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Complex Finsler structures on

CR-holomorphic vector bundles

S. DRAGOMIR – P. NAGY

Riassunto: Per ogni fibrato vettoriale CR-olomorfo (nel senso di N. Tanaka,
[16]) E, su una CR varietà fortemente pseudoconvessa M , dotato di una struttura
di Finsler complessa F , si costruisce una connessione D nel pullback π∗E di E via
π : E \ {0}−→M , simile alla connessione di Rund (cfr. M. Abate – G. Patrizio,
[1]) nella geometria di Finsler complessa.

Abstract: For any CR-holomorphic vector bundle (in the sense of N. Tanaka,
[16]) E, over a strictly pseudoconvex CR manifold M , equipped with a convex complex
Finsler structure F , we build a connection D in the pullback bundle π∗E of E by
π : E \ {0}−→M , similar to the Rund connection (cf. M. Abate – G. Patrizio, [1])
in complex Finsler geometry.

1 – Introduction

Let M be a CR manifold and E−→M a complex vector bundle over

M . Let j : M −→E be the zero section, i.e. j(x) = 0x, x ∈ M , and set

E0 = E \ j(M). A function F : E−→R is a complex Finsler structure

on E if i) F ∈ C1(E0), ii) F (v) ≥ 0 and F (v) = 0 ⇐⇒ v ∈ j(M), and

iii) F (∏v) = |∏|2F (v) for any ∏ ∈ C, v ∈ E. Let π : E0−→M be the

projection. Let π∗E−→E0 be the pullback of E−→M by π. Any convex
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complex Finsler structure F on E induces a Hermitian metric H on π∗E.

When M is a complex manifold and E−→M a holomorphic vector bundle

over M there is a natural connection D in π∗E (the Rund connection, cf.

[10]) i.e. the Hermitian connection of (π∗E,H) (cf. e.g. [19], p. 79). In-

deed, if this is the case then π∗E−→E0 is a Hermitian vector bundle over

E0. See also M. Abate – G. Patrizio, [1], p. 88. As known, the CR ana-

logue of the canonical Hermitian connection of a Hermitian vector bundle

is the Tanaka connection (cf. [16], p. 39) of a CR-holomorphic vector

bundle (over a strictly pseudoconvex CR manifold) endowed with a Her-

mitian metric. Then, is there any natural choice of connection D in π∗E

(so that DH = 0)? It is to be observed that, as opposed to the holomor-

phic category (where E0 is a complex manifold), given a CR-holomorphic

vector bundle E−→M over a CR manifold M, E0 is not a CR manifold.

On the other hand, Tanaka’s construction (cf. [16], p. 40-41) relies heav-

ily on the existence of the Tanaka-Webster connection (cf. [16], p. 29-30,

and [18]) of the base CR manifold. We circumvent this difficulty by ob-

serving that, while E0 carries no CR structure, the vertical foliation F
of E0 (i.e. the foliation F tangent to Ker(dπ)) possesses a natural trans-

verse CR structure, and therefore one may use the theory of transver-

sally CR foliations as developed in [4]-[5] (and the transverse Webster

connection there). The canonical connection D = D(F,N) we build (cf.

Theorem 1) depends on H, on the complex structure of T (F), respec-

tively on the CR-holomorphic structure of E (expressed by the occurence

of two differential operators @F : Γ1(π∗E)−→Γ1(T0,1(F)∗ ⊗ π∗E) and

@H : Γ1
B (π∗E)−→Γ1(H∗ ⊗ π∗E), cf. Section 3), and on a fixed choice

of complement N of T (F) in T (E0). While the choice of N is arbitrary,

D(F,N) is shown to be independent of the choice of contact form θM on

M , used to build it (hence D(F,N) is a CR invariant). The construc-

tion in Theorem 1 only works for strictly pseudoconvex CR manifolds M ,

in particular M should have CR codimension 1, and it is an interesting

question, raised by the referee, whether any useful generalization, to the

higher codimension case, may be produced.

2 – CR geometry

We briefly recall the notions of CR and pseudohermitian geometry we

need, such as the existence (and axiomatic description) of the Tanaka-
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Webster connection (consequently T1,0(M) may be organized as a CR-

holomorphic bundle). The main reference is [16]. Cf. also [9]. As to

(transversally) CR foliations, we rely upon recent work in [4]-[5].

2.1 – CR manifolds

Let M be a real (2n + k)-dimensional C1 manifold and T1,0(M) a

CR structure on M , i.e. a rank n complex subbundle of the complexified

tangent bundle T (M)⊗C so that

T1,0(M) ∩ T0,1(M) = (0)

[Γ1(T1,0(M)),Γ1(T1,0(M))] ⊆ Γ1(T1,0(M))

where T0,1(M) = T1,0(M) and an overbar denotes complex conjugation.

The pair (M,T1,0(M)) is a CR manifold (of type (n, k)). The integers n

and k are the CR dimension and CR codimension, respectively. A CR

manifold of CR codimension k = 0 is a complex manifold. When k = 1

we refer to M as a CR manifold of hypersurface type. It is with this type

of CR manifolds that the present paper is mainly concerned.

Let (M,T1,0(M)) be a CR manifold and F : T1,0(M)−→[0,1) a

complex Finsler structure on T1,0(M). Then (M,F ) is a Finslerian CR

manifold. To give a class of examples, we recall that a complex Minkowski

norm on a complex linear space V is a map v 7→ kvk, v ∈ V , so that

i) kvk ≥ 0 and kvk = 0 ⇐⇒ v = 0, ii) k∏vk = |∏| kvk, and iii) for

any linear basis {e1, · · · , en} of V the map f(z1, · · · , zn) = kzieik is at

least of class C4 at z 6= 0. A pair (V, k · k) is a complex Minkowski

space. Two complex Minkowski spaces V,W are congruent if there is a

C-linear isomorphism ϕ : V −→W so that kϕ(v)k = kvk for any v ∈ V .

Let M be a CR manifold and F : T1,0(M)−→[0,1) a complex Finsler

structure. Then T1,0(M)x is a complex Minkowski space in a natural way,

for any x ∈M . The Finslerian CR manifold M is modelled on (V, k · k) if

T1,0(M)x ≈ V (congruent complex Minkowski spaces) for any x ∈M . Let

(M,T1,0(M)) be a CR manifold of CR dimension n and let B(M)−→M

be the principal GL(n,C)-bundle whose associated bundle of standard

fibre Cn is T1,0(M)−→M , i.e.

(B(M)×Cn)/GL(n,C) ≈ T1,0(M)
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(a vector bundle isomorphism). Let (V, k · k) be a complex Minkowski

space and {e1, · · · , en} a fixed linear basis of V . Let

G = {[Uαβ ] ∈ GL(n,C) : f(U1
αz
α, · · · , Un

αzα) = f(z1, · · · , zn),

∀ (z1, · · · , zn) ∈ Cn} .

Then G is a closed subgroup of GL(n,C). Let H ⊂ G be a Lie sub-

group and B−→M a principal H-subbundle of B(M)−→M . A pair

(M,B) is referred to as a CR {V,H}-manifold (by analogy with [12]).

Let v ∈ T1,0(M)x and {Tα} a (local) frame of T1,0(M) defined on an open

neighborhood U of x, adapted to B. Then v = vαTα(x) for some vα ∈ C.

Set

F (v) = kvαeαk2 .

Therefore, any CR {V,H}-manifold is a Finslerian CR manifold modelled

on (V, k · k).
Let (M,T1,0(M)) be a CR manifold. Its Levi distribution

H(M) = Re{T1,0(M)⊕ T0,1(M)}

carries the complex structure

J : H(M)−→H(M), J(Z + Z) = i(Z − Z), Z ∈ T1,0(M) .

Here i =
√
−1. Let H(M)⊥ ⊂ T ∗(M) be the conormal bundle of H(M)

i.e.

H(M)⊥x = {ω ∈ T ∗
x (M) : Ker(ω) ⊇ H(M)x}, x ∈M .

Assume M to be an orientable CR manifold of hypersurface type, of CR

dimension n. Then H(M)⊥ is a trivial real line bundle over M . A nowhere

zero global section θ ∈ Γ1(H(M)⊥) is a pseudohermitian structure on M .

The CR manifold M is nondegenerate if the Levi form

Lθ(Z,W ) = −i(dθ)(Z,W ), Z,W ∈ T1,0(M)

is nondegenerate for some pseudohermitian structure θ (and thus for all).

If this is the case then θ is a contact form, i.e. θ ∧ (dθ)n is a volume
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form on M . The CR manifold M is strictly pseudoconvex if Lθ is positive

definite for some θ.

Let M be a nondegenerate CR manifold and θ a contact form. There

is a unique nowhere zero tangent vector field T on M (the characteristic

direction of (M, θ)) so that

θ(T ) = 1 , T c dθ = 0 .

The Webster metric gθ is the semi-Riemannian metric on M given by

gθ(T, T ) = 1 , gθ(T,X) = 0

gθ(X,Y ) = (dθ)(X,JY )

for any X,Y ∈ H(M). For any nondegenerate CR manifold M on which

a contact form θ has been fixed, there is a unique linear connection ∇
on M (the Tanaka-Webster connection of (M, θ)) so that i) H(M) is

parallel with respect to ∇, ii) ∇J = 0, ∇gθ = 0, iii) the torsion T∇ of ∇
is pure, i.e.

T∇(Z,W ) = 0

T∇(Z,W ) = 2iLθ(Z,W )T

τ ◦ J + J ◦ τ = 0

for any Z,W ∈ T1,0(M), where τX = T∇(T,X), X ∈ T (M), is the

pseudohermitian torsion. Cf. [16] and [18]. See also [8], p. 173-174.

2.2 – CR-holomorphic bundles

Let E−→M be a complex vector bundle, of standard fibre Cr, over a

CR manifold M . It is CR-holomorphic if it is endowed with a differential

operator

@E : Γ1(E)−→Γ1(T0,1(M)∗ ⊗E)

so that

@E(fu) = f@Eu + (@Mf)⊗ u

[Z,W ]u = Z Wu−W Zu

for any f ∈ C1(M), u ∈ Γ1(E), and Z,W ∈ Γ1(T1,0(M)). Here

@M : C1(M)−→Γ1(T0,1(M)∗) , (@Mf)Z = Z(f)
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is the tangential Cauchy-Riemann operator (on functions). Also one

adopts the notation Zu = (@Eu)Z.

Examples. i) Let V be a complex N -dimensional manifold and

M ⊂ V a real hypersurface endowed with the CR structure

T1,0(M) = [T (M)⊗C] ∩ T 1,0(V )

where T 1,0(V ) is the holomorphic tangent bundle over V (if (U, zj) is a

local system of complex coordinates on V then the portion of T 1,0(V )

over U is the span of {@/@zj : 1 ≤ j ≤ N}). Then the portion over

M of any holomorphic vector bundle over V is a CR-holomorphic vector

bundle over M .

ii) Let (M,T1,0(M)) be a CR manifold and set

T̂ (M) =
T (M)⊗C

T0,1(M)
.

Let ρ : T (M) ⊗ C−→ T̂ (M) the projection. Then T̂ (M) is a CR-

holomorphic vector bundle with the differential operator

@T̂ (M) : Γ1(T̂ (M))−→Γ1(T0,1(M)∗ ⊗ T̂ (M))

(@T̂ (M)u)Z = ρ
h
Z,W

i

for any u ∈ Γ1(T̂ (M)), Z ∈ Γ1(T1,0(M)), and some W ∈ Γ1(T (M)⊗C)

so that ρW = u.

iii) Let M be a nondegenerate CR manifold, θ a contact form on

M , and ∇ the Tanaka-Webster connection of (M, θ). Then T1,0(M) is a

CR-holomorphic vector bundle with the differential operator

@T1,0(M) : Γ1(T1,0(M))−→Γ1(T ∗
0,1 ⊗ T1,0(M))

(@T1,0(M)Z)W = ∇W Z , Z,W ∈ Γ1(T1,0(M)) .

Cf. e.g. [17], p. 569.
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2.3 – CR foliations

Let M be a C1 manifold and F a codimension 2n + 1 foliation

of M . Let T (F) be the tangent bundle of the foliation and ∫(F) =

T (M)/T (F) its normal (or transverse) bundle. Let πF : T (M)−→ ∫(F)

be the projection. Let ∇̊ be the Bott connection of (M,F), i.e.

∇̊Xs = πF [X,Y ]

for any X ∈ Γ1(T (F)), s ∈ Γ1(∫(F)), and some Y ∈ X (M) so that

πFY = s. Let H ⊂ ∫(F)⊗C be a complex subbundle, of complex rank

n. Set H = Re{H ⊕H} ⊂ ∫(F). Then H carries the complex structure

J : H −→H, J(α+α) = i(α−α), α ∈ H. Then H is a transverse almost

CR structure (of transverse CR dimension n) if 1) H ∩H = (0), 2) H is

parallel with respect to the Bott connection of F , and 3) LXJ = 0 for

any X ∈ Γ1(T (F)). Lie derivatives are defined with respect to ∇̊.

Let L(F) = L(M,F) ⊂ X (M) be the Lie subalgebra of all foliate

vector fields (or infinitesimal automorphisms of F), cf. e.g. [15], p. 35.

Let `(F) = `(M,F) ⊂ Γ1(∫(F)) be the Lie algebra of all transverse vec-

tor fields (i.e. s ∈ `(F)⇐⇒ s = πFY for some Y ∈ L(F)). Let Γ1
B (∫(F))

consist of all s ∈ Γ1(∫(F)) with LXs = 0 for any X ∈ Γ1(T (F)). Note

that Γ1
B (F) = `(F) (so that the Lie bracket [s, r] of any s, r ∈ Γ1

B (∫(F))

is well defined).

A transverse almost CR structure H ⊂ ∫(F) ⊗ C is integrable if

for any x ∈ M there is an open neighborhood U ⊆ M, x ∈ U , and

there is a frame {≥1, · · · , ≥n} of H on U so that ≥α ∈ Γ1
B (∫(F)⊗C) and

[≥α, ≥β] ∈ Γ1(H) for any 1 ≤ α, β ≤ n. Such a local frame of H is termed

admissible. An integrable transverse almost CR structure is a transverse

CR structure on (M,F). When F is the trivial foliation by points a

transverse CR structure is an ordinary CR structure.

Let (N,T1,0(N)) be a CR manifold of hypersurface type, of CR di-

mension n. A CR automorphism f : N −→N is a C1 diffeomorphism

and a CR map (i.e. (dxf)T1,0(N)x ⊆ T1,0(N)f(x), x ∈ N). Let Γ1
CR(N) be

the pseudogroup of all (local) CR automorphisms of (N,T1,0(N)) (of class

C1). Let F be a Γ1
CR(N)-foliation of M (in the sense of [11]). Then F is

a (transversally) CR foliation (of transverse CR dimension n). As such

(by Theor. 1 in [5], p. 55) F carries a transverse CR structure H. For

instance, let f : M −→N be a C1 submersion from a C1 manifold onto
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a CR manifold N . The vertical distribution Ker(df) is integrable, thus

giving rise to a CR foliation of M (whose leaves are the connected com-

ponents of the fibres of f) which is transversally nondegenerate (strictly

pseudoconvex) if N is a nondegenerate (strictly pseudoconvex) CR man-

ifold (cf. Theor. 4 in [5], p. 60). CR foliations also arise on certain

degenerate CR manifolds (cf. [5], p. 64-68). See [3] for an application

of the CR foliation theory to the Beltrami equations on degenerate CR

manifolds.

3 – The canonical connection

Let (E, @E) be a CR-holomorphic vector bundle (of standard fibre

Cr) over the CR manifold (M,T1,0(M)). Let π∗E−→E0 be the pullback

of E by π. Given a section s : M −→E its natural lift is the section

s̃ : E0−→π∗E , s̃(u) = (u, s(π(u))) , u ∈ E0 .

Given a local frame {s1, · · · , sr} of E on the open set U ⊆M , {s̃1, · · · , s̃r}
is a local frame of π∗E on π−1(U) ⊆ E0.

Let F be the vertical foliation on E0, i.e. the simple foliation defined

by the C1 submersion π : E0−→M . Let p∗F be the pullback of F to

π∗E (cf. [15], p. 30), where p : π∗E−→E0 is the projection (a C1

submersion). A section σ : E0−→π∗E is foliate if

(duσ)T (F)u ⊆ T (p∗F)σ(u) , u ∈ E0 .

Note that the foliate sections in π∗E are precisely the natural lifts of the

sections in E. Indeed, let ≥j : π−1(U)−→C be complex fibre coordinates,

i.e. u = ≥j(u)sj(π(u)), for any u ∈ π−1(U). A section σ : π−1(U)−→π∗E

is locally represented as

σ(x, ≥) = (x, ≥, f j(x, ≥)ej)

for some C1 functions f j : π−1(U)−→C. Here {ej} ⊂ Cr is the canoni-

cal linear basis. Then σ is foliate if and only if (dσ)X ∈ T (p∗F) for any

X = Xj@/@≥j + Xj@/@≥
j ∈ T (F). This is equivalent to X(f j) = 0, i.e.
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f j ∈ ≠0
B(F). Hence f j descends to a function on U (denoted by the same

symbol) and σ is the natural lift of f jsj.

Let Γ1
B (π∗E) be the space of all foliate sections in (π∗E, p∗F)−→

(E0,F). Let H be the transverse CR structure of F . We shall need the

differential operator

@H : Γ1
B (π∗E)−→Γ1(H∗ ⊗ π∗E)

defined by

(@Hs̃)uα = (@Es)π(u)(dTπ)uα

for any α ∈ Hu, u ∈ E0. The map (dTπ)u : ∫(F)u−→Tπ(u)(M) is

naturally induced by dπ (a R-linear isomorphism, because of T (F) =

Ker(dπ)).

Let F : E−→[0,1) be a complex Finsler structure and set

Hu(Z,W ) = Hjk̄(u)ZjW k

Hjk̄ =
1

2

@2F 2

@≥j@≥̄k

Z = Zj s̃j(u),W = W j s̃j(u) ∈ (π∗E)u, u ∈ π−1(U) .

Then H is globally defined. We say F is convex if H is positive definite.

If F is convex H is a Hermitian metric in π∗E−→E0. There are, how-

ever, interesting examples of degenerate complex Finsler structures. For

instance, let (M,T1,0(M)) be a parallelizable CR manifold, i.e. T1,0(M)

admits a global frame {T1, · · · , Tn}. Let F : T1,0(M)−→[0,1) be given

by

F (u) =
ØØu1 · · ·un

ØØ2/n

(a CR analogue of the real Finsler metric in [2]) where u = uαTα(x), u ∈
T1,0(M)x, x ∈M . Then

Hjk̄ =
1

2n2

F

≥j ≥̄k

hence F is not convex (det[Hjk̄] = 0).

As remarked before, E0 is not a CR manifold hence Tanaka’s result

does not apply. However E0 carries the CR foliation F and the synthetic
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object (π∗E, @H) is analogous to a CR-holomorphic vector bundle. We

shall additionally need the differential operator

@F : Γ1(π∗E)−→Γ1(T0,1(F)∗ ⊗ π∗E)

(@Fs)
@

@≥
j =

@fk

@≥
j s̃k

s = fks̃k , fk : π−1(U)−→C

where T0,1(F) ⊂ T (F) ⊗ C is locally the span of {@/@≥j
: 1 ≤ j ≤ r}.

Note that @Fs is globally defined (and @F s̃j = 0).

Let M be a nondegenerate CR manifold, of signature (r, s) (the sig-

nature of the Levi form). Then F is a (transversally) nondegenerate

CR foliation, of the same signature. We shall need the basic complex of

(E0,F)

≠0
B(F)

dB−→Γ1
B (∫(F)∗)

dB−→Γ1
B (Λ2∫(F)∗)

dB−→· · · dB−→Γ1
B (Λ2n+1∫(F)∗)−→0.

Let θM be a contact form on M and θ ∈ Γ1
B (∫(F)∗) be the natu-

rally induced transverse pseudohermitian structure (i.e. θu = (θM)π(u) ◦
(dTπ)u , u ∈ E0) on (E0,F). Let Lθ(α, β) = −(dBθ)(α, β), α, β,∈ H, be

the transverse Levi form. The trace Λθϕ of a bilinear form ϕ on H ⊗H
is given by

iΛθϕ =
nX

α=1

≤αϕ(≥α, ≥ᾱ)

where {≥α} is an orthonormal (i.e. Lθ(≥α, ≥β̄) = ≤αδαβ, ≤1 = · · · = ≤r =

−≤r+1 = · · · = −≤r+s = 1) admissible local frame of H.

In the sequel, we also fix a complement to T (F) in T (E0), i.e. a

vector bundle N −→E0 so that

(1) T (E0) = T (F)⊕N

(for instance, let h be a Riemannian metric on E0 and N = T (F)⊥ the

h-orthogonal complement of T (F) in T (E0)). Let σ : ∫(F)−→N be the

natural bundle isomorphism (associated with the direct sum decomposi-

tion (1)). We establish the following
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Theorem 1. Let F : E−→[0,1) be a convex complex Finsler

structure on a CR holomorphic vector bundle (E, @E) over a strictly pseu-

doconvex CR manifold (M,T1,0(M)). There exists a unique connection

D = D(F,N) in π∗E−→E0, depending on the data (F,N), so that

1) DZs = (@Fs)Z,

2) Dσ(α)ṽ = (@Hṽ)α,

3) DH = 0,

4) ΛθR
D = 0,

for some contact form θM on M , and for any Z ∈ Γ1(T1,0(F)), s ∈
Γ1(π∗E), α ∈ Γ1(H), and v ∈ Γ1(E). In particular, D is a CR invari-

ant (and axiom 4 holds for any contact form on M).

Here RD is the curvature tensor field of D. In axiom 4, RD is thought

of as the End(E)-valued bilinear form

(α, β) 7→ RD(σ(α), σ(β)) , α, β ∈ H .

Before proving Theorem 1, we wish to look at the analogy with real

Finsler geometry (cf. e.g. M. Matsumoto, [13]). A nonlinear connection

on M is a C1 distribution N on V (M) = T (M) \ 0 so that Tu(V (M)) =

Ker(duπ)⊕Nu, u ∈ V (M) (cf. N. Barthel, [6]) where π : V (M)−→M is

the projection. A Finsler connection on M is a pair (∇, N) consisting of

a connection ∇ in π∗T (M) and a nonlinear connection N on M (cf. [13]).

The vertical lift is the bundle isomorphism ∞ : π∗T (M)−→Ker(dπ) given

by ∞u(u,X) = dC
dt

(0), where C(t) = u + tX, |t| < ≤. Given a nonlinear

connection N on M , the horizontal lift is the bundle isomorphism β :

π∗T (M)−→N, βu =
≥
Lu|Nu

¥−1

, where

(2) LuY = (u, (duπ)Y )

for any Y ∈ Tu(V (M)), u ∈ V (M). With any Finsler connection (∇, N)

one may associate two concepts of torsion, namely TL(X,Y ) = ∇XLY −
∇Y LX − L[X,Y ] and TK(X,Y ) = ∇XKY −∇Y KX −K[X,Y ], X, Y ∈
X (V (M)), where K = ∞−1 ◦ π⊥ is the Dombrowski map (here π⊥ :
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T (V (M))−→Ker(dπ) is the projection). Given a real Finsler metric

F : T (M)−→[0,+1), there is a naturally associated Riemannian bundle

metric g in π∗T (M)−→V (M), and one may consider the family of Finsler

connections satisfying ∇g = 0. Then a canonical connection (the Cartan

connection, cf. [7]) may be chosen from this set, by additionally requiring

that TF (βX, βY ) = 0 and TK(∞X, ∞Y ) = 0, for any X,Y ∈ Γ1(π∗T (M)).

Moreover, if (∇, N) is the Cartan connection, then N is also uniquely de-

termined in terms of F . Other canonical connections (e.g. the Berwald,

or Rund connection, cf. [13]) are of current use in real Finsler geometry.

Now, given a complex vector bundle E over a CR manifold M , there is

an analogous notion of nonlinear connection, i.e. a C1 distribution N on

E0 so that (1) holds, and it is only natural that there should be a freedom

of choice of N , just as in the case of Finsler connections. The (globally

defined) bundle isomorphism

∞ : π∗E−→T1,0(F), ∞(s̃j) =
@

@≥j
, 1 ≤ j ≤ r

may play the role of the vertical lift, yet the bundle morphism (2) is

π∗T (M)-valued, rather than π∗E-valued, hence TL is not well defined

(for a connection D in π∗E). Therefore, there is no obvious ’torsion-

free’ requirement, and one may not expect that axioms 1-4 in Theorem 1

should influence upon the choice of N ⊂ T (E0).

Let M be a CR manifold. Geometric objects depending only on

the CR structure of M are usually referred to as CR invariants. For

instance, the signature of the Levi form (of a nondegenerate CR manifold)

is a CR invariant. In CR geometry, several objects are built in terms

of the given CR structure and a fixed pseudohermitian structure θM .

An example is the Tanaka-Webster connection (of (M, θM)). Such an

object is a CR invariant if it is invariant under a transformation θ̂M =

e2fθM , f ∈ C1(M) (and in this respect, CR geometry is, of course,

analogous to conformal geometry). The Tanaka-Webster connection is

not a CR invariant. While, as argued above, there is an apparent freedom

in the choice of complement N to T (F) in T (E0) (which, as suggested by

the referee, might be useful in applications), once F and N are fixed, the

connection D = D(F,N) furnished by Theorem 1 may be shown to be a

CR invariant.
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We firstly establish uniqueness. Let D be a connection obeying to

1-4, where θ is the transverse pseudohermitian structure associated with

a fixed contact form θM on M . Axiom 3 yields

(3) Z(H(u, v)) = H(DZu, v) + H(u,DZv)

for any Z ∈ Γ1(T1,0(F)) and u, v ∈ Γ1(π∗E). Set

(4) D@/@≥j s̃k = Ci
jks̃i .

By axiom 1

(5) D
@/@≥

j s̃k = 0 .

Hence (by (3) and (5))

(6) Ci
jk = H i¯̀@Hk ¯̀

@≥j
.

where [H ij̄] = [Hij̄]
−1. Next, let T be the characteristic direction of

(M, θM) and ξ ∈ Γ1
B (∫(F)) the corresponding transverse characteristic

direction on (E0,F) (i.e. (dTπ)uξu = Tπ(u), u ∈ E0). By axioms 2-3

Dσ(ᾱ)s̃j = (@Hs̃j)α(7)

H(Dσ(α)s̃j, s̃k) = (σα)(Hjk̄)−H(s̃j, (@Hs̃k)α) .(8)

Taking into account the direct sum decompositions

T (E0) = T (F)⊕ σ ∫(F)

∫(F)⊗C = H⊕H⊕Cξ

we are left with the computation of Dσ(ξ)u for u ∈ Γ1(π∗E). To this end,

define D2u by setting

(D2u)(X,Y ) = DXDY u−Dσ(∇XπF Y )u

for any X,Y ∈ X (E0) and u ∈ Γ1(π∗E). Here

∇ : Γ1(∫(F))−→Γ1(T ∗(E0)⊗ ∫(F))
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is the transverse Webster connection of (E0, θ) (cf. Theorem 10 in [5], p.

73). Next, define B by setting

(9) B(X,Y )u = (D2u)(X,Y )− (D2u)(Y,X) .

This may be also written as

(10) B(X,Y )u = RD(X,Y )u−Dσ T∇(X,Y )u + Dπ⊥[X,Y ]u .

Here T∇ is given by

T∇(X,Y ) = ∇XπFY −∇Y πFX − πF [X,Y ]

and π⊥ : T (E0)−→T (F) is the projection. Let {≥α} be a local orthonor-

mal admissible frame of H. Define SU ∈ Γ1(U, T (F)) by setting

SU = i
nX

α=1

π⊥[σ ≥α, σ ≥ᾱ] .

If {≥ 0α} is another orthonormal admissible frame of H, defined on the open

set U 0, U ∩ U 0 6= ∅, then (as π⊥σ = 0)

≥ 0α = Uβα≥β

π⊥[σ ≥ 0α, σ ≥
0
ᾱ] = UβαU ∞̄ᾱπ

⊥[σ ≥β, σ ≥∞̄]

nX

α=1

UβαU ∞̄ᾱ = δβ∞

hence the local sections SU glue up to a (globally defined) section S ∈
Γ1(T (F)). Set X = σ(≥α), Y = σ(≥ᾱ) in (10) and take traces. As

T∇(σ α, σ β̄) = 2iLθ(α, β̄)ξ

for any α, β ∈ H (cf. [5], p. 73), it follows that (by axiom 4)

(11) 2nDσ ξu = −(ΛθB)u−DSu
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for any u ∈ Γ1(π∗E). The formulae (4)-(8) and (11) show that D (obey-

ing to the axioms 1-4) is unique. To prove existence, let

D : Γ1(π∗E)−→Γ1(T (E0)
∗ ⊗ π∗E)

be defined by (4)-(8) and (11). Then D is a connection in the vector

bundle π∗E. For instance, the property

(12) Dσ ξfu = fDσ ξu + (σ ξ)(f)u

may be checked as follows. Firstly, note that

(13) B(X,Y )fu = fB(X,Y )u +
°
π⊥[X,Y ]

¢
(f)u− (σ T∇(X,Y )) (f)u

for any X,Y ∈ Γ1(σ H), provided that

(14) DXfu = fDXu + X(f)u

for any X ∈ Γ1(σ H). To check (14) note that (7)-(8) prescribe Dσ ᾱ,

respectively Dσ α, on foliate sections (natural lifts of sections in E) only.

Then we extend DX ,X ∈ Γ1(σ H), as a derivation, to the whole of

Γ1(π∗E). We still must check that (14) holds for f ∈ C1(M) and

u = s̃, s ∈ Γ1(E). Here, we do not distinguish notationally between f

and its vertical lift f ◦ π ∈ ≠0
B(F). We have

Dσ ᾱfs̃ = (@Hfs̃)ᾱ = (@Efs)(dTπ)ᾱ =

=
≥
f @Es + (@Mf)⊗ s

¥
(dTπ)ᾱ =

= f(@Hs̃)ᾱ+ ((dTπ)ᾱ) (f)s̃ =

= f Dσ ᾱs̃ + (σ ᾱ)(f) s̃

by σ ◦ πF : T (F)⊥ ⊂ T (E0) and (dTπ) ◦ πF = dπ. Finally (13) leads to

(ΛθB)(fu) = f(ΛθB)u− S(f)u− 2n(σ ξ)(f)u

for any f ∈ C1(E0) and u ∈ Γ1(π∗E). Hence (by (11)) one gets (12).

It remains to be checked that D satisfies the axioms 1-4. By (5)

and (7) the connection D obeys to axioms 1-2. Also ΛθR
D = 0 as a
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consequence of (10)-(11). It remains that we check axiom 3. Note firstly

that

(15) X(H(u, v)) = H(DXu, v) + H(u,DXv)

for any X ∈ Γ1([(σ H)⊕T (F)]⊗C). Indeed (4)-(6) lead to (3), and (3)

and (8) (and their complex conjugates) lead to (15). A calculation shows

that (by (15))

H(B(X,Y )u, v) + H(u,B(X,Y )v) =

=
°
π⊥[X,Y ]

¢
(H(u, v))− (σ T∇(X,Y )) (H(u, v))

for any X,Y ∈ Γ1((σ H) ⊗ C). Set X = σ ≥α and Y = X and take

traces. We obtain

H((ΛθB)u, v) + H(u, (ΛθB)v) = −S(H(u, v))− 2n(σ ξ)(H(u, v)) .

At this point, substitute ΛθB from (11) and use (by (15), as S ∈ T (F))

DSH = 0. This procedure gives Dσ(ξ)H = 0.

To prove the last statement in Theorem 1, let θ̂ be the transverse

pseudohermitian structure associated with the contact form θ̂M = e2fθM ,

f ∈ C1(M). Then θ̂ = e2f◦πθ. Next, let D̂ be the connection determined

by axioms 1-4 (where θ is replaced by θ̂). Then (by (4)-(5) and (7)-(8))

D̂Xs = DXs , D̂σ(z)s = Dσ(z)s

for any X ∈ T (F), s ∈ Γ1(π∗E) and z ∈ Γ1(H). To see how Dσ(ξ)
changes under a transformation θ̂ = e2 f◦πθ, note first that

dB θ̂ = e2(f◦π) {dBθ + 2dB(f ◦ π) ∧ θ}

hence

(16) e2(f◦π)ξ̂ = ξ − ihαβ̄(σ≥β̄)(f ◦ π)≥α + ihᾱβ(σ≥β)(f ◦ π)≥ᾱ

where hαβ̄ = Lθ(≥α, ≥β̄) and [hαβ̄] = [hαβ̄]
−1. Note that hαβ̄ are basic

functions. We need to derive the transformation law (under θ̂ = e2(f◦π)θ)
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for the transverse Webster connection ∇. We recall (cf. [5]) that ∇ is

given by

(17)





∇σ(α)β = ρ+πF [σα, σβ]

∇σ(α)β = Uαβ

∇σ(ξ)β = Lσ(ξ)β + Tξβ

∇ξ = 0

ω(Uαβ, ∞) = (σα)(ω(β, ∞))− ω (β, ρ−πF [σα, σ∞])

Tξ = −1

2
J ◦ (Lσ(ξ)J)

together with 



∇σαβ̄ = ∇σᾱβ
∇σᾱβ̄ = ∇σαβ
∇σξβ̄ = ∇σξβ
∇X = ∇̊X

for any α, β ∈ H and X ∈ T (F). Here ω = −dBθ. In the original

construction (cf. [5]) of ∇ one chose N to be the orthogonal comple-

ment to T (F) (rather than an arbitrary nonlinear connection on E0),

with respect to a bundle-like Riemannian metric on E0 whose associated

transverse metric is the transverse Webster metric gθ

gθ(z, w) = (dBθ)(z, Jw) , gθ(z, ξ) = 0 , gθ(ξ, ξ) = 1

for any z, w ∈ H. However, a slight modification of the proof of Theorem

10 in [5] shows that Tξ, and ∇ itself, do not depend upon the choice of

N entering their explicit expressions. Finally, ρ+ : ∫(F) ⊗C−→H and

ρ− : ∫(F)⊗C−→H are the projections associated with the decomposition

∫(F)⊗C = H⊕H⊕Cξ. Let {θα}, respectively {θ̂α}, be the (local) basic

1-forms determined by

θα(≥β) = δαβ , θα(≥β̄) = 0 , θα(ξ) = 0

respectively

θ̂α(≥β) = δαβ , θ̂α(≥β̄) = 0 , θ̂α(ξ̂) = 0 .
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Then

θ̂α = θα + ihαβ̄(σ≥β̄)(f ◦ π)θ

hence

ρ̂+ = ρ+ + ihαβ̄(σ≥β̄)(f ◦ π)θ ⊗ ≥α .

Let ∇̂ be the transverse Webster connection of (M,F , θ̂). Then (by (17))

∇̂σ(α)β = ∇σ(α)β + ih∏µ̄(σ≥µ̄)(f ◦ π)(π∗θM)([σᾱ, σβ])≥∏ .

Consequently

(D̂2u)(≥α, ≥ᾱ) = (D2u)(≥α, ≥ᾱ) + ih∏µ̄(σ≥∏)(f ◦ π)(π∗θM)([σ≥α, σ≥ᾱ])Dσ≥µ̄u

where from

B̂(≥α, ≥ᾱ)u = B(≥α, ≥ᾱ)u+

+ ih∏µ̄(π∗θM)([σ≥α, σ≥ᾱ]){(σ≥∏)(f ◦ π)Dσ≥µ̄u− (σ≥µ̄)(f ◦ π)Dσ≥∏u} .

Next, if {≥α} is Lθ-orthonormal, then {e−(f◦π)≥α} is Lθ̂-orthonormal,

hence

ie2(f◦π)°Λθ̂B̂
¢
u = i

°
ΛθB

¢
u+

+ h∏µ̄(π∗θM)
≥
i

nX

α=1

[σ≥α, σ≥ᾱ]
¥
{(σ≥∏)(f ◦ π)Dσ≥µ̄u− (σ≥µ̄)(f ◦ π)Dσ≥∏u} .

As (π∗θM)T (F) = 0 and σπFY = YN (the projection of Y on N) and

2ihαβ̄ξ = ∇σ≥α≥β̄ −∇σ≥β̄≥α − πF [σ≥α, σ≥β̄]

it follows that

2inσ(ξ) =
nX

α=1

σ (∇σ≥α≥ᾱ −∇σ≥ᾱ≥α)−
nX

α=1

[σ≥α, σ≥ᾱ]− iS

for any Lθ-orthonormal (admissible) frame {≥α}. We may conclude that

(π∗θM)
≥
i

nX

α=1

[σ≥α, σ≥ᾱ]
¥

= 2n
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hence ΛθB transforms as

ie2(f◦π)
≥
Λθ̂B̂

¥
u = i (ΛθB)u+

+ 2nh∏µ̄{(σ≥∏)(f ◦ π)Dσ≥µ̄u− (σ≥µ̄)(f ◦ π)Dσ≥∏u} .

Next, taking into account that Ŝ = e−2(f◦π)S we get

e2(f◦π)D̂σ(ξ̂)u = Dσ(ξ)u + ihαβ̄{(σ≥α)(f ◦ π)Dσ≥β̄u− (σ≥β̄)(f ◦ π)Dσ≥αu}

hence (by (16))

D̂σ(ξ)u = Dσ(ξ)u

As an example, we look at a strictly pseudoconvex parallelilzable

CR manifold M . Let {Tα} be a fixed global frame of T1,0(M). Let

F : T1,0(M)−→[0,1) be the complex Finsler structure given by

F (u) = |≥1(u)|2 + · · · + |≥n(u)|2

u = ≥α(u)Tα(x), u ∈ T1,0(M)x, x ∈M .

Then Hαβ̄ = 1
2
δαβ, so that F is convex. Let D be the canonical connection

determined by the data (F,N). Let {≥α} be the admissible (global) frame

of H given by (dTπ)≥α = Tα ◦ π. Then

Dσ ≥ᾱ T̃β =
X

ρ

≥
Γρᾱβ ◦ π

¥
T̃ρ , Dσ ≥α T̃β = −

X

ρ

≥
Γβ̄αρ̄ ◦ π

¥
T̃ρ

D@/@≥
α T̃β = D@/@≥α T̃β = 0

2nDσ ξT̃β = − (ΛθB) T̃β

where Γρᾱβ are (among) the Christoffel symbols of the Tanaka-Webster

connection and ΛθB may be computed from (9). If M = Hn (the Heisen-

berg group with the standard strictly pseudoconvex CR structure, cf.

e.g. [8], p. 189) then ΛθB = 0. Finally, note that on a parallelizable CR

manifold there is a natural choice of complement of T (F) in T (T1,0(M)0),

obtained by the injection α≥ : M −→M×Cn
0 , α≥(x) = (x, ≥), x ∈M, ≥ ∈

Cn
0 = Cn \ {0}, i.e.

Nu = dπ(u)(h ◦ α≥(u))Tπ(u)(M)
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where ≥(u) = (≥1(u), · · · , ≥n(u)) and h : M × Cn
0 −→T1,0(M)0 is the

natural diffeomorphism h(x, ≥) = ≥αTα(x).

Applications (of the canonical connection D) are delegated to a fur-

ther paper. Let L ∈ Γ1(π∗E) be the Liouville vector i.e. L(u) = (u, u),

for any u ∈ E0. Locally L = ≥j s̃j. Note that @FL = 0. We close by

observing that X 7→ DXL is an isomorphism of T1,0(F) onto π∗E (in-

deed, as a consequence of the complex homogeneity property of F , one

has D∞ sL = s for any s ∈ Γ1(π∗E)).

It is an open problem to build canonical connections for CR-hol-

omorphic vector bundles E over CR manifolds of CR codimension higher

than 1, whether in the presence of a Hermitian structure on E, or a Her-

mitian structure on π∗E, associated with a convex complex Finsler struc-

ture. As remarked in the introduction, the construction of the Tanaka

connection explicitely employs the Tanaka-Webster connection of the base

pseudohermitian manifold; on the other hand, an analogue of the Tanaka-

Webster connection, on a nondegenerate CR manifold of higher CR codi-

mension, is already available, due to the work by R. Mizner, [14] (al-

though limitted to the case where the conormal bundle H(M)⊥ admits

global frames).
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