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Complex Finsler structures on

CR-holomorphic vector bundles

S. DRAGOMIR - P. NAGY

RIASSUNTO: Per ogni fibrato vettoriale CR-olomorfo (nel senso di N. TANAKA,
[16]) E, su una CR varieta fortemente pseudoconvessa M, dotato di una struttura
di Finsler complessa F', si costruisce una connessione D nel pullback n*E di E via
m: E\ {0} — M, simile alla connessione di Rund (cfr. M. ABATE — G. PATRIZIO,
[1]) nella geometria di Finsler complessa.

ABSTRACT: For any CR-holomorphic vector bundle (in the sense of N. Tanaka,
[16]) E, over a strictly pseudoconver CR manifold M, equipped with a convex complex
Finsler structure F, we build a connection D in the pullback bundle 7*FE of E by
m: E\ {0} — M, similar to the Rund connection (c¢f. M. ABATE — G. PATRIZIO, [1])
in complex Finsler geometry.

1 — Introduction

Let M be a CR manifold and £ — M a complex vector bundle over
M. Let j : M — E be the zero section, i.e. j(x) =0,, € M, and set
Ey = E\ j(M). A function F' : E— R is a complex Finsler structure
on F if i) F € C>(Ey), ii) F(v) > 0 and F(v) =0 <= v € j(M), and
iii) F(Av) = |A*F(v) for any A € C, v € E. Let 7 : E;— M be the
projection. Let 7*E — Ej, be the pullback of E — M by 7. Any convez
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complex Finsler structure F' on F induces a Hermitian metric H on 7*FE.
When M is a complex manifold and £ — M a holomorphic vector bundle
over M there is a natural connection D in 7*E (the Rund connection, cf.
[10]) i.e. the Hermitian connection of (7*E, H) (cf. e.g. [19], p. 79). In-
deed, if this is the case then 7* E — Fj is a Hermitian vector bundle over
Ey. See also M. ABATE — G. PATRIZIO, [1], p. 88. As known, the CR ana-
logue of the canonical Hermitian connection of a Hermitian vector bundle
is the Tanaka connection (cf. [16], p. 39) of a CR-holomorphic vector
bundle (over a strictly pseudoconvex CR manifold) endowed with a Her-
mitian metric. Then, is there any natural choice of connection D in 7*FE
(so that DH = 0)7 It is to be observed that, as opposed to the holomor-
phic category (where Ej is a complex manifold), given a CR-holomorphic
vector bundle E — M over a CR manifold M, FEj is not a CR manifold.
On the other hand, Tanaka’s construction (cf. [16], p. 40-41) relies heav-
ily on the existence of the Tanaka- Webster connection (cf. [16], p. 29-30,
and [18]) of the base CR manifold. We circumvent this difficulty by ob-
serving that, while Ej carries no CR structure, the vertical foliation F
of Ey (i.e. the foliation F tangent to Ker(dm)) possesses a natural trans-
verse CR structure, and therefore one may use the theory of transver-
sally CR foliations as developed in [4]-[5] (and the transverse Webster
connection there). The canonical connection D = D(F, N) we build (cf.
Theorem 1) depends on H, on the complex structure of T'(F), respec-
tively on the CR~holomorphic structure of E (expressed by the occurence
of two differential operators dr : ['°(7*E) — I'*(T, 1 (F)* ® n*E) and
Oy : T3 (m*E) —T>(H ® n*E), cf. Section 3), and on a fixed choice
of complement N of T'(F) in T'(Ey). While the choice of N is arbitrary,
D(F,N) is shown to be independent of the choice of contact form 6,, on
M, used to build it (hence D(F,N) is a CR invariant). The construc-
tion in Theorem 1 only works for strictly pseudoconvex CR manifolds M,
in particular M should have CR codimension 1, and it is an interesting
question, raised by the referee, whether any useful generalization, to the
higher codimension case, may be produced.

2 - CR geometry

We briefly recall the notions of CR and pseudohermitian geometry we
need, such as the existence (and axiomatic description) of the Tanaka-
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Webster connection (consequently T} o(M) may be organized as a CR-
holomorphic bundle). The main reference is [16]. Cf. also [9]. As to
(transversally) CR foliations, we rely upon recent work in [4]-[5].

2.1 - CR manifolds

Let M be a real (2n + k)-dimensional C*° manifold and T; (M) a
CR structure on M, i.e. a rank n complex subbundle of the complexified
tangent bundle T'(M) ® C so that

Tio(M)NTo (M) =(0)

[°(Th,0(M)), I>(Th o (M))] € T>(Th,0(M))

where Ty 1 (M) = T (M) and an overbar denotes complex conjugation.
The pair (M, T;0(M)) is a CR manifold (of type (n,k)). The integers n
and k are the CR dimension and CR codimension, respectively. A CR
manifold of CR codimension & = 0 is a complex manifold. When k = 1
we refer to M as a CR manifold of hypersurface type. It is with this type
of CR manifolds that the present paper is mainly concerned.

Let (M,T10(M)) be a CR manifold and F : T (M) —[0,00) a
complex Finsler structure on T} o(M). Then (M, F') is a Finslerian CR
manifold. To give a class of examples, we recall that a complexr Minkowsk:
norm on a complex linear space V is a map v — ||v||, v € V, so that
i) [lol > 0 and |jv]| = 0 <= v = 0, ii) ||Av|| = |A|||v||, and iii) for
any linear basis {ey, - ,e,} of V the map f(z',---,2") = ||z%] is at
least of class C* at z # 0. A pair (V|| - ||) is a complex Minkowski
space. Two complex Minkowski spaces V, W are congruent if there is a
C-linear isomorphism ¢ : V.— W so that ||p(v)| = ||v|| for any v € V.
Let M be a CR manifold and F' : T} (M) —[0,00) a complex Finsler
structure. Then T3 o(M), is a complex Minkowski space in a natural way,
for any @ € M. The Finslerian CR manifold M is modelled on (V.|| -||) if
T10(M), =~ V (congruent complex Minkowski spaces) for any € M. Let
(M, Ty o(M)) be a CR manifold of CR dimension n and let B(M) — M
be the principal GL(n,C)-bundle whose associated bundle of standard
fibre C™ is T} o(M) — M, i.e.

(B(M) x C")/ GL(n,C) = Ty o(M)
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(a vector bundle isomorphism). Let (V.|| - ||) be a complex Minkowski
space and {ey,--- ,e,} a fixed linear basis of V. Let

G = {[Ug‘] € GL(n,C) : f(Uz>,---  U"2%) = f(z',---,2"),

V (2l 2") e C}.

Then G is a closed subgroup of GL(n,C). Let H C G be a Lie sub-
group and B— M a principal H-subbundle of B(M)— M. A pair
(M, B) is referred to as a CR {V, H}-manifold (by analogy with [12]).
Let v € T1 (M), and {7, } a (local) frame of T} (M) defined on an open
neighborhood U of z, adapted to B. Then v = v*T,(x) for some v* € C.
Set

F(v) = [[v%eal.

Therefore, any CR {V, H }-manifold is a Finslerian CR manifold modelled
on (V.- [I)-
Let (M, T, o(M)) be a CR manifold. Its Levi distribution

H(M) = Re{T1o(M) ® T (M)}

carries the complex structure

J:HM)—H(M), J(Z+2Z)=i(Z—-2), ZcTio(M).

Here i = \/—1. Let H(M)* C T*(M) be the conormal bundle of H (M)
ie.

H(M)* = {w e T*(M) : Ker(w) 2 H(M),}, z€ M.

Assume M to be an orientable CR manifold of hypersurface type, of CR
dimension n. Then H(M)* is a trivial real line bundle over M. A nowhere
zero global section € T'™°(H (M)1) is a pseudohermitian structure on M.
The CR manifold M is nondegenerate if the Levi form

Ly(Z,W) = —i(d0)(Z,W), Z,W €Ty o(M)

is nondegenerate for some pseudohermitian structure 6 (and thus for all).
If this is the case then 6 is a contact form, i.e. 6 A (df)™ is a volume
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form on M. The CR manifold M is strictly pseudoconvex if Ly is positive
definite for some 6.

Let M be a nondegenerate CR manifold and 6 a contact form. There
is a unique nowhere zero tangent vector field 7" on M (the characteristic
direction of (M, 0)) so that

0(T)=1,T]|dfd=0.
The Webster metric gg is the semi-Riemannian metric on M given by
g9(T7T) =1 ) 99(T7X) =0

for any X,Y € H(M). For any nondegenerate CR manifold M on which

a contact form 6 has been fixed, there is a unique linear connection V
on M (the Tanaka-Webster connection of (M,0)) so that i) H(M) is
parallel with respect to V, ii) V.J =0, Vgy = 0, iii) the torsion Ty of V
is pure, i.e.
To(Z, W) =0
ToJ+JorT=0

for any Z,W € Ty o(M), where 7X = Ty(T,X), X € T(M), is the
pseudohermitian torsion. Cf. [16] and [18]. See also [8], p. 173-174.

2.2 — CR-holomorphic bundles

Let E — M be a complex vector bundle, of standard fibre C", over a
CR manifold M. It is CR-holomorphic if it is endowed with a differential
operator
Op :T®(E) —T>(Ty,(M)* ® E)

so that - B B
[Z,Wu=ZWu-W Zu
for any f € C®(M),u € I'*(E), and Z,W € I'*(T1(M)). Here

Oy 2 C(M) — (T (M)") Omf)Z =Z(f)
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is the tangential Cauchy-Riemann operator (on functions). Also one
adopts the notation Zu = (9pu)Z.

EXAMPLES. i) Let V be a complex N-dimensional manifold and
M C V areal hypersurface endowed with the CR structure

Tyo(M) = [T(M)® C]NT(V)

where T'%(V) is the holomorphic tangent bundle over V (if (U, 27) is a
local system of complex coordinates on V' then the portion of T*°(V)
over U is the span of {9/9z7 : 1 < j < N}). Then the portion over
M of any holomorphic vector bundle over V is a CR-holomorphic vector
bundle over M.

ii) Let (M, Ty 0(M)) be a CR manifold and set

Ton = R

Let p : T(M) ® C—T(M) the projection. Then T'(M) is a CR-
holomorphic vector bundle with the differential operator

for any u € T>(T'(M)), Z € T>(T} o(M)), and some W € T>(T(M)®C)
so that pW = .

iii) Let M be a nondegenerate CR manifold, § a contact form on
M, and V the Tanaka-Webster connection of (M, 6). Then T} o(M) is a
CR-holomorphic vector bundle with the differential operator

01, gty : D(T10(M)) — (T, @ Ty0(M))

(ETLO(M)Z)W = VWZ , LW e FOO(TLO(M)) .
Cf. e.g. [17], p. 569.
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2.3- CR foliations

Let M be a C* manifold and F a codimension 2n + 1 foliation
of M. Let T(F) be the tangent bundle of the foliation and v(F) =
T(M)/T(F) its normal (or transverse) bundle. Let 7wz : T(M) — v(F)
be the projection. Let V be the Bott connection of (M, F), ie

6){8 = ’7'[']:[)(7 Y]

for any X € I'°(T(F)), s € I'°(v(F)), and some Y € X(M) so that
7Y =s. Let H C v(F) ® C be a complex subbundle, of complex rank
n. Set H = Re{H ® H} C v(F). Then H carries the complex structure
J:H—H, Jla+@) =i(a—@), a € H. Then H is a transverse almost
CR structure (of transverse CR dimension n) if 1) HNH = (0), 2) H is
parallel with respect to the Bott connection of F, and 3) LxJ = 0 for
any X € [°(T(F)). Lie derivatives are defined with respect to V.

Let L(F) = L(M,F) C X(M) be the Lie subalgebra of all foliate
vector fields (or infinitesimal automorphisms of F), cf. e.g. [15], p. 35.
Let {(F) = ¢(M,F) C I'*(v(F)) be the Lie algebra of all transverse vec-
tor fields (i.e. s € {(F) <= s =7nxY forsome Y € L(F)). Let 'y (v(F))
consist of all s € T'°(v(F)) with Lxs = 0 for any X € I'™°(T(F)). Note
that T (F) = £(F) (so that the Lie bracket [s,r] of any s,r € T¥ (v(F))
is well defined).

A transverse almost CR structure H C v(F) ® C is integrable if
for any x € M there is an open neighborhood U C M, x € U, and
there is a frame {1, ,(,} of H on U so that (, € I'y (v(F) ® C) and
[Cas Cs) € T°(H) for any 1 < a, f < m. Such a local frame of H is termed
admissible. An integrable transverse almost CR structure is a transverse
CR structure on (M,F). When F is the trivial foliation by points a
transverse CR structure is an ordinary CR structure.

Let (N,T10(N)) be a CR manifold of hypersurface type, of CR di-
mension n. A CR automorphism f : N— N is a C* diffeomorphism
and a CR map (i.e. (d,f)T1,0(N)s € T10(N) sy, © € N). Let TZR(N) be
the pseudogroup of all (local) CR automorphisms of (N, T; o(IV)) (of class
C*). Let F be a I'y,(N)-foliation of M (in the sense of [11]). Then F is
a (transversally) CR foliation (of transverse CR dimension n). As such
(by Theor. 1 in [5], p. 55) F carries a transverse CR structure #H. For
instance, let f : M — N be a C* submersion from a C'*° manifold onto
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a CR manifold N. The vertical distribution Ker(df) is integrable, thus
giving rise to a CR foliation of M (whose leaves are the connected com-
ponents of the fibres of f) which is transversally nondegenerate (strictly
pseudoconvex) if N is a nondegenerate (strictly pseudoconvex) CR man-
ifold (cf. Theor. 4 in [5], p. 60). CR foliations also arise on certain
degenerate CR manifolds (cf. [5], p. 64-68). See [3] for an application
of the CR foliation theory to the Beltrami equations on degenerate CR
manifolds.

3 — The canonical connection

Let (E,9z) be a CR-holomorphic vector bundle (of standard fibre
C") over the CR manifold (M, T} o(M)). Let 7* E — Ej, be the pullback
of ' by m. Given a section s : M — F its natural lift is the section

$5:Ey—1"E , 3(u) = (u,s(m(u))), u€ Ey.

Given a local frame {sy,-- - , s, } of F'on theopenset U C M, {51, ---,35,.}
is a local frame of 7*F on 7~ '(U) C Ej.

Let F be the vertical foliation on FEjy, i.e. the simple foliation defined
by the C*° submersion 7 : Ey — M. Let p*F be the pullback of F to
™ F (cf. [15], p. 30), where p : 7*E — Ej is the projection (a C*
submersion). A section o : Ey — 7*E is foliate if

(duU)T(]:)u C T(p*]:)a(u) , u € Fy.

Note that the foliate sections in 7*E are precisely the natural lifts of the
sections in E. Indeed, let ¢/ : 771 (U) — C be complex fibre coordinates,
ie. u= (' (u)sj(m(u)), for any u € 7= 1(U). A sectiono : 771 (U) — 7*E
is locally represented as

O'(I‘, C) = (Ia Ca fj(xa C)ej)

for some C* functions f7 : 771(U) — C. Here {e;} C C" is the canoni-
cal linear basis. Then o is foliate if and only if (do)X € T'(p*F) for any

X = X79/0¢7 + ﬁ(‘?/@? € T(F). This is equivalent to X(f7) = 0, i.e.
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17 € Q%(F). Hence f7 descends to a function on U (denoted by the same
symbol) and o is the natural lift of f7s;.

Let I'y(7*E) be the space of all foliate sections in (7*E,p*F) —
(Eo, F). Let H be the transverse CR structure of F. We shall need the

differential operator
0y :TX(7*E) —TI>(H @ 7*E)

defined by
(57.[5)”@ = (5E$>ﬂ(u) (dT’ﬂ')ua

for any o € H,,u € Ey. The map (drm), : V(F)y — Trw)(M) is
naturally induced by dr (a R-linear isomorphism, because of T'(F) =
Ker(dr)).

Let F': E—]0,00) be a complex Finsler structure and set

H,(Z,W) = H,;(u) Z'WF

1o
* T 29¢59¢k
Z=275,(u),W = Wi§;(u) € (r*E),u € 7 (U).

Then H is globally defined. We say F' is convex if H is positive definite.
If ' is convex H is a Hermitian metric in 7*F — Ey. There are, how-
ever, interesting examples of degenerate complex Finsler structures. For
instance, let (M, T} o(M)) be a parallelizable CR manifold, i.e. Ty o(M)
admits a global frame {T},--- ,T,}. Let F' : T} (M) —[0, 00) be given
by

F(u) =|u'- '-u”‘z/n

(a CR analogue of the real Finsler metric in [2]) where u = u*T,(x),u €
T o(M),,x € M. Then
1 F
ik = 27’/12@
hence F is not convex (det[H,z] = 0).
As remarked before, Fy is not a CR manifold hence Tanaka’s result
does not apply. However Fj carries the CR foliation F and the synthetic
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object (7*E, dy) is analogous to a CR-holomorphic vector bundle. We
shall additionally need the differential operator

5]: . FOO(W*E) —>FOO(T0,1(]:)* ® 7T*E)

k
(5]:8 % = %gk

s=f*., fF:r ' (U)—C

where Ty 1 (F) € T(F) ® C is locally the span of {9/0¢" : 1 < j < r}.
Note that drs is globally defined (and 975; = 0).

Let M be a nondegenerate CR manifold, of signature (r, s) (the sig-
nature of the Levi form). Then F is a (transversally) nondegenerate
CR foliation, of the same signature. We shall need the basic complex of

(E07]:)
QO (F) 25 T2 (1(F)*) 28 T (A20(F) ) -Ey - . .28, T2 (A2 (F) ) —0.

Let 6y be a contact form on M and 6 € I'}Y(v(F)*) be the natu-
rally induced transverse pseudohermitian structure (i.e. 0, = (0ar)r(w) ©
(drm)u , u € E) on (Ey, F). Let Lo(a, B) = —(dpf)(a, B), o, B, € H, be
the transverse Levi form. The trace Agp of a bilinear form ¢ on H @ H

is given by

ZAGSD = Z EQQO(CQ, Ca)

where {(,} is an orthonormal (i.e. Ly((s,(5) = €alap €1 = -+ = € =
—€.41 =+ = —€.45 = 1) admissible local frame of H.

In the sequel, we also fix a complement to T'(F) in T(Ey), i.e. a
vector bundle N — Ej so that

(1) T(E) =T(F)® N

(for instance, let h be a Riemannian metric on Ey and N = T'(F)* the
h-orthogonal complement of T'(F) in T'(Ey)). Let o : v(F) — N be the
natural bundle isomorphism (associated with the direct sum decomposi-
tion (1)). We establish the following
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THEOREM 1.  Let F : E—[0,00) be a conver complex Finsler
structure on a CR holomorphic vector bundle (E,g) over a strictly pseu-
doconvex CR manifold (M, Ty o(M)). There exists a unique connection
D = D(F,N) in m*E — Ey, depending on the data (F,N), so that

for some contact form Oy on M, and for any Z € T°(T1o(F)),s €
r~(7*E), a« € T°°(H), and v € T*°(E). In particular, D is a CR invari-
ant (and axiom 4 holds for any contact form on M).

Here RP is the curvature tensor field of D. In axiom 4, R? is thought
of as the End(FE)-valued bilinear form

(@, ) = RP(0(a),0(B)) , o, BEH.

Before proving Theorem 1, we wish to look at the analogy with real
Finsler geometry (cf. e.g. M. Matsumoto, [13]). A nonlinear connection
on M is a C* distribution N on V(M) =T (M) \ 0 so that T,,(V(M)) =
Ker(d,m)® N,, u € V(M) (cf. N. Barthel, [6]) where 7 : V(M) — M is
the projection. A Finsler connection on M is a pair (V, N) consisting of
a connection V in 7*7T'(M) and a nonlinear connection N on M (cf. [13]).
The vertical lift is the bundle isomorphism v : 7*T' (M) — Ker(dr) given
by Yu(u, X) = 2¢(0), where C(t) = u + tX, |t| < e. Given a nonlinear

dt
connection N on M, the horizontal lift is the bundle isomorphism § :

T (M)— N, B, = (Lu\Nu)_l, where
(2) LY = (u,(d,m)Y)

forany Y € T,,(V(M)), u € V(M). With any Finsler connection (V, N)
one may associate two concepts of torsion, namely 77 (X,Y) = VxLY —
VyLX — L[X,Y] and Tx(X,Y) = VxKY — Vy KX — K[X,Y], X,Y €
X(V(M)), where K = v ! o nt is the Dombrowski map (here 7+ :
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T(V(M)) — Ker(dr) is the projection). Given a real Finsler metric
F :T(M)—]0,+00), there is a naturally associated Riemannian bundle
metric g in 7T (M) — V(M), and one may consider the family of Finsler
connections satisfying Vg = 0. Then a canonical connection (the Cartan
connection, cf. [7]) may be chosen from this set, by additionally requiring
that Tr(6X,8Y) = 0and Tk (v X,~7Y) =0, for any X,Y € I'>°(7*T'(M)).
Moreover, if (V, N) is the Cartan connection, then N is also uniquely de-
termined in terms of F. Other canonical connections (e.g. the Berwald,
or Rund connection, cf. [13]) are of current use in real Finsler geometry.
Now, given a complex vector bundle E over a CR manifold M, there is
an analogous notion of nonlinear connection, i.e. a C* distribution N on
Ey so that (1) holds, and it is only natural that there should be a freedom
of choice of N, just as in the case of Finsler connections. The (globally
defined) bundle isomorphism

"}/IT('*E—>T170(]:), "}/(gj):— 1S]§7"

may play the role of the vertical lift, yet the bundle morphism (2) is
7T (M)-valued, rather than 7*E-valued, hence T}, is not well defined
(for a connection D in 7*FE). Therefore, there is no obvious ’torsion-
free’ requirement, and one may not expect that axioms 1-4 in Theorem 1
should influence upon the choice of N C T'(E)).

Let M be a CR manifold. Geometric objects depending only on
the CR structure of M are usually referred to as CR invariants. For
instance, the signature of the Levi form (of a nondegenerate CR manifold)
is a CR invariant. In CR geometry, several objects are built in terms
of the given CR structure and a fixed pseudohermitian structure 6,,.
An example is the Tanaka-Webster connection (of (M,6),)). Such an
object is a CR invariant if it is invariant under a transformation Oy =
e 0y, f € C°(M) (and in this respect, CR geometry is, of course,
analogous to conformal geometry). The Tanaka-Webster connection is
not a CR invariant. While, as argued above, there is an apparent freedom
in the choice of complement N to T'(F) in T'(Ey) (which, as suggested by
the referee, might be useful in applications), once F' and N are fixed, the
connection D = D(F, N) furnished by Theorem 1 may be shown to be a
CR invariant.
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We firstly establish uniqueness. Let D be a connection obeying to
1-4, where 6 is the transverse pseudohermitian structure associated with
a fixed contact form 6, on M. Axiom 3 yields

(3) Z(H(u,v)) = H(Dzu,v) + H(u, D3v)
for any Z € I'°(T' o(F)) and u,v € I'*(7*E). Set

(4) Da/acjgk - Czkgl .

J

By axiom 1

(5) D(’)/@ngk:o'
Hence (by (3) and (5))
: 70H,;
i il kl
(6) Ol = H' 55
where [H”] = [H;]~'. Next, let T be the characteristic direction of

(M,0)) and € € I'Y(v(F)) the corresponding transverse characteristic
direction on (Ey, F) (i.e. (drm)u&u = Tr(w), v € Ey). By axioms 2-3

(7) Dy(a)3; = (Ou3;)0
(8) H(Do (a5, 5) = (00) (Hji) — H (55, (O 51)a)
Taking into account the direct sum decompositions
T(Ey) =T(F) @ o v(F)
V(F)e C=HoHo CE

we are left with the computation of D, u for u € I'°(7*E). To this end,
define D?u by setting

(D*u)(X,Y) = DxDyu — Do ynpyyt
for any X,Y € X(Ey) and v € I'°(7*E). Here

V : T (u(F)) — (T (Ey) @ v(F))



440 S. DRAGOMIR - P. NAGY [14]

is the transverse Webster connection of (Ey,0) (cf. Theorem 10 in [5], p.
73). Next, define B by setting

9) B(X,Y)u = (D*u)(X,Y) — (D*u)(Y, X).
This may be also written as
(10) B(X,Y)u=R"(X,Y)u— Dy rgx,yyt+ Dyiixyju.
Here Ty is given by

Ty(X,Y)=VxnzY — VyrzX —7x[X,Y]

and m+ : T(Ey) — T'(F) is the projection. Let {(,} be a local orthonor-
mal admissible frame of H. Define Sy € I'™°(U, T(F)) by setting

Sy :izn:ﬂ'l[a(a,aca].

If {¢/,} is another orthonormal admissible frame of H, defined on the open
set U,UNU" # 0, then (as 7to = 0)

¢, = UL
o ¢, o) =USU " [0 ¢Cs,0¢5)

S ULUL =67

a=1

hence the local sections Sy glue up to a (globally defined) section S €
I'>(T(F)). Set X =0((.),Y = 0((s) in (10) and take traces. As

Ty(oa,0B) = 2iLy(a, B)¢
for any o, 8 € H (cf. [5], p. 73), it follows that (by axiom 4)

(11) 2’I’Ll)(7 5’(,6 = —(AQB)U — Dsu
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for any u € I'>°(7*E). The formulae (4)-(8) and (11) show that D (obey-
ing to the axioms 1-4) is unique. To prove existence, let

D :T®(1*E) — (T (E,)* ® m°E)

be defined by (4)-(8) and (11). Then D is a connection in the vector
bundle 7*E. For instance, the property

(12) Dy ¢fu= fDyeu+ (0 &)(f)u

may be checked as follows. Firstly, note that

(13) B(X.Y)fu= fB(X,Y)u+ (m[X,Y]) (flu — (¢ Tv(X,Y)) (flu
for any X,Y € I(¢ H), provided that

(14) Dxfu= fDxu+ X(f)u

for any X € I'°(c H). To check (14) note that (7)-(8) prescribe D, 4,
respectively D, ., on foliate sections (natural lifts of sections in E') only.
Then we extend Dx,X € I'°(c H), as a derivation, to the whole of

I (7*E). We still must check that (14) holds for f € C°(M) and
u = 3§,s € '(F). Here, we do not distinguish notationally between f
and its vertical lift f o € Q%(F). We have

Dy afs= (0nfd)a = 0fs)(drm)a =
— (f Ops + (Ouf) ® s) (drm)a =

= f(Oud)a + ((drm)@) (f)5 =
=fD,s5+ (o a)(f)s

by ooz : T(F)t CT(E,) and (drm) o mr = dr. Finally (13) leads to
(Ao B)(fu) = f(AeB)u = S(f)u—2n(o &)(f)u
for any f € C(Ey) and u € I'*°(7*E). Hence (by (11)) one gets (12).

It remains to be checked that D satisfies the axioms 1-4. By (5)
and (7) the connection D obeys to axioms 1-2. Also AyR” = 0 as a
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consequence of (10)-(11). It remains that we check axiom 3. Note firstly
that

(15) X (H(u,v)) = H(Dxu,v) + H(u, Dxv)
for any X € I'°([(c H) ®T(F)] ® C). Indeed (4)-(6) lead to (3), and (3)
and (8) (and their complex conjugates) lead to (15). A calculation shows

that (by (15))

H(B(X,Y)u,v) + H(u B(X,
= (r*[X,Y])

for any X,Y € T°((c H) ® C). Set X = 0(, and Y = X and take
traces. We obtain

Y)u )
(H(u,v)) = (0 Ty (X, Y)) (H(u, v))

H((AyB)u,v) + H(u, (AgB)v) = —=S(H(u,v)) — 2n(c &)(H(u,v)).

At this point, substitute Ay B from (11) and use (by (15), as S € T'(F))
DgH = 0. This procedure gives D, H = 0. 0

To prove the last statement in Theorem 1, let 8 be the transverse
pseudohermitian structure associated with the contact form Oy = €0 M
f € C>(M). Then 6 = e*°7. Next, let D be the connection determined
by axioms 1-4 (where 6 is replaced by 6). Then (by (4)-(5) and (7)-(8))

ﬁXS = DXS s ﬁa(z)s = DG(Z)S

for any X € T(F), s € I'*(7*E) and z € I'°(H). To see how Dy
changes under a transformation 6 = e2/°7f, note first that

dpf = eV {dgl + 2dg(f o) A O}
hence
(16)  €V°ME =& —ih® (0¢p)(f © 7)o + ih* (0Cs) (f © T)Ca

where h,5 = Ly(Ca,C5) and [h*°] = [ha5]~". Note that h,; are basic
functions. We need to derive the transformation law (under § = e*(f°mg)
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for the transverse Webster connection V. We recall (cf. [5]) that V is
given by

Vo@B = pi7r 0@, o]

vo a - Ua

(17) (P g
Voe)B = Low)B+ TeP
VE=0

w(Uap,7) = (0a)(w(B,7)) —w (B, p-7r [oax, 57])

1
Te=—5Jo (Lo )

together with

for any a,f € H and X € T(F). Here w = —dpf. In the original
construction (cf. [5]) of V one chose N to be the orthogonal comple-
ment to 7'(F) (rather than an arbitrary nonlinear connection on Ej),
with respect to a bundle-like Riemannian metric on Fy whose associated
transverse metric is the transverse Webster metric gg

9o(z,w) = (dpf)(z, Jw) , go(2,§) =0, ga(§,€) =1

for any z,w € H. However, a slight modification of the proof of Theorem
10 in [5] shows that T, and V itself, do not depend upon the choice of
N entering their explicit expressions. Finally, p, : v(F) ® C — H and
p_ : V(F)®C — H are the projections associated with the decomposition
V(F)@C = HOH® CE. Let {0}, respectively {#*}, be the (local) basic
1-forms determined by

0%(Cs) = 05, 0°(C3) =0, 67(§) =0

respectively

0°(Cs) = 65, 6°(¢) =0, 6°(§) =0.
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Then A i
0% = 0> +ih*?(a(z)(f o m)0

hence B
pr = ps + 0 (0(3)(fom)0 @ (o .
Let V be the transverse Webster connection of (M, F,0). Then (by (17))

Vo@ B = Vo +ih™ (0G)(f o m) (w0 (loa, 0 5])x -

Consequently

(D*u)(Cas Ca) = (D) (Ca Ca) + i (000) (f 0 7) (7 0as) ([0Ca, 9Ca]) Do
where from

B(Cas Ca)u = B(Ca, Ca)ut
+ i (7000) ([0Cas 7)) {(0C) (f 0 T) Docyu — (06a) (f © ) Doy} -

Next, if {4} is Lg-orthonormal, then {e~(/°"(,} is L;-orthonormal,
hence

e2(fom) (AB)U =i(AgB)u+

+ W 0ar) (i 2 [0Cas 0Gal J{(@G)(f © T) Doy = (9Ga)(f © ™) Dy}

a=1

As (7*0y )T (F) = 0 and oY = Yy (the projection of Y on N) and

2Zho¢B£ = VUCQLCB - VUCBCOL - 7[--7:[0-407 UCB]

it follows that

n

27,710'(5) = Z o (vaCa C& - Vacaqa Z UC(M UCa — 18

for any Lg-orthonormal (admissible) frame {(,}. We may conclude that

n

(7" 6rr) <z Z 0Ca, 0Ca) > =2n

a=1
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hence AgB transforms as
ie2(fom) (AgB) u=1(AgB)u+
2 (0G0 (f 0 ) Doyt — (0Ga) (f 1) Doy}
Next, taking into account that S = e=2(/°™ S we get
VDD, eyt = Dyeyu+ ih**{(0Ca) (f o ©) Doc,u — (0C5)(f © 7) Do}

hence (by (16))
Doeyu = Do(eyu 0

As an example, we look at a strictly pseudoconvex parallelilzable
CR manifold M. Let {T,} be a fixed global frame of T} o(M). Let
F : Ty o(M)—[0,00) be the complex Finsler structure given by

F(u) = [CH (W) + - +[¢"(w)]”
u=C"u)Ty(z), ue T o(M), x€ M.

Then H,5 = 18,4, so that F is convex. Let D be the canonical connection
determined by the data (F, N). Let {(,} be the admissible (global) frame
of H given by (drm)(, = T, o w. Then

DUCaTﬁ:Z<FgBOﬂ-)TP7 DUCaTﬁ:_Z(ngOW)Tp

P P
Dy,ozeTs = DojocaTs =0

2nD, (Tp = — (AgB) T

where I'}; are (among) the Christoffel symbols of the Tanaka-Webster
connection and Ay B may be computed from (9). If M = H,, (the Heisen-
berg group with the standard strictly pseudoconvex CR structure, cf.
e.g. [8], p. 189) then AyB = 0. Finally, note that on a parallelizable CR
manifold there is a natural choice of complement of T'(F) in T'(T7,o(M)y),
obtained by the injection oc : M — M xC{, ac(z) = (2,¢), z € M, ¢ €
Ci =C™\ {0}, ie.

Ny = druy(h o aguy) Ty (M)
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where ((u) = (¢*(u),---,("(u)) and h : M x Cj— T o(M), is the
natural diffeomorphism h(z,() = (T, (x).

Applications (of the canonical connection D) are delegated to a fur-
ther paper. Let £ € I'°(7n*E) be the Liouville vector i.e. L(u) = (u,u),
for any u € E,. Locally £ = (’5;. Note that L = 0. We close by
observing that X — Dx/. is an isomorphism of T o(F) onto 7*E (in-
deed, as a consequence of the complex homogeneity property of F', one
has D, ;£ = s for any s € I'°(7*E)).

It is an open problem to build canonical connections for CR-hol-
omorphic vector bundles £ over CR manifolds of CR codimension higher
than 1, whether in the presence of a Hermitian structure on F, or a Her-
mitian structure on 7* F, associated with a convex complex Finsler struc-
ture. As remarked in the introduction, the construction of the Tanaka
connection explicitely employs the Tanaka-Webster connection of the base
pseudohermitian manifold; on the other hand, an analogue of the Tanaka-
Webster connection, on a nondegenerate CR manifold of higher CR codi-
mension, is already available, due to the work by R. MIizNER, [14] (al-
though limitted to the case where the conormal bundle H(M)* admits
global frames).
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