ck

ẽ0

d

dv
χ(dist2(v,N))=0.

Moreover (4.28) and (4.29) imply that

(4.31) ēk̃(v)(0, 0) = 1, sup
Qr0

ēk̃(v) ≤ 4 ,

where we put

ēk̃(v) =
1

ẽ0

f
≥√

ẽ0|Dv|
¥

+ k̃χ
≥
dist2(v,N)

¥
, k̃ =

k

ẽ0

.

Similarly as in the proof of Lemma 4.2, we have Bochner type estimate

for ēk̃(v). For brevity, we put ē(v) = ēk̃(v). We see that v satisfies, for
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φ ∈ L2((−(r0)
2, 0); W 1,2

0 (Br0)) ∩W 1,2 ((−(r0)
2, 0); L2(Br0)) with φ ≥ 0

in Qr0 and all intervals (t1, t2) ⊂ (−(r0)
2, 0),

(4.32)

Z

{s}×Br0

ē(v)φdM

ØØØØ
s=t2

s=t1

−
Z

(t1,t2)×Br0

ē(v)@sφdMds+

+

Z

(t1,t2)×Br0

≥
gα∞F (V )+

+ H(V )
gαβg∞∞̄Dβv · D∞̄v

|Dv|2
¥
D∞ ē(v)DαφdMds+

+ ∞̃

Z

(t1,t2)×Br0

φF (V )
≥
2F (V )gαβg∞∞̄D∞Dβv · D∞̄Dαv +

+H(V )
g∞∞̄D∞|Dv|2D∞̄|Dv|2

2|Dv|2
¥
dMds+

+ eCk̃2

Z

Q2r

φ
ØØØdχ
dv

ØØØ
2

dMds ≤

≤∞(M,N)

Z

(t1,t2)×Br0

φ(min{V p−2, 1})2|Dv|2
≥ 1

ẽ0

+|Dv|2
¥
dMds ,

where V =
√

ẽ0|Dv| and we omit writing the arguments of χ. Assume

that r0 > 1. Then we can derive Harnack type estimate from (4.32) (see

Appendix for the proof).

Lemma 4.12 (Harnack estimate). There exists a positive constant ∞

depending only on M ,N and p such that the inequality holds:

(4.33) sup
Q1/2

ē(v) ≤ ∞
µ

1

|Q1|

Z

Q1

ē(v)dMds

∂ 1
1+A

,

where A = (m + 1)(1− 2/p) > 0.

Noting that r0 > 1 implies σ0 + 1/
√

ẽ0 ≤ σ0 + ρ0 < R and adapt-

ing (4.26) with σ = 1/
√

ẽ0, we have, by scaling back,

(4.34)

Z

Q1

ē(v)dMds = (ẽ0)
m
2

Z

Q1/
√

ẽ0(t0,x0)

ẽk(u)dMdt ≤ ≤ ,

where note that the constant C in the density ek(u) is sufficiently large,

but depending only on M,N and p. We can choose a positive number ≤
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to be small dependently only of m,p, M and N and then, obtain the

contradiction from (4.31), (4.33) with (4.34). Finally, exactly similarly

as in [4], pp. 92-93, we conclude (4.25).

5 – Proof of Theorem

From our energy inequality (3.14), we know that

{Duk} is bounded in L1((0,1);L2(M,Rmn)) ,(5.1)

{@tuk} is bounded in L2((0,1)×M,Rn) .(5.2)

Thus we choose a subsequence {uk} and a map u ∈ L1((0,1); W 1,2

(M,Rn)) ∩W 1,2((0,1);L2(M,Rn)) such that, as k →1,

Duk → Du weakly* in L1((0,1);L2(M,Rmn)) ,(5.3)

@tuk → @tu weakly in L2((0,1)×M,Rn) .(5.4)

By (5.1), (5.2) and Lemma 2.4 with q = 2, we find that

(5.5)
uk → u strongly in L2

loc((0,1);L2(M,Rn))

and almost everywhere in (0,1)×M .

Again, by (3.14), we have

(5.6) dist(uk, N)→ 0 in L2
loc((0,1);L2(M)) .

From (5.5) with (5.6) and (3.14) with (5.3) and (5.4), we obtain that

u ∈ N almost everywhere in (0,1)×M ,(5.7)

sup
0≤T<1

µZ

(0,T )×M

|@tu|2dMdt + I(u(T ))

∂
≤ I(u0) ,(5.8)

where we used the convexity of f .
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We now define a singular set for the weak limit u which is obtained

as above. Let ≤0 be a constant determined in Lemma 4.11. Then let

(5.9)

Σ =
n
z0 = (t0, x0) ∈ (0,1)×M :

lim inf
k→1

Z t0−R2

t0−(2R)2

Z

BRM

ek(uk)Gz0
φ2dMdt ≥ ≤0

for any R, 0 < R <
√

t0/2
o

.

For t0 ∈ (0,1) and R, 0 < R <
√

t0/2, let

(5.10)
Σt0

R =
n
x0 ∈M : lim inf

k→1

Z t0−R2

t0−(2R)2

Z

BRM

ek(uk)Gz0
φ2dMdt ≥ ≤0

o
,

Σt0 = ∩0<R<
√

t0/2Σ
t0
R .

Then Σ = ∪t0∈(0,1)Σ
t0 . We argue with Lemma 4.10 similarly as in [24]

and [5] to find that

(5.11) Σ and Σt0 are closed for any t0 ∈ (0,1)

and to obtain an estimation on Hausdorff measure of Σ and Σt0 .

(5.12) Hm
loc(Σ) <1, Hm−2(Σt0) <1 for any t0 ∈ (0,1) .

Now we prove that the limit u is weak solution to (1.3) and (1.4).

We argue similarly as in [4], pp. 93-96.

First we show that u satisfies (1.3) almost everywhere in a local

region Q around a point z0 in the complement of the singular set Σ.

For z0 /∈ Σ, we take a positive number R, 0 < R <
√

t0/2, and an

infinite sequence uk such that

(5.13)

Z

(t0−(2R)2,t0−R2)×BRM

ek(uk)Gz0
φ2dMdt ≤ ≤0 .

We see from Lemma 4.11 that, with Q = QR/2(z0) and a positive constant

∞ depending only on R,

(5.14) |Duk|, k dist2(uk, N) ≤ ∞ in Q ,
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which implies that there exists a subsequence uk such that, as k →1,

uk → u in C0(Q,Rn) ,(5.15)

Duk → Du weakly* in L1
loc(Q,Rmn) .(5.16)

We claim that

(5.17)
n
k

d

du
χ(dist2(uk, N))

o
is bounded in L2

loc(Q,Rn) .

Choosing a test function φ2 with φ ∈ C1
0 (Q) in the Bochner formula (4.2),

we have, by Young’s inequality, with a uniform positive constant ∞,

(5.18)

2

Z

Q

φ2 min{|Du|p−2, 1}|D2u|2dz+

+
eC
2

Z

Q

φ2k2
ØØØ d

du
χ(dist2(u,N))

ØØØ
2

dMdt ≤

≤ ∞
Z

Q

min{|Du|p−2, 1}|Du|2{(1 + |Du|2)φ2 + |Dφ|2}dz+

+

Z

Q

ẽ(u)@tφ
2dMdt ,

where we used (2.8). Adopting (5.14) for (5.18), we obtain (5.17), where

note that the positive constant eC does not depend on k. From (3.35)

with (5.2) and (5.17), it follows that

(5.19) {∆f
Muk} is bounded in L2

loc(Q,Rn) .

By (5.19), we choose a subsequence {uk} and a function A = (Ai) ∈
L2

loc(Q,Rn) such that

(5.20) ∆f
Muk → A weakly in L2

loc(Q,Rn) .

Then we observe from (5.20) that

(5.21) ∆f
Mu = Ai, 1 ≤ i ≤ n, almost everywhere in Q .
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We here use the compactness result.

Lemma 5.13. Let {uk} be a family of functions uk, k = 1, 2, · · · ,
defined on Q with values in Rn. Suppose that each uk satisfies, in the

weak sense,

(5.22) @tuk −∆f
Muk = fk .

Moreover, assume that {uk} is bounded in L1((t0 − (R/2)2, t0);W
1,2

(BR/2(x0), Rn)), {@tuk} is bounded in L2(Q,Rn) and {fk} is bounded

in L2(Q,Rn). Then we can choose a subsequence {uk} and a function u

defined on Q with value in Rn such that

(5.23) ∆f
Muk→∆f

Mu weakly in
°
L2

°
(t0−(R/2)2,t0);W

1,2(BR/2(x0), R
n)
¢¢∗

.

Proof of Lemma 5.13. Noting that f ∈ C2([0,1)) is a convex

function, we use Lemmata 2.1 and 2.2 and argue similarly as [1], pp. 31-33,

Theorem 2.1, to obtain a subsequence {uk} and a vector-valued function

u such that, with Vk(s) = Du + s(Duk −Du), 0 ≤ s ≤ 1,

(5.24)

Z

Q0
|Duk −Du|q×

×
≥ Z 1

0

min{|Vk(s)|p−2, 1}ds
¥
dMdt→ 0 as k →1

holds for any q, 1 5 q < 2, and for all Q0 compactly contained in Q.

By (2.9) in Lemma 2.2 and Hölder’s inequality, we have, for any φ ∈
C1

0 (Q,Rn) with Q0 = supp φ and all q, 1 < q < 2,

(5.25)

Z

Q

(F (|Duk|)Duk − F (|Du|)Du) · DφdMdt ≤

≤ ∞
≥ Z

Q

|Dφ|
q

q−1 dMdt
¥1− 1

q
≥ Z

Q0
|Duk −Du|q×

×
≥ Z 1

0

min{|Vk|p−2, 1}ds
¥
dMdt

¥ 1
q −→ 0 as k → 0 .

Thus we have (5.23). Using (5.4), (5.17), (5.20) and (5.21), we can take

the limit as k → 1 in (3.2). Then there exist a smooth unit vector
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field ∫N defined on N with ∫N(v) ⊥ Tv(N) in Rn for all v ∈ N and a real

valued function ∏ defined on Q with ∏ ∈ L2 (Q,R) such that u satisfies

(5.26) @tu−∆f
Mu + ∏∫N(u) = 0 almost everywhere in Q .

We now observe that u and Du are locally Hölder continuous in Q.

Multiplying the equation (5.26) by ∫N(u) and noting that @tu ·∫N(u) = 0

and Du · ∫N(u) = 0 almost everywhere in Q, we have, for almost every

z ∈ Q,

(5.27)
∏ = −@tu(z) · ∫N

°
u(z)

¢
+ ∆f

Mu(z) · ∫N (u(z)) =

= −F (|Du|)hDu,D∫N(u(z))i ,

where we used that Dα(
p

|g|gαβDβu ·∫N(u)) = 0 almost everywhere in Q.

Thus we have

(5.28) |∏| ≤ ∞(N)F (|Du|)|Du|2 .

Combining (5.28) with (5.26) and noting the growth of F , we argue sim-

ilarly as in [2], p. 104, Theorem 1, [8], p. 245, Theorem 1 and p. 291

(see also [9], [10]) to find that u ∈ Cα/p,α(Q) and Du ∈ Cα/2,α(Q) with a

positive number α, 0 < α < 1, where we use the energy inequality (5.8)

and the uniform local boundedness of Du in Q, which is obtained from

combination of (5.14) with (5.16).

Noting that, for any w ∈ N ,

nX

i,j=1

d∫j

dwi
(w)V iW j = −∫(w) · A(w)(V,W ) for any V,W ∈ TwN ,

we see from (5.27) that

(5.29) ∏∫N(u) = F (|Du|)gαβA(u)(Dαu,Dβu) almost everywhere in Q.

Finally, we conclude, exactly similarly as in [4], pp. 95-96, that u is

a weak solution to (1.3) and (1.4).
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6 – Appendix

In this section we prove Lemma 4.12. We use the same notations as

in the proof of Lemma 4.11.

Proof of Lemma 4.12. Take a cylinder Qr,τ ⊂ Qr0 of vertex at

origin and positive numbers σ1, σ2, 0 < σ1, σ2 < 1. Let η ∈ C1
0(Br) be

η = 1 in B(1−σ1)r with |Dη| ≤ 2/(σ1r) and σ ∈ C1
0((−τ, 0]) be σ = 1

in (−(1 − σ2)τ, 0] with @tσ ≤ 2/(σ2τ). For positive numbers l, ≤, 0 <

≤+ l < min{σ2, 1− σ2}, we define σ≤l ∈ C1
0((−τ + ≤,−≤)) to be σ≤l = 1 in

(−(1−σ2)τ,−≤− l). Let us denote the regularization on time variable by

dh f(t) =
1

h

Z t+h

h

f(τ)dτ , dhf(t) =
1

h

Z t

t−h

f(τ)dτ .

For an arbitrary small number h, 0 < h < ≤, we substitute a valid test

function φ = d̄h (η2σ≤l (dhē(v))a) with a > 0 into (4.32) and, similarly as

in the proof of Lemma 3.7, we let h tend to zero and then l, ≤ to zero in

the resulting inequality to have, with ē = ē(v),

(6.1)

1

a + 1

Z

Br×{t=0}
ēa+1η2dM − 1

2

Z

Qr,τ

ēa+1η2@tσdMdt+

+

Z

Qr,τ

≥
gα∞F (V )+H(V )

gαβg∞∞̄Dβv · D∞̄v
|Dv|2

¥
D∞ ēDα(ē

aη2σ)dMdt+

+ ∞̃

Z

Qr,τ

ση2ēaF (V )
≥
2F (V )gαβg∞∞̄D∞Dβv · D∞̄Dαv+

+
1

2
H(V )

g∞∞̄D∞|Dv|2D∞̄|Dv|2
|Dv|2

¥
dMdt+

+ eCk̃2

Z

Qr,τ

ση2ēa
ØØØdχ
du

ØØØ
2

dMdt ≤

≤ ∞
Z

Qr,τ

ση2ēa(min{V p−2, 1})2|Dv|2
≥ 1

ẽ0

+ |Dv|2
¥
dMdt .

We make estimation of each term in both hand side of (6.1). First we

deal with the left hand side. By (2.7) with P = Du, Q = Dē and

Schwarz’s and Young’s inequality, the integrated function in the third

term is bounded below by

(6.2)
∞

2
min{V p−2, 1}ēa−1|Dē|2η2 + 8∞min{V p−2, 1}ēa+1|Dη|2 .
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Similarly, the fourth term is estimated below by

(6.3) ∞(min{V p−2, 1})2|D2v|2ēa .

Since, by our assumption r0 > 1,

(6.4)
1√
ẽ0

< ρ0 < 1 ,

we have, by (2.2) and (4.31),

(6.5) ēa(min{V p−2, 1})2|Dv|2
≥ 1

ẽ0

+ |Dv|2
¥
≤ p 41− 2

p (1 + 4p)ē a+ 2
p .

A substitution of (6.2)-(6.5) into (6.1) gives

(6.6)

1

a + 1

Z

Br×{t=0}
ēa+1η2dM+

+
∞

2

Z

Qr,τ

min{V p−2, 1}ēa−1|Dē|2η2σdMdt+

+ ∞̃

Z

Qr,τ

ση2ēa
≥
∞(min{V p−2, 1})2|D2v|2 + eCk̃2

ØØØdχ
du

ØØØ
2¥

dMdt ≤

≤ 1

a+1

Z

Qr,τ

ēa+1η2@tσdMdt+∞

Z

Qr,τ

σ
°|Dη|2ēa+1+η2ēa+ 2

p
¢
dMdt .

Here choose the cutoff function σ with suppσ ⊂ (−τ, t̄ ] for each t̄, −(1−
σ2)τ ≤ t̄ ≤ 0, to have the inequality (6.6) with replacing 0 by t̄. We set

w = ē(v). By Hölder’s and Sobolev’s inequality (see [21], (3.4), p. 75;

also refer to [7], [8], pp. 232-233), we have, for any δ > 0,

(6.7)

Z

Qr,(1−σ2)τ

η2(1+ 2
m)wδ+a+2− 2

p dMdt ≤

≤
Z 0

−(1−σ2)τ

≥ Z

{t}×Br

°
η2wa+2− 2

p
¢ m

m−2 dM
¥m−2

m ×

×
≥ Z

{t}×Br

η2w
δm
2 dM

¥ 2
m

dt ≤

≤ ∞(m)

Z

Qr,(1−σ2)τ

ØØØD
°
ηw

a
2 +1− 1

p
¢ØØØ

2

dMdt×

×
≥

sup
−(1−σ2)τ≤t≤0

Z

{t}×Br

η2w
δm
2 dM

¥ 2
m

.
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Noting that, by (2.2), (4.31) and (6.4),

ØØDw
a
2 +1− 1

p
ØØ2 ≤ 23− 4

p p
≥a

2
+ 1− 1

p

¥2

wa
≥°

min{V p−2, 1}¢2
ØØD2v

ØØ2 + k̃2
ØØØdχ
dv

ØØØ
2¥

and applying (6.6) with a + 1 = δm/2 for the resulting inequality, we

have

(6.8)

Z

Q(1−σ1)r,(1−σ2)τ

wδ+a+2− 2
p dMdt ≤

≤ ∞(p)(1 + a)2
≥ Z

Qr,τ

wa+ 2
p (1 + |Dη|2 + @tσ)dMdt

¥1+ 2
m

.

Let us define the sequence {ai}, i = 0, 1, 2, · · · , by the relation





ai+1 = δ + a + 2− 2

p

ai = a +
2

p
.

Then, for initial value a0 > 2/p,

ai + A =
≥
1 +

2

m

¥i

(a0 + A), A = (m + 1)
≥
1− 2

p

¥

and we also define sequences {ri} and {τi}, i = 0, 1, 2, · · · , by

(6.9) ri =
1

2
(1 + 2−i), τi = r2

i .

In (6.8), we choose Q(1−σ1)r,(1−σ2)τ = Qri+1,τi+1
and Qr,τ = Qri,τi and

make routine calculation to have

(6.10)

1

|Qri+1,τi+1
|

Z

Qri+1,τi+1

wai+1dMdt ≤

≤ ∞(m,p)a2
i 2

i∞(m)
≥ 1

|Qri,τi |

Z

Qri,τi

waidMdt
¥1+ 2

m
.

By Moser’s iteration, we obtain, from (6.10) and a0 > 2/p,

(6.11) sup
Q1/2

w ≤ ∞(m,p)
≥ 1

|Q1|

Z

Q1

wa0dMdt
¥ 1

a0+A
.
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Inst. Henri Poincaré, 7 (1990), 385-405.

[13] M. Feldman: Partial regularity for harmonic maps of evolution into spheres,
Comm. Partial Differential Equations, 19 no. 5-6 (1994), 761-790.

[14] M. Fuchs: p-Harmonic obstacle problems, Part I: Partial regularity theory, An-
nali Mat. Pura Appl (IV), CLVI (1990), 127-158.



[35] Existence and partial regularity results etc. 351

[15] M. Giaquinta – E, Giusti: On the regularity of the minima of variational inte-
grals, Acta Math., 148 (1982), 31-46.

[16] R. Hardt – F.-H. Lin: Mappings minimizing the Lp norm of the gradient, Com-
mun. Pure and Appl. Math., 40 (1987), 555-588.

[17] N. Hungerbühler: Compactness properties of the p-harmonic flow into homo-
geneous spaces, Nonlinear Anal., 28/5 (1997), 793-798.

[18] N. Hungerbühler: Global weak solutions of the p-harmonic flow into homoge-
neous spaces, Indiana Univ. Math. J., 45/1 (1996), 275-288.

[19] N. Hungerbühler: Non-uniqueness for the p-harmonic flow , Canad. Math.
Bull., 40/2 (1997), 793-798.

[20] N. Hungerbühler: m-harmonic flow , Ann. Scuola Norm. Sup. Pisa Cl. Sci.,
(4) 24 (1998), no 4, 593-631.

[21] O. A. Ladyzhenskaya – V. A. Solonnikov – N. N. Ural’tzeva: Linear and
quasilinear equations of parabolic type, Transl. Math. Monogr., 23 AMS Provi-
dence R-I (1968).

[22] R. Schoen: Analytic aspects of the harmonic map problem, Publ.M.S.R.I., 2
(1984), 321-358.

[23] R. Schoen – K. Uhlenbeck: A regularity theory for harmonic maps, J. Differ.
Geom., 17 (1982), 307-336.

[24] M. Struwe: On the evolution of harmonic maps in higher dimensions, J. Differ.
Geom., 28 (1988), 485-502.

[25] P. Tolksdorf: Everywhere-regularity for some quasilinear systems with a lack
of ellipticity, Annali. Mat. pura appl., 134 (1983), 241-266.

[26] K. Uhlenbeck: Regularity for a class of nonlinear elliptic systems, Acta Math.,
138 (1970), 219-240.

Lavoro pervenuto alla redazione il 14 luglio 1998
ed accettato per la pubblicazione il 1 giugno 1999.

Bozze licenziate il 22 ottobre 1999

INDIRIZZO DELL’AUTORE:

M. Misawa – Department of Computer Science and Information Mathematics – Faculty of
Electro-Communications – The University of Electro-Communications – 1-5-1, Choufugaoka,
Choufushi, 182-8585 Tokyo, Japan
E-mail: misawa@im.uec.ac.jp

This research was supported by the Grant-in-Aid for Encouragement of Young Scien-
tists No. 08740091 at the Ministry of Educations, Science, Sports and Culture. The
result of this paper was reported in the Symposium “Variational Problems and related
topics” in Kyoto Univ., Research Institute for Mathematical Sciences at November
1996.


