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The skew derivative problem for the

Helmholtz equation outside cuts in a plane

P.A. KRUTITSKII

Riassunto: Si studia l’equazione di Helmholtz nel piano con tagli usando la teoria
del potenziale ed il metodo delle equazioni integrali al contorno. Il problema è riportato
ad una equazione integrale singolare di Cauchy e quindi ad una equazione di Fredholm
di seconda specie. Sono discusse le applicazioni alla diffrazione delle onde lunghe ocea-
niche.

Abstract: The skew derivative problem for the propagative Helmholtz equation
outside cuts in a plane is studied by potential theory and the boundary integral equation
method. The problem is reduced to the Cauchy singular integral equation and then to the
Fredholm integral equation of the second kind, which is uniquely solvable. Applications
to the diffraction of long ocean waves are discussed.

1 – Introduction

In the present paper we study the skew derivative problem for the 2-D

Helmholtz equation outside cuts in a plane. The skew derivative prob-

lems for an open boundary are too complicated to be effectively studied

by a classical approach, while Dirichlet and Neumann problems were ac-

tively studied [4], [5], [8], [16], [17], [18], [24], [25], [28], [29]. To solve

the 2-D skew derivative problem outside cuts by a classical approach, we
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must look for a solution of this problem by a linear combination of single

and double layer potentials, because the problem can not be solved by

only one of them. In this way we arrive at a very complicated system

of boundary integro-differential equations. The system contains hyper-

singular integrals, Cauchy singular integrals, compact operators and the

derivative of the densitiy of the double-layer potential. Clearly, the sys-

tem is too complicated to be studied by standard methods. The basic

lack of the classical approach is so, that single and double layer potentials

have different orders of singularities at the boundary. In the present pa-

per we suggest to solve the 2-D skew derivative problem outside cuts in

another way, namely, with the help of the nonclassical angular potential,

which has the same order of singularity as a single layer potential [6], [10],

[11], [12], [13], [14]. Looking for a solution of the problem as a sum of

angular and single layer potentials, we reduce the problem to a Cauchy

singular integral equation with some additional conditions. By inversion

of Cauchy singular operator, we obtain the uniquely solvable Fredholm

equation of the second kind. Therefore the solution of the problem can

be computed by standard codes.

The skew derivative problem for the 2-D Helmholtz equation models

scattering long ocean waves by islands. The corresponding mathematical

model takes into account daily rotation of the earth [15], [20], [22], [23].

Without rotation the skew derivative boundary condition transforms to

the Neumann boundary condition. The model of long ocean waves on the

rotating earth is appropriate for the description of the dynamics of any

waves, which period can not be neglected in comparison with the period

of daily rotation of the earth. The most important type of such waves are

tidal waves. So, traditionally any long ocean waves on the rotating earth

are called tidal waves, even if they are not caused by the moon [15], [23].

Free tidal waves in the elliptic lake and scattering tidal waves by an

elliptic island are studied in [9], [19], [21]. Scattering tidal waves by a

wavebreaker in the form of a half-line or two half-lines was treated in [2],

[3]. General properties of tidal waves are discussed in [15], [20], [22], [23].

The skew derivative problem outside cuts in a plane, studied in the

present paper, can be used to model diffraction of tidal waves by spits

and reefs of an arbitrary shape.

Our results can be used for mathematical modeling in marine engi-

neering, ecology and environmental sciences.
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The skew derivative problem for an open boundary is different from

the skew derivative problem for a closed boundary. In many cases the

skew derivative problem for a closed boundary can be reduced to the

Cauchy singular integral equation by means of only one single layer po-

tential. In view of this, the skew derivative problem for a closed boundary

was thoroughly studied unlike open boundary, where the classical ap-

proach leads to the system of hypersingular integro-differential equations

as noted above.

2 – Formulation of the problem

By a simple open curve we mean a smooth nonclosed arc without

self-intersections [17].

In the plane x = (x1, x2) ∈ R2 we consider simple open curves

Γ1, . . . ,ΓN ∈ C2,∏, ∏ ∈ (0, 1], so that they do not have points in common.

We put

Γ =
N[

n=1

Γn .

We assume that each curve Γn is parametrized by the arc length s:

Γn = {x : x = x(s) = (x1(s), x2(s)), s ∈ [an, bn]}, n = 1, . . . , N ,

so that a1 < b1 < . . . < aN < bN . Therefore points x ∈ Γ and values of

the parameter s are in one-to-one correspondence. Below the set of the

intervals on the Os axis
N[

n=1

[an, bn]

will be denoted by Γ also.

The tangent vector to Γ at the point x(s) we denote by τx = (cosα(s),

sinα(s)), where cosα(s) = x0
1(s), sinα(s) = x0

2(s). Let nx = (sinα(s),

− cosα(s)) be a normal vector to Γ at x(s). The direction of nx is cho-

sen such that it will coincide with the direction of τx if nx is rotated

anticlockwise through an angle of π/2.

We consider Γ as a set of cuts. The side of Γ which is on the left,

when the parameter s increases, will be denoted by Γ+, and the opposite

side will be denoted by Γ−.
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We say, that the function u(x) belongs to the smoothness class K if

1) u ∈ C0(R2\Γ) ∩ C2(R2\Γ), and u is continuous at the ends of Γ,

2) ∇u ∈ C0(R2\Γ\X), where X is a point-set, consisting of the end-

points of Γ :

X =
N[

n=1

(x(an) ∪ x(bn)) ,

3) in the neighbourhood of any point x(d) ∈ X for some constants

C > 0, ≤ > −1 the inequality holds

(1) |∇u| ≤ C|x− x(d)|≤ ,

where x→ x(d) and d = an or d = bn, n = 1, . . . , N .

Remark. In the definition of the class K we consider Γ as a set of

cuts. In particular, by C0(R2\Γ) we denote a class of functions, which

are continuously extended on Γ from the left and right, but their values

on Γ from the left and right can be different, so that the functions may

have a jump across Γ.

Let us formulate the oblique derivative problem for the Helmholtz

equation in R2\Γ.

Problem U. To find a function u(x), which belongs to the class K,

satisfies the Helmholtz equation

(2a) ∆u(x) + k2u(x) = 0 , x ∈ R2\Γ ; ∆ = @2
x1

+ @2
x2

, k = Re k > 0 ,

satisfies the boundary condition

(2b)
≥ @

@nx

u(x(s)) + β
@

@τx
u(x(s))

¥ØØØ
x(s)∈Γ±

= F±(s)

and meets the conditions at infinity. With respect to the constant β we

suppose that Reβ = 0 and β = i c, where c is a real number. In addition,

we require the radiation conditions at infinity

(2c) u = O(|x|−1/2),
@u

@|x| − iku = o(|x|−1/2), |x| =
q

x2
1 + x2

2 →1 .

All conditions of the problem U must be satisfied in the classical sense.
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The Neumann problem for the Helmholtz equation in the exterior of

cuts [11] is a particular case of our problem when β = 0.

The problem U describes scattering long ocean waves, in particular,

tidal waves by spits and reefs. In this model [15], [20], [22], [23]

k2 =
σ2 − 4ω

gh
, β = i

2ω

σ
,

where g is the gravity acceleration, h is the depth of the fluid layer (for

example, ocean) supposed uniform, σ is the frequency of forced oscilla-

tions, ω is the earth’s angular velocity of daily rotation. The function

u(x) enables to find basic parameters of the fluid motion

≥ = Re (ue−iσt) ,

v =
g

σ2 − 4ω2
Re

h
e−iσt

≥
− iσ

@u

@x1

+ 2ω
@u

@x2

, −iσ
@u

@x2

− 2ω
@u

@x1

¥i
,

where ≥ is the elevation of the surface above its equilibrium point, v is

the velocity vector.

The natural restriction in this model is σ > 2ω ≥ 0, otherwise we do

not observe a wave motion. If rotation is absent (ω = 0), then the oblique

derivative problem transforms to the Neumann problem. The derivation

of the equations and detailed description of the model is given in [15],

[20], [22], [23].

Let us return to the mathematical analysis of the problem U.

On the basis of the energy equalities [26] and the Rellich Lemma [1],

[27] we can easily prove the following assertion.

Theorem 1. If Γ ∈ C2,∏, ∏ ∈ (0, 1], then the problem U has at

most one solution.

Proof. Let u0(x) be an arbitrary solution of the homogeneous prob-

lem U. Let us show, that u0(x) ≡ 0. To prove this with the help of the

energy equalities, we envelope open curves by closed contours, let tend

contours to the curves and use the smoothness of the solution of the

problem U. In this way we obtain the identity

(3)

lim
r→1

(k∇u0k2L2(Cr\Γ) − k2ku0k2L2(Cr\Γ)) =

=

Z

Γ

ū+
0

≥ @u0

@nx

¥+

ds−
Z

Γ

ū−
0

≥ @u0

@nx

¥−
ds + i k lim

r→1

Z

@Cr

|u0|2dl,
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where the conditions (1), (2c) are taken into account and Cr is the circle

of the radius r with the center in the origin. By ū0(x) we denote a

function, which is complex conjugate to u0(x). Clearly, ū0(x) belongs to

the class K. By
R
Γ . . . ds we mean

PN
n=1

R bn

an
... ds.

It follows from Corollary 3.7 and Section 3.10 of the monograph [1],

that any solution of equation (2a) satisfying the radiation condition (2c)

has the following asymptotic behaviour at infinity

u0(x) =
eikr

√
r

F0(φ) + O
≥ 1

r3/2

¥
, r = |x|→1 ,

where φ is a polar angle and F0(φ) is a continuous function. This asymp-

totic formula proves the existence of the limit

lim
r→1

Z

@Cr

|u0|2dl =

Z 2π

0

|F0(φ)|2dφ

in the right side of (3) in case condition (2c). Consequently, the limit in

the left side of (3) also exists.

Let u0(x) = U1(x) + i U2(x) and ū0(x) = U1(x) − i U2(x), where

U1(x), U2(x) are real functions. Using the homogeneous boundary con-

dition (2b), we obtain

(4)

Z

Γ

ū+
0

≥ @u0

@nx

¥+

ds−
Z

Γ

ū−
0

≥ @u0

@nx

¥−
ds =

= −β
Z

Γ

h
ū+

0

≥@u0

@τx

¥+

− ū−
0

≥@u0

@τx

¥−i
ds =

= −β
Z

Γ

h
U+

1

≥@U1

@τx

¥+

+U+
2

≥@U2

@τx

¥+

+i
n
U+

1

≥@U2

@τx

¥+

− U+
2

≥@U1

@τx

¥+o
+

− U−
1

≥@U1

@τx

¥−
−U−

2

≥@U2

@τx

¥−
− i

n
U−

1

≥@U2

@τx

¥−
− U−

2

≥@U1

@τx

¥−oi
ds =

=−β
2

NX

m=1

n
[U+

1 (x(bm))]2−[U+
1 (x(am))]2+[U+

2 (x(bm))]2−[U+
2 (x(am))]2+

−
≥
[U−

1 (x(bm))]2 − [U−
1 (x(am))]2+[U−

2 (x(bm))]2−[U−
2 (x(am))]2

¥o
+

− βi

Z

Γ

h
U+

1

≥@U2

@τx

¥+

− U+
2

≥@U1

@τx

¥+

− U−
1

≥@U2

@τx

¥−
+U−

2

≥@U1

@τx

¥−i
ds ,
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In accordance with the smoothness properties of the function u0, which

belongs to the class K, we have

u+
0 (x(bm)) = u−

0 (x(bm)) , u+
0 (x(am)) = u−

0 (x(am)) , m = 1, . . . , N .

Consequently,

(5)
U+

j (x(bm)) = U−
j (x(bm)), U+

j (x(am)) = U−
j (x(am)) ,

m = 1, . . . , N ; j = 1, 2 .

Putting (4) into (3) and using (5), we arrive at the identity

lim
r→1

(k∇u0k2L2(Cr\Γ) − k2ku0k2L2(Cr\Γ)) =

= −iβ

Z

Γ

h
U+

1

≥@U2

@τx

¥+

− U+
2

≥@U1

@τx

¥+

− U−
1

≥@U2

@τx

¥−
+ U−

2

≥@U1

@τx

¥−i
ds+

+ i k lim
r→1

Z

@Cr

|u0|2dl .

We recall that Reβ = 0, β = i Imβ and take the imaginary part in the

latter identity, then we obtain

lim
r→1

Z

@Cr

|u0|2dl = 0 ,

where we take into account, that k = Re k > 0.

Since k = Re k > 0 and condition (2c) holds, then u0(x) ≡ 0 on the

basis of the Rellich Lemma [1], [27]. Thus, u0(x) is the trivial solution

of the homogeneous problem U. Hence the homogeneous problem U has

only the trivial solution, and the theorem is proved due to the linearity

of the problem U.

3 – Integral equations at the boundary

By H(1)
0 (z) we denote the Hankel function of the first kind

H(1)
0 (z) =

√
2 exp(iz − iπ/4)

π
√

z

Z 1

0

exp(−t)t−1/2
≥
1 +

it

2z

¥−1/2

dt .



374 P.A. KRUTITSKII [8]

Let us construct the solution of the problem U, assuming that F+(s),

F−(s) from (2b) are arbitrary functions from the Banach space C0,∏(Γ),

where the Hölder index ∏ ∈ (0, 1].

The solution of the problem U can be obtained with the help of

potential theory for the equation (2a). We seek a solution of the problem

in the following form

(6) u[µ, ∫](x) = v[µ + β∫](x) + w[∫ − βµ](x) ,

where

w[∫ − βµ](x) =
i

4

Z

Γ

(∫(σ)− βµ(σ))H(1)
0 (k|x− y(σ)|)dσ

is a single layer potential for the equation (2a), and

v[µ + β∫](x) =
i

4

Z

Γ

(µ(σ) + β∫(σ))V (x,σ)dσ

is an angular potential [10] for the equation (2a). The kernel V (x,σ) is

defined on each curve Γn (n = 1, . . . , N) by the formula

V (x,σ) =

Z σ

an

@

@ny

H(1)
0 (k|x− y(ξ)|)dξ , σ ∈ [an, bn] ,

where

y = y(ξ) = (y1(ξ), y2(ξ)), |x− y(ξ)| =
q

(x1−y1(ξ))2 + (x2 − y2(ξ))2 .

Below we suppose that the density of the angular potential satisfies

the following additional conditions [10], [11]

(7)

Z bn

an

(µ(σ) + β∫(σ)) dσ = 0, n = 1, . . . , N .

Integrating v[µ+β∫](x) by parts and using (7), we express the angular

potential in terms of a double layer potential

v[µ + β∫](x) = − i

4

Z

Γ

ρ(σ)
@

@ny

H(1)
0 (k|x− y(σ)|)dσ ,



[9] The skew derivative problem for the etc. 375

with the density

ρ(σ) =

Z σ

an

(µ(ξ) + β∫(ξ)) dξ, σ ∈ [an, bn], n = 1, . . . , N .

Consequently, v[µ+β∫](x) satisfies both equation (2a) outside Γ and the

conditions at infinity (2c).

In addition to (7) we require that µ(s), ∫(s) belong to the following

Banach spaces: ∫ (s) ∈ C0,∏(Γ), µ(s) ∈ Cωq (Γ), ω ∈ (0, 1], q ∈ [0, 1).

We say, that µ(s) ∈ Cωq (Γ) if

µ(s)
NY

n=1

|s− an|q|s− bn|q ∈ C0,ω(Γ) ,

where C0,ω(Γ) is the Hölder space with the index ω and

kµ(s)kCωq (Γ) =
∞∞∞µ(s)

NY

n=1

|s− an|q|s− bn|q
∞∞∞

C0,ω(Γ)
.

As shown in [10], for such µ(s), ∫(s) the potentials v[µ + β∫](x),

w[∫−βµ](x) belong to the class K. In particular, the inequality (1) holds

with ≤ = −q, if q ∈ (0, 1).

Therefore, the function (6) belongs to the class K and satisfies all

conditions of the problem U except the boundary condition (2b).

To satisfy the boundary condition, we put (6) in (2b), use the limit

formulas for the angular potential from [10] and arrive at the integral

equation for the densities µ(s), ∫(s):

(8)

− 1 + β2

2π

Z

Γ

µ(σ)
sinϕ0(x(s), y(σ))

|x(s)− y(σ)| dσ ± 1

2
(1 + β2)∫(s)+

+
i

4

Z

Γ

(µ(σ) + β∫(σ))
@

@nx

V0(x(s),σ)dσ+

+ β
i

4

Z

Γ

(µ(σ) + β∫(σ))
@

@s
V (x(s),σ)dσ+

+
i

4

Z

Γ

(∫(σ)− βµ(σ))
@

@nx

H(1)
0 (k|x(s)− y(σ)|)dσ+

+ β
i

4

Z

Γ

(∫(σ)− βµ(σ))
@

@s
h(k|x(s)− y(σ)|)dσ = F±(s) , s ∈ Γ ,
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where

V0(x,σ) =

Z σ

an

@

@ny

h(k|x− y(ξ)|)dξ , σ ∈ [an, bn] , n = 1, 2, . . . , N ,

h(z) = H(1)
0 (z)− 2i

π
ln

z

k
.

By ϕ0(x, y) we denote the angle between the vector−→xy and the direction of

the normal nx. The angle ϕ0(x, y) is taken to be positive if it is measured

anticlockwise from nx and negative if it is measured clockwise from nx.

Besides, ϕ0(x, y) is continuous in x, y ∈ Γ if x 6= y.

The first term in (8) is a Cauchy singular integral [17].

Equation (8) is obtained as x → x(s) ∈ Γ± and comprises 2 integral

equations. The upper sign denotes the integral equation on Γ+, the lower

sign denotes the integral equation on Γ−. In addition to the integral

equation (8) we have the conditions (7).

Subtracting the integral equation (8), we find

(9) ∫(s) =
1

1 + β2
(F+(s)− F−(s)) ∈ C0,∏(Γ) .

We note, that ∫(s) is found completely and belongs to the required

class of smoothness.

We introduce the function f(s) on Γ by the formula

(10)

f(s) =
1

2
(F+(s) + F−(s))− β i

4

Z

Γ

∫(σ)
@

@nx

V0(x(s),σ)dσ+

− β2 i

4

Z

Γ

∫(σ)
@

@s
V (x(s),σ)dσ+

− i

4

Z

Γ

∫(σ)
@

@nx

H(1)
0 (k|x(s)− y(σ)|)dσ+

− β i

4

Z

Γ

∫(σ)
@

@s
h(k|x(s)− y(σ)|)dσ

where ∫(s) is given in (9). As shown in [10], Lemma 3, Theorem 6 and

in [11], Lemmas 3, 4, f(s) belongs to C0,p0(Γ), where p0 = ∏ if 0 < ∏ < 1

and p0 = 1− ≤0 for any ≤0 ∈ (0, 1) if ∏ = 1.
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Adding the integral equation (8), we obtain the singular integral

equation [17] for µ(s) on Γ:

(11a)

− 1 + β2

2π

Z

Γ

µ(σ)
sinϕ0(x(s), y(σ))

|x(s)− y(σ)| dσ+

+
i

4

Z

Γ

µ(σ)
@

@nx

V0(x(s),σ)dσ + β
i

4

Z

Γ

µ(σ)
@

@s
V (x(s),σ)dσ+

− β i

4

Z

Γ

µ(σ)
@

@nx

H(1)
0 (k|x(s)− y(σ)|)dσ+

− β2 i

4

Z

Γ

µ(σ)
@

@s
h(k|x(s)− y(σ)|)dσ = f(s) , s ∈ Γ ,

where f(s) is defined by (10); V0(x,σ), h(z) are introduced in (8), and

V (x,σ) is the kernel of the angular potential.

Due to (9), conditions (7) take the form

(11b)

Z bn

an

µ(σ) dσ =
−β

1 + β2

Z bn

an

(F+(σ)− F−(σ)) dσ, n = 1, . . . , N .

Thus, if µ(s) is a solution of equations (11) from the space Cωq (Γ),

ω ∈ (0, 1], q ∈ [0, 1), then the potential (6) meets all requirements of the

problem U. The following theorem holds.

Theorem 2. If Γ ∈ C2,∏, F±(s) ∈ C0,∏(Γ), ∏ ∈ (0, 1], and if

equations (11) have a solution µ(s) from the Banach space Cωq (Γ), ω ∈
(0, 1], q ∈ [0, 1), then the solution of the problem U is given by (6), where

∫(s) is taken from (9).

Our further treatment will be aimed to the proof of the solvability

of the system (11) in the Banach space Cωq (Γ). Moreover, we reduce the

system (11) to a Fredholm equation of the second kind, which can be

easily computed by classical methods.

It can be easily proved that

sinϕ0(x(s), y(σ))

|x(s)− y(σ)| − 1

σ − s
∈ C0,∏(Γ× Γ)

(see [10, Lemma 3] for details). Therefore we can rewrite (11a) in the

form

(12)
1

π

Z

Γ

µ(σ)
dσ

σ − s
+

Z

Γ

µ(σ)Y (s,σ)dσ = − 2

1 + β2
f(s), s ∈ Γ ,



378 P.A. KRUTITSKII [12]

where f(s) is defined by (10) and

Y (s,σ) =
n 1

π

≥sinϕ0(x(s), y(σ))

|x(s)− y(σ)| − 1

σ − s

¥
+

− 1

1 + β2

i

2

h @

@nx

V0(x(s),σ) + β
@

@s
V (x(s),σ)+

− β @

@nx

H(1)
0 (k|x(s)− y(σ)|)− β2 @

@s
h(k|x(s)− y(σ)|)

io
.

It follows from [10], Lemma 3, Theorem 6 and from [11], Lemmas 3, 4

that Y (s,σ) ∈ C0,p0(Γ× Γ), p0 = ∏ if 0 < ∏ < 1 and p0 = 1− ≤0 for any

≤0 ∈ (0, 1) if ∏ = 1.

4 – The Fredholm integral equation and the solution of the

problem

Inverting the singular integral operator in (12), we arrive at the fol-

lowing integral equation of the second kind [17]:

(13) µ(s)+
1

Q(s)

Z

Γ

µ(σ)A0(s,σ)dσ+
1

Q(s)

N−1X

n=0

Gnsn =
1

Q(s)
Φ0(s), s ∈ Γ,

where

A0(s,σ) = − 1

π

Z

Γ

Y (ξ,σ)

ξ − s
Q(ξ)dξ ,

Q(s) =
NY

n=1

|√s− an

p
bn − s|sign(s− an) ,

Φ0(s) =
1

1 + β2

1

π

Z

Γ

2Q(σ)f(σ)

σ − s
dσ ,

and G0, . . . , GN−1 are arbitrary constants.

To derive equations for G0, . . . , GN−1, we substitute µ(s) from (13)

in the conditions (11b), then we obtain

(14)

Z

Γ

µ(σ)ln(σ)dσ +
N−1X

m=0

BnmGm = Hn, n = 1, . . . , N ,
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where

(15)

ln(σ) = −
Z bn

an

Q−1(s)A0(s,σ)ds ,

Hn = −
Z bn

an

Q−1(s)Φ0(s)ds− β

1 + β2

Z bn

an

(F+(s)− F−(s))ds ,

Bnm = −
Z bn

an

Q−1(s)smds .

By B we denote the N ×N matrix with the elements Bnm from (15). As

shown in [11, Lemma 7], the matrix B is invertible. The elements of the

inverse matrix will be called (B−1)nm. Inverting the matrix B in (14), we

express the constants G0, ..., GN−1 in terms of µ(s)

Gn =
NX

m=1

(B−1)nm

h
Hm −

Z

Γ

µ(σ)lm(σ)dσ
i
.

We substitute Gn in (13) and obtain the following integral equation for

µ(s) on Γ

(16) µ(s) +
1

Q(s)

Z

Γ

µ(σ)A(s,σ)dσ =
1

Q(s)
Φ(s) , s ∈ Γ ,

where
A(s,σ) = A0(s,σ)−

N−1X

n=0

sn
NX

m=1

(B−1)nmlm(σ) ,

Φ(s) = Φ0(s)−
N−1X

n=0

sn
NX

m=1

(B−1)nmHm .

It can be shown using the properties of singular integrals [7], [17],

that Φ0(s), A0(s,σ) are Hölder functions if s ∈ Γ, σ ∈ Γ. Therefore,

Φ(s), A(s,σ) are also Hölder functions if s ∈ Γ, σ ∈ Γ. Consequently,

any solution of (16) belongs to Cω1/2(Γ), and below we look for µ(s) on Γ

in this space.

Instead of µ(s) ∈ Cω1/2(Γ) we introduce the new unknown function

µ∗(s) = µ(s)Q(s) ∈ C0,ω(Γ) and rewrite (16) in the form

(17) µ∗(s) +

Z

Γ

µ∗(σ)Q−1(σ)A(s,σ)dσ = Φ(s) , s ∈ Γ .

Thus, the system of equations (11) for µ(s) has been reduced to the

equation (17) for the function µ∗(s). It is clear from our consideration

that any solution of (17) gives a solution of system (11).
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As noted above, Φ(s) and A(s,σ) are Hölder functions if s ∈ Γ,

σ ∈ Γ. More precisely (see [7], [17]), Φ(s) ∈ C0,p(Γ), p = min{1/2,∏},
and A(s,σ) belongs to C0,p(Γ) in s uniformly with respect to σ ∈ Γ.

We arrive at the following assertion.

Lemma 1. If Γ ∈ C2,∏, ∏ ∈ (0, 1], Φ(s) ∈ C0,p(Γ), p = min{∏, 1/2},
and µ∗(s) from C0(Γ) satisfies the equation (17), then µ∗(s) ∈ C0,p(Γ).

The condition Φ(s) ∈ C0,p(Γ) holds if F±(s) ∈ C0,∏(Γ).

Hence below we will seek µ∗(s) from C0(Γ).

Since A(s,σ) ∈ C0(Γ× Γ), the integral operator from (17):

Aµ∗(s) =

Z

Γ

µ∗(σ)Q−1(σ)A(s,σ)dσ

is a compact operator mapping C0(Γ) into itself. Therefore, (17) is a

Fredholm equation of the second kind in the Banach space C0(Γ).

Let us show that homogeneous equation (17) has only a trivial so-

lution. Then, according to Fredholm’s theorems, the inhomogeneous

equation (17) has a unique solution for any right-hand side. We will

prove this by a contradiction. Let µ0
∗(s) ∈ C0(Γ) be a non-trivial so-

lution of the homogeneous equation (17). According to the Lemma 1,

µ0
∗(s) ∈ C0,p(Γ), p = min{∏, 1/2}. Therefore the function µ0(s) =

µ0
∗(s)Q

−1(s) ∈ Cp
1/2(Γ) converts the homogeneous equation (16) into iden-

tity. Using the homogeneous identity (16), we check, that µ0(s) satisfies

conditions (11b). Besides, acting on the homogeneous identity (16) with

a singular operator with the kernel (s − t)−1, we find that µ0(s) satis-

fies the homogeneous equation (12). Consequently, µ0(s) satisfies the

homogeneous equation (11a). On the basis of Theorem 2, u[µ0, 0](x)

is a solution of the homogeneous problem U. According to Theorem 1:

u[µ0, 0](x) ≡ 0, x ∈ R2\Γ. Using the limit formulas for tangent and

normal derivatives of potentials [10], we obtain

lim
x→x(s)∈Γ+

n
β
@

@nx

u[µ0, 0](x)− @

@τx
u[µ0, 0](x)

o
+

− lim
x→x(s)∈Γ−

n
β
@

@nx

u[µ0, 0](x)− @

@τx
u[µ0, 0](x)

o
=

= −(1 + β2)µ0(s) ≡ 0 , s ∈ Γ .
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Consequently, if s ∈ Γ, then µ0(s) ≡ 0, µ0
∗(s) = µ0(s)Q−1(s) ≡ 0, and

we arrive at the contradiction to the assumption that µ0
∗(s) is a non-trivial

solution of the homogeneous equation (17). Thus, the homogeneous Fred-

holm equation (17) has only a trivial solution in C0(Γ).

We have proved the following assertion.

Theorem 3. If Γ ∈ C2,∏, ∏ ∈ (0, 1], then (17) is a Fredholm

equation of the second kind in the space C0(Γ). Moreover, equation (17)

has a unique solution µ∗(s) ∈ C0(Γ) for any Φ(s) ∈ C0(Γ).

As a consequence of the Theorem 3 and the Lemma 1 we obtain the

corollary.

Corollary. If Γ ∈ C2,∏, ∏ ∈ (0, 1] and Φ(s) ∈ C0,p(Γ), where

p = min{∏, 1/2}, then the unique solution of (17) in C0(Γ), ensured by

Theorem 3, belongs to C0,p(Γ).

We recall that Φ(s) belongs to the class of smoothness required in

the corollary if F±(s) ∈ C0,∏(Γ). As mentioned above, if µ∗(s) ∈ C0,p(Γ)

is a solution of (17), then µ(s) = µ∗(s)Q
−1(s) ∈ Cp

1/2(Γ) is a solution of

system (11). We obtain the statement.

Proposition. If Γ ∈ C2,∏, F±(s) ∈ C0,∏(Γ), ∏ ∈ (0, 1], then the

system of equations (11) has a solution µ(s) ∈ Cp
1/2(Γ), p = min{1/2,∏},

which is expressed by the formula µ(s) = µ∗(s)Q
−1(s), where µ∗(s) ∈

C0,p(Γ) is the unique solution of the Fredholm equation (17) in C0(Γ).

Remark. The system of linear integral equations (11) has no more

than one solution µ(s) ∈ Cωq (Γ), ω ∈ (0, 1], q ∈ [0, 1), because the homo-

geneous system (11) has only the trivial solution. The proof of this fact

by a contradiction almost coincides with the proof of the Theorem 3. To-

gether with the proposition this means, that the system (11) is uniquely

solvable, and the numerical solution of integral equations can be found

directly from (11) by numerical inversion of the integral operator in (11).

In doing so, Hölder functions can be approximated by piecewise linear

functions, which also obey Hölder inequality.

On the basis of the Theorem 2 and the proposition we arrive at the

following result.
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Theorem 4. If Γ ∈ C2,∏, F±(s) ∈ C0,∏(Γ), ∏ ∈ (0, 1], then

the solution of the problem U exists and is given by (6), where ∫(s) is

defined in (9) and µ(s) is a solution of equations (11) from Cp
1/2(Γ), p =

min{1/2,∏}, ensured by the proposition.

It can be checked directly that the solution of the problem U satisfies

condition (1) with ≤ = −1/2. Explicit expressions for singularities of

the solution gradient at the end-points of the open curves can be easily

obtained with the help of formulas presented in [10], [11].

Theorem 4 ensures existence of a classical solution of the problem

U when Γ ∈ C2,∏, F±(s) ∈ C0,∏(Γ). On the basis of our consideration

we suggest the following scheme for solving the problem U. First, we

find the unique solution µ∗(s) of the Fredholm equation (17) from C0(Γ).

This solution automatically belongs to C0,p(Γ), p = min{∏, 1/2}. Second,

we construct the solution of equations (11) from Cp
1/2(Γ) by the formula

µ(s) = µ∗(s)Q
−1(s). This solution automatically belongs to Cp

1/2(Γ). Fi-

nally, substituting ∫(s) from (9) and µ(s) in (6), we obtain the solution

of the problem U.

If β = 0, then the problem U transforms to the Neumann problem for

the Helmholtz equation in the exterior of cuts in a plane. The Neumann

problem has been studied in [17], and its solution coincides with the

solution of the problem U from the Theorem 4 in case β = 0.
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