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Weak solution to evolution problems of

harmonic maps from noncompact manifolds

A. TACHIKAWA

Riassunto: In questo lavoro, si costruisce una soluzione debole per la equazione
di tipo termico delle mappe armoniche da una varietà non-compatta fino a una sfera,
usando il metodo dei movimenti minimizzanti con l’aiuto della energia relativa.

Abstract: In this paper we construct a weak solution for the heat-type equation
of harmonic maps from a noncompact manifold into a sphere using the so-called mini-
mizing movement method with the aid of the relative energy.

1 – Introduction

This paper is concerned with weak solutions to the evolution prob-

lems of harmonic maps from noncompact Riemannian manifolds into

spheres.

To construct solutions for differential equations with time-variable,

Rothe’s time-discretization method has been used in various context. In

1971, Rektorys [18] combined the time-discretization method and the

direct method of calculus of variations to construct solutions of parabolic

equations. Roughly speaking, their method is summarized as follows. For

Key Words and Phrases: Harmonic map – Eells-Sampson equation – Weak solution
– Minimizing movement.
A.M.S. Classification: 58E20 – 35D05
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the equation

(1.1)
@u

@t
−
≥
the Euler-Lagrange equation of

Z

≠

f(x, u,Du)dµ
¥

= 0 ,

they consider the auxiliary variational functionals

(1.2) Gn(u) =

Z

≠

n |u− un−1|2
h

+ f(x, u,Du)
o
dµ ,

and define un successively as a minimizer of Gn(u). Using the sequence

{un}, they construct approximate solutions and prove that the approxi-

mate solutions converge to a solution of (1.1) as h→ 0. In [18] existence

of weak solutions of linear parabolic equations was proved.

The method mentioned above was rediscovered by Kikuchi [12].

In [12] parabolic systems associated to the certain variational functionals

are studied. Recently, such methods are used for many problems: evo-

lution problems of harmonic maps, Navier-Stokes equations ([14]), semi-

linear hyperbolic systems ([15], [16], [17], [21]), etc. For evolution prob-

lems of harmonic maps into spheres, weak solutions were constructed by

Bethuel-Coron-Ghidaglia-Soyeur [2] on cylindrical domains, and

by the author [22] on non-cylindrical domains.

On the other hand, in [7], De Giorgi introduced a new concept of

minimizing movement. Let us see his definition in [7].

Definition 1.1 (De Giorgi). Let S be a topological space. Let F :

((1,+1)×ZZ×S×S)→ IR and u : IR→ S; we say that u is a generalized

minimizing movement associated to F, S, and we write u ∈ GMM(F, S),

if there exists a sequence {∏i}i∈IN such that lim∏i = +1 and a sequence

{wi}i∈IN of functions wi : ZZ→ S such that for any t ∈ IR

lim
i→+1

wi([∏it]) = u(t)

and for any i ∈ IN, k ∈ ZZ

F (∏i, k, wi(k + 1), wi(k)) = min
s∈S

F (∏i, k, s, wi(k)) .

If we set

F (∏, k, u, v) =

Z

≠

©
∏|u− v|2 + f(x, u,Du)

™
dx ,
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we can see that Gn of (1.2) corresponds to F in Definition 1.1. Moreover,

for a suitable choice of S, u ∈ GMM(F, S) will be a solution of (1.1) in

some sense.

De Giorgi’s minimizing movement provides new fields of vision for cal-

culus of variations and differential equations. Especially, in [1] and [10],

we can find remarkable use of minimizing movements combined with the

geometric measure theory. See also [11] in which abstract evolution equa-

tions on non-cylindrical domain are treated.

Now, let us consider evolution problems of harmonic maps.

Let M = (Mm, g) be a smooth Riemannian m-manifold and Sn−1

a sphere {u : u ∈ IRn, |u| = 1} ⊂ IRn. Throughout this paper, x =

(x1, . . . , xm) denotes a local coordinate system on M , (gαβ(x)) a met-

ric tensor with respect to the coordinates (xα)1≤α≤m and (gαβ(x)) =

(gαβ(x))−1. For C1-map u = (u1(x), . . . , un(x)) : ≠ → Sn−1 ⊂ IRn, the

energy density e(u)(x) of u at x ∈M is defined as

e(u)(x) =
1

2
kDu(x)k2 =

1

2
gαβ(x)Dαu(x) · Dβu(x) ,

where “ · ” denotes the inner product of IRn. For a bounded domain ≠,

the energy of u on ≠ is given by

(1.3) E(u; ≠) =

Z

≠

e(u)dµ ,

where dµ =
q

det(gαβ)(x)dx stands for the volume element of M The

Euler-Lagrange equation of the energy functional E is given by

(1.4) ∆
M

ui + uikDuk2 = 0 in ≠ for i = 1, . . . , n .

Here and in the sequel, ∆
M

denotes the Laplace-Beltrami operator of M .

Moreover, we denote by τ(u) the left-hand side of the above equation,

and call it the tension field of u. A (weak) solution of (1.4) is called a

(weakly) harmonic map.

We consider the following equation on a noncompact Riemannian

manifold M :

(1.5)
@u

@t
−∆

M
u− ukDuk2 = 0
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which is associated to evolution problems of harmonic maps into spheres.

For the case that the source manifold M is a compact manifold without

boundary, Chen [4] constructed weak solutions of (1.5) using penalty

method and Galerkin’s method. The result of [4] was generalized by

Chen-Struwe [5] to arbitrary compact target manifold. Moreover,

in [5], partial regularity of the weak solutions is also shown. For the case

that M has nonempty boundary, see [6]. On the other hand, as men-

tioned before, in [2] and in [22] weak solutions of (1.5) are constructed

by the method which we will employ in this paper.

For the case that the sectional curvatures of the target manifold are

nonpositive, the evolution problem of harmonic map is firstly considered

by Eells-Sampson [9]. Therefore the evolution equation of harmonic

maps are called as Eells-Sampson equations, and (1.5) is a special case

of Eells-Sampson equations. For a target manifold with nonpositive sec-

tional curvatures, Li-Tam [13] proved the existence of the unique smooth

solution for Eells-Sampson equation on a noncompact complete manifold

whose Ricci curvature are bounded below by a negative constant.

In this paper, Hk,l(M, IRn) and Hk,l
loc(M, IRn) denote the standard

Sobolev spaces of IRn-valued maps defined on M . Hk,l
0 (M, IRn) stands

for the closure of C1
0 (M, IRn) in Hk,l(M, IRn).

In order to construct weak solutions of (1.5) on the noncompact man-

ifold M using the minimizing movement method, we have to consider

variational problems on noncompact domains. Therefore, in general, we

should seek locally minimizing maps which have infinite total energies.

To find locally energy minimizing weakly harmonic maps on noncom-

pact manifolds, Ding [8] introduced a new concept of relative energy Ew

with respect to a given map w ∈ C2. The relative energy is defined for

u ∈ Yw = {v ∈ H1,2
loc (M,Sn−1); v − w ∈ H1,2

0 (M, IRn)} as follows:

Ew(u) =
1

2

Z

M

kD(u− w)k2 dµ−
Z

∆
M

w · udµ .

For the case that w has finite total energy, u ∈ Yw also has finite energy

and Ew(u) is nothing other than the difference of the energies of u and

w, E(u;M)− E(w;M). Therefore a Ew-minimizer minimizes E also, and

so it will be weakly harmonic. On the other hand, Ew(u) is well-defined

for some class of w with infinite total energy. Thus, we can find weakly

harmonic maps with infinite total energy.
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Now, let us state our main result.

Theorem 1.2. Let M = (Mm, g) be a complete Riemannian man-

ifold. Assume that the spectrum of the Laplace-Beltrami operator ∆
M

of M has a positive infimum ∏(M) > 0, and that w ∈ H2,2
loc (M,Sn−1)

satisfies

lim
R→1

kDwkL1(M\BR(p0)) → 0 for some fixed p0 ∈M(1.6)

|τ(w)| ∈ L2(M) .(1.7)

Then, for any u0 ∈ {u ∈ H1,2
loc (M,Sn−1);u − w ∈ H1,2

0 (M, IRn)}, there

exist a weak solution u(x, t) of (1.5) which satisfies the conditions

u(x, 0) = u0(x) for x ∈M,(1.8)

u(x, t)− w(x) ∈ H1,2
0 (M, IRn) for all t > 0 .(1.9)

Remark. If M is a simply connected complete manifold whose sec-

tional curvatures are bounded below and above by two negative constants,

then the assumption ∏(M) > 0 is satisfied. Moreover, for such a case, we

can define the geometric boundary S(1) of M , and the condition (1.9)

can be considered as a boundary condition at infinity, u(x, t) = w(x) on

S(1).

2 – Construction of weak solutions

Assume that w∈H1,2
loc (M,Sn−1) satisfies the conditions (1.6) and (1.7).

Let us define the following subsets of H1,2
0 (M, IRn):

H1,2
loc (M,Sn−1) = {u ∈ H1,2

loc (M, IRn) ; |u(x)| = 1 a.e. x ∈M},
Xw = {f ∈ H1,2

0 (M, IRn) ; f + w ∈ H1,2
loc (M,Sn−1)},

Yw = {u ∈ H1,2
loc (M,Sn−1) ; u− w ∈ H1,2

0 (M, IRn)} .

We consider a functional Fw : (0, 1)×Xw ×Xw → IR defined as

(2.1) Fw(h, f, g) =

Z

M

n |f − g|2
2h

+
1

2
kDfk2 −∆

M
w · f

o
dµ ,
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where dµ stand for the volume element on M . Given g ∈ Xw, because of

Lemma 2.2, eFw is well-defined and coercive for f ∈ Xw.

For u ∈ Yw, we have u−w ∈ Xw. Therefore we can define a functional
eFw : (0, 1)× Yw × Yw → IR by

(2.2) eFw(h, u, v) = Fw(h, u− w, v − w) .

Moreover, for v, u ∈ Yw and ≠ ⊂⊂M , put

Fw(h, u, v,≠) =

Z

≠

n |u− v|2
2h

+
1

2
kDuk2

o
dµ .

Then, it is easy to see that for v, u ∈ Yw and √ ∈ C1
0 (M, IRn) with

spt√ ⊂ ≠

(2.4)
eFw(h, u + √, v)− eFw(h, u, v) =

=Fw(h, u + √, v,≠)−Fw(h, u, v,≠) .

On the other hand, given v ∈ Yw, u ∈ Yw minimizes eFw(h, ·, v) if and only

if u−w minimizes Fw(h, ·, v−w). Therefore, if u−w minimizes Fw(h, ·, v),

then u is a local minimizer of Fw and satisfies the Euler-Lagrange equation

of Fw. Thus we have the following lemma.

Lemma 2.1. Let v ∈ Yw, h > 0 be given. If f ∈ Xw is a minimizer

of Fw(h, ·, v − w), then u = f + w satisfies

(2.5)

Z

spt√

nu− v

h
· √ − 1

2h
|u− v|2u · √+

+ gαβDαu · Dβ√ − kDuk2u · √
o
dµ = 0 ,

for all √ ∈ C1
0 (M, IRn).

Proceeding as in [8], we can prove the coercivity of Fw.

Lemma 2.2. Assume that the spectrum of the Laplace-Beltrami

operator of M has a positive infimum ∏(M), and that w ∈ H2,2
loc (M,Sn−1)
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satisfies (1.6) and (1.7). Then there exist positive constants C0, C1, C2

and C3 depending only on ∏(M) and w such that

(2.6)

Z

M

≥ |f − g|2
2h

+ C0kDfk2 + C1

¥
dµ ≥

≥ Fw(h, f, g) ≥
Z

M

≥ |f − g|2
2h

+ C2kDfk2 − C3

¥
dµ

for all g, f ∈ Xw.

Proof. It is enough to estimate the term
R

M ∆
M

w · fdµ. We have

(2.7)

Z

M

∆
M

w · fdµ =

Z

M

τ(w) · fdµ−
Z

M

wkDwk2 · fdµ .

Since the assumption on the spectrum of ∆
M

means that

(2.8) ∏(M)kfk2L2(M) ≤ kDfk2L2(M) for all f ∈ C1
0 (M) ,

we can estimate the first term of the right hand side of (2.7) as

(2.9)

Z

M

τ(w) · fdµ ≤ kτ(w)kL2(M)kfkL2(M) ≤

≤ ∏− 1
2 kτ(w)kL2(M)kDfkL2(M) .

About the second term of (2.7), using the relation |w|2 = |w + f |2 = 1,

we have

(2.10) |w · f | =
1

2

ØØ|w + f |2 − |w|2 − |f |2
ØØ =

1

2
|f |2 ≤ 1 .

Therefore, we obtain

(2.11)

Z

M

ØØwkDwk2 · f
ØØ dµ =

1

2

Z

M

kDwk2|f |2dµ ≤

≤ 1

2

Z

M\BR

kDwk2|f |2dµ +
1

2

Z

BR

kDwk2|f |2dµ ≤

≤ 1

2
ε(R)

Z

M\BR

|f |2dµ +
1

2

Z

BR

kDwk2|f |2dµ ≤

≤ 1

2
ε(R)

Z

M\BR

|f |2dµ + C(R) ,
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where ε(R) = kDwk2L1(M\BR) and C(R) =
R

BR
kDwk2dµ. From (2.7),

(2.8), (2.9) and (2.11) we get

(2.12)

Z

M

|∆
M

w · f | dµ ≤ 1

2
ε(R)∏−1(M)kDfk2L2+

+ ∏− 1
2 (M)kDfkL2 + C(R) .

Now, because of the assumption (1.6) on w, we can choose R > 0 so that

ε(R) is sufficiently small in (2.12). Thus we get (2.6).

As mentioned in [8], the estimates for
R
∆

M
w · fdµ imply the lower

semi-continuity of Fw.

Lemma 2.3. Let w be as in Lemma 2.2. Then for any g ∈ Xw,

Fw(h, ·, g) is lower semi-continuous with respect to the weak topology

in Xw.

Proof. For a given f ∈ Xw, take a sequence {fk} ⊂ H1,2
0 (M, IRn)

such that

f(x) + w(x) + fk(x) ∈ Sn−1 for a.e. x ∈M(2.13)

fk → 0 weakly in H1,2(M, IRn) .(2.14)

It is enough to show that

(2.15)

Z
|∆

M
w · fk|dµ→ 0 as k →1 .

Putting supk kfkkH1,2 = K and proceeding as in (2.11), we can see

that

(2.16)

Z

M

ØØwkDwk2 · fk

ØØ dµ ≤ 1

2
ε(R)K +

1

2

Z

BR

kDwk2|fk|2dµ .

By taking R to be large enough, we can take the first term to be arbitrarily

small. Let us see that the second term tends to 0. Using Rellich’s com-

pactness theorem on BR, we can see that fk → 0 strongly in L2(BR, IRn),

and hence fk(x)→ 0 for almost every x ∈ BR. On the other hand, (2.13)
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implies that |f | < 2. Therefore, we can use Lebesgue’s convergence the-

orem to see that
R

BR
kDwk2|fk|2dµ→ 0 as n→1 for any R > 0. Thus,

we obtain

(2.17)

Z

M

ØØwkDwk2 · fk

ØØ dµ→ 0 as k →1 .

Using (2.7), (2.17) and the assumption (1.7), we get (2.15).

Lemmas 2.2 and 2.3 guarantee the existence of minimizers of Fw(h,·, g)
in the class Xw. Thus, given fh

0 = f0 ∈ Xw, we can define fh
k ∈ Xw for

k ≥ 1 successively by

(2.18) Fw(h, fh
k , fh

k−1) = min
f∈Xw

Fw(h, f, fh
k−1) .

Proposition 2.4. Let M and w be as in Theorem 1.2, and let f0 be

in the class Xw. Then, for {fh
k } defined by (2.18), we have the following

energy-type estimate:

(2.19)

NX

k=1

Z

M

1

2h

ØØfh
k − fh

k−1

ØØ2 dµ +

Z

M

1

2

∞∞Dfh
N

∞∞2
dµ ≤

≤ C(M,w, f0) for all N ∈ IN .

Proof. Since fh
k is a minimizer, we have Fw(h, fh

k , fh
k−1) ≤ Fw

(h, fh
k−1, f

h
k−1) and so

(2.20)

Z

M

h 1

2h

ØØfh
k − fh

k−1

ØØ2 +
1

2

∞∞Dfh
k

∞∞2 −∆
M

w · fh
k

i
dµ ≤

≤
Z

M

h1
2

∞∞Dfh
k−1

∞∞2 −∆
M

w · fh
k−1

i
dµ .

Summing up the above estimate from k = 1 to N , we get

(2.21)

NX

k=1

Z

M

|fh
k − fh

k−1|2
2h

dµ +

Z

M

n1

2
kDfh

k k2 −∆
M

w · fh
k

o
dµ ≤

≤
Z

M

n1

2
kDf0k2 −∆

M
w · f0

o
dµ .

Now, taking into account (2.12), we can deduce (2.19) from (2.21).
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Now, using Proposition 2.4, we can prove our main theorem.

Proof of Theorem 1.2. Let M , w and u0 as in Theorem 1.2. Put

f0 = u0 − w, and define fh
k by (2.18) successively.

Let us define

(2.22)





f̄h(x, t) =

(
f0(x) for t = 0 ,

fh
k (x) for(k − 1)h < t ≤ kh, k ≥ 1 ,

fh(x, t) =
t− (k − 1)h

h
fh

k (x) +
kh− t

h
fh

k−1(x)

for (k − 1)h < t ≤ kh, k ≥ 1.

Then Proposition 2.4 gives us the following energy estimate.

(2.23)

Z T

0

Z

M

1

2
kDtfhk2 dµdt ≤ C(w, u0,M) for all T > 0 .

From the above estimate we can deduce that

(2.24)
fh→f weakly in H1,2(M × (0, T ), IRn) ,

f̄h→ f̄ weakly in L2(M×(0, T ), IRn) and L1((0, T );H1,2
0 (M, IRn)),

for some f ∈ H1,2((0, T ) ×M, IRn) and f̄ ∈ L1((0, T ) × H1,2
0 (M, IRn).

Moreover, as in [22], the estimate (2.23) implies that f = f̄ . In fact

(2.25)

Z T

0

Z

M

|fh−f̄h|2dµdt ≤
Z T

0

Z

M

h2 kDtfhk2 dµdt ≤ h2TC →0 as h→0.

Using Rellich’s compactness theorem for fh on every ≠ ⊂⊂M and taking

into account (2.25), we can see

(2.26) fh, f̄h → f strongly in L2(≠× (0, T )) ∀≠ ⊂⊂M .

Now, put
uh

k = fh
k + w, uh = fh + w ,

ūh = f̄h + w u = f + w .

Then, (2.24) and (2.26) imply that

(2.27)

uh → u weakly in H1,2(M × (0, T ), IRn) ,

ūh → u weakly in L1((0, T )×H1,2(M, IRn))

uh, ūh → u strongly in L2(≠× (0, T )) ∀≠ ⊂⊂M .
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We can also see that since f ∈ L1((0, T )×H1,2
0 (M, IRn)),

u ∈ L1((0, T )× Yw) .

On the other hand, by Lemma 2.1 we have

Z

spt√

huh
k − uh

k−1

h
· √ − 1

2h
|uh

k − uh
k−1|2uh

k · √+

+ gαβDαu
h
k · Dβ√ − kDuh

kk2u · √
i
dµ = 0

for all √ ∈ C1
0 (M, IRn), and therefore

Z T

0

Z

spt√

h
Dtuh(x, t) · √(x)− h

2
kDtuh(x, t)k2ūh(x, t)√(x)+

+ gαβ(x)Dαūh(x, t) · Dβ√(x)+

− kDūh(x, t)k2ūh(x, t) · √(x)
i
η(t)dµdt = 0

for all √ ∈ C1
0 (M, IRn) and η ∈ C1

0 (0, T ). Since the set of all finite linear

combinations of maps of the form √(x)η(t) is dense in H1,2
0 (M × (0, T )),

we get

(2.29)

Z T

0

Z

M

h
Dtuh · ϕ(x, t)− h

2
kDtuhk2ūhϕ(x, t)+

+ gαβDαūh · Dβϕ(x, t)− kDūhk2ūh · ϕ(x, t)
i
dµdt = 0

for all ϕ ∈ C1
0 (M × (0, T )). By completion, (2.29) holds for any ϕ ∈

H1,2
0 ∩L1(≠× (0, T )) for every ≠ ⊂⊂M . Taking ϕi = ūj

hΦij for (Φij) ∈
C1

0 (M × (0, T ), IRn2

) with Φij = −Φji, we obtain

(2.30)

Z T

0

Z

M

[Dtu
i
hūj

hΦij + Dαū
i
hDβΦijū

j
h]dµdt = 0 .

Now, letting h→ 0 in (2.30) and taking subsequence if necessary, we get

(2.31)

Z T

0

Z

M

[Dtu
iujΦij + gαβDαu

iujDβΦij]dµdt = 0
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for all (Φij) ∈ C1
0 (M × (0, T ), IRn2

) with Φij = −Φji (2.31) tells us that

u(x, t) satisfies

Dtu ∧ u− 1√
g
Dβ

°√
ggαβDαu ∧ u

¢
= 0

weakly. Consequently, using the argument in [4] or [20] which is familiar

to us now, we conclude that u is a weak solution of the equation

Dtu−∆
M

u− ukDuk2 = 0 .

Since uh(x, 0) = u0(x) for all h > 0 and x ∈ M , we have u(x, 0) =

u0(x) by the continuity of trace operator. Moreover, (2.23) implies that

(2.32) f̄h(·, t)→ f̃t(·) weakly in H1,2(M, IRn) for every t ,

for some f̃t ∈ H1,2
0 (M, IRn). Using Rellich’s theorem, we can see that f̄h

converges to f̃t strongly in L2(≠, IRn) for any ≠ ⊂⊂ M . On the other

hand, (2.26) implies that f̃h(·, t) converges to f(·, t) strongly in L2(≠)

for almost all t. Therefore, in the Sobolev spaces, it is not necessary to

distinguish f(x, t) from f̃t(x). Thus, we can say that u(·, x) − w(·) =

f(·, t) = f̃t(·) ∈ H1,2
0 (M, IRn) for every t.

Remark. The last part of the above proof shows also that

fh
[t/h]+1(x) = f̄h(·, t)→ f(·, t) weakly in H1,2(M, IRn) for every t .

Therefore, if we extend f(x, t) for t < 0 by f0, f(x, t) is a generalized

minimizing movement associated to

F (∏, k, f, g) =





Fw

≥1

∏
, f, g

¥
for k ≥ 1,

Z

M

|f − f0|2dµ for k < 0 ,

and S = Xw with the weak H1,2-topology.
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