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On the regularity of solutions to elliptic equations

T. GALLOUET – A. MONIER

Riassunto: In questo lavoro si prova che il risultato di regolarità dimostrato da
Meyers per equazioni ellittiche con coefficienti non regolari e condizioni di Dirichlet al
bordo può essere esteso ad altre condizioni al bordo su domini con frontiera lipschitziana.
Tale risultato viene successivamente utilizzato per provare l’unicità (a meno di costanti)
della soluzione di un problema ellittico con condizioni di Neumann al bordo e dato
misura.

Abstract: We prove that the Meyers’s regularity result for elliptic equations with
nonsmooth coefficients and a Dirichlet boundary condition can be generalized for other
boundary conditions and for Lipschitz domains. We then apply this result to prove the
uniqueness (up to a constant) of the solution of an elliptic equation with a Neumann
boundary condition and with right-hand side measure.

1 – Introduction.

In this paper, we prove that the W 1,p-estimate, p > 2, of any solution

to the Dirichlet problem for a linear elliptic equation with discontinu-

ous coefficients, due to N.G. Meyers [12] can be generalized to other

boundary conditions, and for an open set with a Lipschitz continuous

boundary. For regular operator in Lipschitz domains, G. Savaré obtain

optimal regularity results in [14]. In [9], Konrad Gröger shows the result

for a mixed boundary value problem, by using a fixed-point technique (he
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cannot mimic Meyers’ proof for he’s interested in monotonous non-linear

operators).

Our proof works differently and very simply. The technique is to

reduce the problem, by using local coordinates and reflection arguments,

to a Dirichlet problem in a ball and to apply known results.

This paper is organized as follows. In Section 2, we introduce our

notations and recall Meyers’ Theorem. Section 3 is devoted to the study

of Neumann problem. Section 4 is devoted to other boundary condi-

tion, mainly Fourier condition and the mixed boundary value problem.

The last section is about an application of our main result, namely, the

uniqueness (up to a constant) of the weak solution of Neumann problem

for a linear elliptic equation, in a bounded connected open set of IR2,

whose right-hand side is a measure.

2 – Definitions and Preliminary Results

Let ≠ be a bounded connected open set of IRN , N ≥ 2. IRN is

considered with its euclidean norm, denoted | · | and · denotes the inner

product. We consider the following linear elliptic equation

(1) −div (A(x)∇u(x)) = f(x), x ∈ ≠ ,

where A is an element of (L1(≠))N×N which satisfies the following con-

dition (ellipticity and boundedness):

(2)
∃ α,β > 0 such that ∀ξ ∈ IRN , α|ξ|2 ≤ A(x)ξ · ξ

for a.e. x ∈ ≠, and kAk1 ≤ β ,

and f is a given function. We start from the following result, due to

N.G. Meyers [12], for Dirichlet problem, if the boundary of ≠ is smooth

enough.

Theorem 1 (Meyers). Let ≠ be a bounded connected open set of

C2-class and A in (L1(≠))N×N satisfy (2). There is a real number p0,

p0 > 2, such that if u is the weak solution of (1), i.e.





u ∈ H1
0 (≠) ,Z

≠

A(x)∇u(x) · ∇ϕ(x) dx = hf,ϕiH−1,H1
0
,∀ϕ ∈ H1

0 (≠) ,
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and f belongs to W−1,p(≠), p ∈ [2, p0[, then u ∈ W 1,p
0 (≠) and there is a

C(p) such that

kuk
W

1,p
0

≤ C(p)kfkW−1,p .

Moreover, p0 only depends on A and ≠ and C(p) on A, ≠ and p, not

on f .

The proof of this theorem uses a regularity theorem of Agmon-Dou-

glis-Nirenberg (see [2] and [3]), and in particular the open set needs to

be regular enough (of C2-class is sufficient). Here, a simplified version of

this theorem is only needed thereafter, the open set considered being a

ball centered on zero with radius R > 0. Indeed, for an open set with

Lipschitz continuous boundary, we use local maps and reflection to get

back to a Dirichlet problem on the unit ball. Furthermore, our method

works also for a large choice of boundary conditions. So let us recall a

definition of an open set with Lipschitz continuous boundary.

Definition 1. Let ≠ ⊂ IRN be a bounded open set. Its boundary @≠

is Lipschitz continuous if, for all a ∈ @≠, there exists an orthonormal co-

ordinates system Ra, a neighbourhood of a, V =
QN

i=1]αi,βi[= V 0×]α,β[

in these coordinates, and a Lipschitz continuous function η : V 0 →]α,β[

such that
V ∩ ≠ = {(y0, yN) ∈ V | yN > η(y0)} ,

V ∩ @≠ = {(y0, η(y0)) , y0 ∈ V 0} .

With this definition, we can prove the following proposition, where

B = {x ∈ IRN , |x| < 1}.

Proposition 1. Let ≠ ⊂ IRN be a bounded open set with a Lipschitz

continuous boundary. Then there exists a family (U0, U1, . . . , Uk) of open

sets of IRN , satisfying

(3) ≠ ⊂
k[

i=0

Ui, U0 ⊂ ≠ ,

and (J1, . . . , Jk) functions such that for i = 1, . . . , k, Ji : Ui → B is an

homeomorphism, Ji and J−1
i are Lipschitz continuous and

(4)
Ji(Ui ∩ ≠) = B ∩ {(x0, xN) | x0 ∈ IRN−1, xN > 0} = B+ ,

Ji(Ui ∩ @≠) = B ∩ {(x0, 0) | x0 ∈ IRN−1} = BN−1 .
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Remarks.

1. This definition of Lipschitz continuous boundary allows us to define

properly the outward normal of ≠ and to integrate on the boundary.

That is actually necessary in Section 4 for the Fourier condition.

2. Because the Rademacher Theorem, it is possible to make a change

of variable with Lipschitz continuous functions. Indeed, if J is a

Lipschitz continuous homeomorphism, mapping an open set U onto

an open set V , the Jacobian matrix of J , denoted DJ , is defined

almost everywhere and we have the classical formulae of change of

variable (see [4] or [7]).

Moreover, if J−1 is Lipschitz continuous too, the operator TJ :W 1,p(V )

→ W 1,p(U), defined by TJ(u) = u◦J , is linear continuous. The norm

of TJ only depends on the “Lipschitz contents” of J and J−1 and N .

Let us finally set p∗ = Np
N−p

if N > p and p∗ = 1 if N ≤ p.

3 – Meyers’ Theorem for Neumann Problem

Let ≠ be bounded connected open set of IRN , with a Lipschitz con-

tinuous boundary. Let us consider the Neumann problem for the eq. (1)

where A satisfies conditions (2).

Define

H1
∗(≠) = {u ∈ H1(≠);

Z

≠

u(x)dx = 0} .

A weak formulation of this problem is expressed by

(5)





u ∈ H1
∗(≠) ,Z

≠

A(x)∇u(x) · ∇ϕ(x) dx = hf,ϕi(H1)0,H1 ,∀ϕ ∈ H1(≠) ,

where f is in (H1(≠))0 with hf, 1i(H1)0,H1 = 0 (note that this condition is

necessary to obtain a solution of (5)). By the Lax-Milgram theorem and

the Poincaré inequality with a null mean, there exists a unique solution u

in H1
∗(≠) to (5).

If f belongs to (W 1,q(≠))0, with p > 2 and q = p/(p − 1), there is u

in H1
∗(≠) solution to (5) (indeed (W 1,q(≠))0 ⊂ (H1(≠))0). The following

theorem improves the regularity of u.
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Theorem 2 (Meyers Neumann). Let ≠ be a bounded connected open

set of IRN , with a Lipschitz continuous boundary. Let A in (L1(≠))N×N

satisfy (2). For p ≥ 2 and q = p/p − 1, let Tp be the operator defined by

Tp(f) = u, for all f ∈ (W 1,q(≠))0, with hf, 1i(H1)0,H1 = 0, where u is the

unique solution to (5). Then, there is a real number pM , 2∗ > pM > 2,

such that, for all p, 2 < p < pM , the operator Tp is linear continuous

from (W 1,q(≠))0 to W 1,p(≠). Moreover, the norm of Tp only depends on

p, α, β and ≠ and pM on α, β and ≠, not on f .

Proof. Let p be fixed as greater than or equal to 2 and less than 2∗.

Let f ∈ (W 1,q(≠))0. As previously seen, we can consider u = Tp(f). So, u

belongs to H1
∗(≠).

Step 1 (Localization). Let us now consider a set of local maps, given

by the Proposition 1. We associate a partition of unity (θi)i to the open

sets (Ui)i=0,... ,k; that is, functions θ0, θ1, . . . , θk of C1(IRN) such that

0 ≤ θi ≤ 1, ∀i = 0, 1, . . . , k and
kX

i=0

θi = 1 on ≠ ,

and

supp θi is compact and included in Ui, ∀i = 0, . . . , k .

Let then

ui = θiu .

For all ϕ ∈ H1(≠), ui satisfies

Z

≠

A∇ui · ∇ϕ dx =

Z

≠

θiA∇u · ∇ϕ dx +

Z

≠

uA∇θi · ∇ϕ dx =

=

Z

≠

A∇u · (∇(θiϕ) − ϕ∇θi)dx +

Z

≠

uA∇θi · ∇ϕ dx =

= hθif − div (uA∇θi) − A∇u · ∇θi,ϕi(H1(≠))0,H1(≠)

where hθif,ϕi = hf, θiϕi and, if a function F belongs to (L2)N , let

h−div (F ),ϕi(H1(≠))0,H1(≠) =

Z

≠

F (x) · ∇ϕ(x)dx .
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To define properly a linear form fi on H1(Ui ∩ ≠), let us consider a

function ∞ of C1(IRN) such that supp θi ⊂ supp ∞ ⊂ Ui and ∞(x) = 1 on

supp θi. For all function ϕ in H1(Ui ∩ ≠), we define fi

hfi,ϕi(H1(Ui∩≠))0,H1(Ui∩≠) =hθif−div (uA∇θi)−A∇u·∇θi, ∞ϕi(H1(≠))0,H1(≠),

where ∞ϕ is the function extended by zero on ≠. So, we have got for all

ϕ ∈ H1(Ui ∩ ≠)

Z

Ui∩≠
A∇ui · ∇ϕ dx = hfi,ϕi(H1(Ui∩≠))0,H1(Ui∩≠) .

Of course θif is in (W 1,q(Ui∩≠))0 and we have kθifk(W1,q)0 ≤Cθi
kfk(W1,q)0 .

If u belongs to H1(≠), then A∇u · ∇θi belongs to L2. According to

Sobolev’s injection theorem, a function L2 is also in (W 1,q)0 if q∗ > 2, i.e.

p < 2∗. By the continuity of the Sobolev imbedding,

kA∇u · ∇θik(W1,q)0 ≤ C0kukH1 ≤ C1kfk(H1) ≤ C2kfk(W1,q)0 .

In the same way, div (uA∇θi) belongs to (W 1,q(Ui ∩ ≠))0 if uA∇θi is in

(Lp)N (i.e. p < 2∗), and

kdiv (uA∇θi)k ≤ C 0
0kuk(Lp)N ≤ C 0

1kukH1 ≤ C 0
2kfk(W1,q)0 .

Finally fi is in (W 1,q(Ui ∩ ≠))0 and there exists a real Mi positive

such that

kfik(W1,q)0 ≤ Mikfk(W1,q)0 .

Interior estimates. Consider first u0.

Let BR a ball with radius R large enough to allow U0 ⊂ BR (≠ is

bounded . . . ). With the function ∞ used before we can also extend f0 on

H1
0 (BR). We extend u0 by zero outside U0. Then, u0 is a solution of the

following problem





Z

BR

A∇u0 · ∇ϕ dx = hf0,ϕiH−1(BR),H1
0
(BR),∀ϕ ∈ H1

0 (BR) ,

u0 = 0, on @BR .
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Note that f0 is in W−1,p(BR). Hence, according to Meyers’ Theorem,

there is a 2∗ > p0 > 2, such that, if p ∈ [2, p0[, then u0 ∈ W 1,p
0 (BR), and

even in W 1,p
0 (U0), by definition of θ0. Moreover, there is a real positive

C0(p) such that

ku0kW
1,p
0

≤ C0(p)kf0k(W1,q)0 ≤ M0C0(p)kfk(W1,q)0 ,

C0(p) and p0 only depends on α, β and ≠, not on f .

Estimates near the boundary. Let us now consider v = ui and

g = fi, for a fixed i. We will avoid recalling indices i throughout this

proof. As seen previously, v satisfies

Z

U∩≠
A∇v · ∇ϕ dx = hg,ϕi(H1(U∩≠))0,H1(U∩≠),∀ϕ ∈ H1(U ∩ ≠) ,

where the mapping g is an element of (W 1,q(U ∩≠))0 (where q = p/p−1),

as soon as p < 2∗.

Step 2 (Transport). Now, we make the change of variable y = J(x),

where J is the Lipschitz continuous function given by Proposition 1. Let

H = J−1. DJ (resp. DH) denotes the Jacobian matrix of J (resp. H),

i.e. the matrix with general term @Ji/@xj.
tM denotes the transpose

matrix of the matrix M . Let w(y) = v ◦ H(y), for all y ∈ B+ = {x ∈
IRN , |x| < 1, xN > 0}. Let √ ∈ H1(B+), and ϕ = √ ◦ J . Then,

∇v(x) = tDJ(x)∇w(J(x)), and ∇ϕ(x) = tDJ(x)∇√(J(x)) .

Hence,

A(x)∇v(x) · ∇ϕ(x) = A(x)tDJ(x)∇w(J(x)) · tDJ(x)∇√(J(x)) =

= DJ(x)A(x)tDJ(x)∇w(J(x)) · ∇√(J(x)) .

Let

(6) Λ(y) = |det DH(y)| DJ(H(y))A(H(y))tDJ(H(y)) .

According to the formulae of change of variable, we have

Z

U∩≠
A(x)∇v(x) · ∇ϕ(x) dx =

Z

B+
Λ(y)∇w(y) · ∇√(y) dy
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The mappings J and H both are Lipschitz continuous, hence the Ja-

cobian matrices and |det DH| are bounded with respect to the supremum

norm. Hence, the matrix Λ is in (L1(B+))N×N .

Λ also satisfies the uniform ellipticity condition. Indeed, there exist

reals m, M such that

m ≤ |det DH(y)| ≤ M, a.e. on B+

and

(7) m|ξ|2 ≤ |tDJ(H(y))ξ|2 ≤ M |ξ|2,∀ξ ∈ IRN , a.e. on B+ .

Then, for all ξ ∈ IRN and almost everywhere on B+, because

Λ(y)ξ.ξ = |det DH(y)| DJ(H(y))A(H(y))tDJ(H(y))ξ · ξ =

= |det DH(y)| A(H(y))tDJ(H(y))ξ · tDJ(H(y))ξ ,

there exist α0 and β0, only depended on α, β, m and M , such that Λ

satisfies

∀ξ ∈ IRN , α0|ξ| ≤ Λ(y)ξ · ξ and kΛk1 ≤ β0 .

The operator g is carried out as an operator h of (W 1,q(B+))0. One

can describe that operator thanks to g and the function H. Indeed, if g

is an element of (W 1,q(≠∩U))0, there exist function g0 in Lp(≠∩U) and

G in (Lp(≠ ∩ U))N such that, for all ϕ in W 1,q(≠ ∩ U),

hg,ϕi(W1,q(U∩≠))0,W1,p(U∩≠) =

Z

≠∩U

g0(x)ϕ(x) dx +

Z

≠∩U

G(x) · ∇ϕ(x) dx .

Hence, for all √ ∈ H1(B+), ϕ = √ ◦ J ,

hg,ϕi =

Z

≠∩U

g0(x)ϕ(x) dx +

Z

≠∩U

G(x) · tDJ(x)∇√(J(x)) dx =

=

Z

B+
|det DH| g0(H(y))√(y)dy+

+

Z

B+
|det DH| DJ(H(y))G(H(y)) · ∇√(y) dy =

= hh,√i .
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The function|det DH|g0(H(y)) belongs to Lp(B+) and|det DH|DJ(H(y))

G(H(y)) to (Lp(B+))N . Thus h ∈ (W 1,q(B+))0 and it is easy to see that

khk(W1,q)0 ≤ Ckgk(W1,q)0 , with C > 0. Finally, the function w is the

solution to the new problem

(8)





w ∈ H1(B+),Z

B+
Λ(y)∇w(y) · ∇√(y) dy = hh,√i(H1)0,H1 ,∀√ ∈ H1(≠) ,

where Λ is defined by (6), and h belongs to (W 1,q(B+))0.

Step 3 (reflection). Let us now extend the solution by reflection, to

get the following general result (the notation in this lemma is independent

of that used in the rest of the paper):

Lemma 1. For a given u ∈ W 1,p(B+), define on B the function u∗

extended by reflection, that is to say

u∗(x0, xN) =

(
u(x0, xN) if xN > 0

u(x0,−xN) if xN < 0 .

Then, u∗ ∈ W 1,p(B) and

ku∗kW1,p(B) ≤ 2kukW1,p(B+) .

This is a classical lemma (cf. H. Brézis’ book, [5], p. 158, for instance).

Note that, for xN < 0, one has the formulae

@u∗

@xi

(x0, xN) =
@u

@xi

(x0,−xN) for 1 ≤ i ≤ N − 1 ,

@u∗

@xN

(x0, xN) = − @u

@xN

(x0,−xN) .

Let us apply this result to our problem. w can be extended to a

function w∗ which is defined on the whole of B and is an element of

H1(B). But θ is a function with compact support of U , hence the same

holds for θ ◦ H on B; in particular, there is an r, r < 1, such that Br

contents the support of θ. It is then obvious that the support of our
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function w∗, extended by reflection, is also contained in that ball. Thus w∗

is in H1
0 (B).

We extend the operator h the following way:

hh∗,φi(W1,q(B))0,W1,q(B) = hh,φi(W1,q(B+))0,W1,q(B+)+

+ hh,φ(x0,−xN)i(W1,q(B+))0,W1,q(B+) .

for all φ in W 1,q(B). In particular, h∗ ∈ W−1,p(B) and kh∗kW−1,p ≤
2khk(W1,q)0 .

To extend Λ is not that easy. We proceed as follows (we note Λ =

(αkl)k, l)

• for all k and l less or equal than N −1, let α∗
kl(x

0, xN) = αkl(x
0,−xN)

if xN < 0,

• if k=N or l=N (but (k, l) 6=(N,N)), let α∗
kl(x

0, xN)=−αkl(x
0,−xN)

if xN < 0,

• α∗
NN(x0, xN) = αNN(x0,−xN) if xN < 0.

Of course, we leave the αkl as they are if xN > 0. We get

Z

B−
Λ∗∇w∗ · ∇φ(x) dx =

Z

B+

Λ∇w(y) · ∇φ(y0,−yN) dy ,

where B− = {x ∈ B | xN ≤ 0}. There also remains to check that this

matrix is elliptic. The case of xN > 0 was seen before; if xN < 0, then

Λ∗ξ · ξ =
X

i,j≤N−1

α(x0,−xN)ξiξj +
N−1X

j=1

−αN,j(x
0,−xN)ξNξj+

+
N−1X

i=1

−αi,N(x0,−xN)ξiξN + αNNξ
2
N .

If ξ∗ = (ξ0,−ξN), the preceding expression can then be written as

Λ∗ξ · ξ = Λξ∗ · ξ∗ .

Now, |ξ| = |ξ∗|; Λ∗ satisfies the ellipticity condition indeed.

We can check that w∗ is the solution of the following problem:

(9)





w∗ ∈ H1
0 (B)Z

B

Λ∗∇w∗ · ∇φ = hh∗,φiH−1,H1
0
, for all φ ∈ H1

0 (B) .
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Note that h∗ is an element of W−1,p(B) and w∗ is the solution of prob-

lem (9). Then Theorem 1 is applied. There is a real pi, 2∗ > pi > 2, such

that, if p ∈ [2, pi[, w∗ is in W 1,p
0 (B) and a real number Ci(p) positive such

that

kw∗k
W

1,p
0

≤ Ci(p)kh∗kW−1,p .

Moreover pi depends on α0, β0 and N , and Ci(p) on α0, β0, p and N , not

on h∗. In fact, they hence depend on A and functions H and J , that is,

on the change of map. We then get the desired estimate for v = ui by

restriction and with the help of the Remark 2 of Section 2.

Let pM = mini=0,...,k(pi). As soon as 2 ≤ p < pM , ui belongs to

W 1,p(≠) and so, u =
P

i=0,...,k ui too. Moreover, there exists a real positive

C(p) such that

kuk
W

1,p
0

≤ C(p)kfkW−1,p ,

where C(p) depends on all the Ci(p), Mi and the norm of the transport

operator TJ and TH (see Remark 2, Section 2).

So we are done with the proof of Theorem 2.

Remarks.

1. The condition hf, 1i(H1)0,H1 = 0 is necessary to have all the functions

of H1(≠) as test functions. That is an important fact for the rest of

the proof.

2. The inequality (7) is true only because H is an homeomorphism.

Indeed, if J is differentiable almost everywhere (due to Rademacher

Theorem), it is not sure for J ◦ H . . .

4 – Some Other Boundary Conditions

4.1 – Fourier’s Condition

The purpuse of this section is to give some other generalization of

Meyers’ Theorem for different boundary conditions. First, we consider

Fourier’s Condition, i.e.

A∇u · n + ∏u = 0, on @≠
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where n denotes the outward normal on the boundary of ≠ and ∏ a

function L1(@≠) satisfying the following condition:

∃∞ > 0 such that,∏(x) ≥ ∞ for almost all x ∈ @≠ .

The rest of the notation is exactly the same as in the preceding

section. We still consider a uniform elliptic operator, with coefficient

in L1 defined on an open set ≠ with a Lipschitz continuous boundary.

The weak formulation of our new problem is then expressed by

(10)





u ∈ H1(≠) ,Z

≠

A(x)∇u(x) · ∇ϕ(x) dx +

Z

@≠

∏(x)uϕ ds = hf,ϕi(H1)0,H1 ,

∀ϕ ∈ H1(≠) .

Once again, we want information about the regularity of the solution.

The existence of solution can be proved by using Lax-Milgram theorem

again. So let us express the regularity result.

Theorem 3 (Meyers Fourier). Let ≠ be a bounded connected open

set of IRN , with a Lipschitz continuous boundary. Let A of (L1(≠))N×N

satisfy (2). For p ≥ 2 and q = p/p − 1, let Tp be the operator defined

by Tp(f) = u for f ∈ (W 1,q(≠))0, where u is the unique solution to (10).

Then, there is a real number p0, 2∗ > p0 > 2, such that, for all p, 2 <

p < p0, the operator Tp is linear continuous from (W 1,q(≠))0 to W 1,p(≠).

Moreover, the norm of Tp only depends on p, α, β and ≠ and p0 on α, β

and ≠, not on f .

The proof of this theorem works exactly as the preceding section. So

let us consider only the differences.

Fix p greater or equal to 2 and less than 2∗. Get q = p/(p−1). For f

in (W 1,q(≠))0, we have existence and unicity of solution to (10). So, u

belongs to H1(≠). Let us just consider the following mapping

ϕ→
Z

@≠

∏(x)uϕ ds .

The trace of a function in H1(≠) is in H1/2(@≠). So using Sobolev in-

jection (see [1]), we find that the trace of u belongs to Lr(@≠) for all
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r < 2(N − 1)/(N − 2) (let r < 1 if N = 2). So the idea is to consider

that our mapping can be defined on W 1,q(≠), for q < 2. Computation

shows that q must be greater than 2N/(N + 2), hence that p must be

less than 2N/(N − 2). So, the term
R
@≠ ∏(x)uϕ ds can be brought in the

operator f . It is possible now to reproduce the proof of preceding section.

4.2 – The Dirichlet Problem Revisited

We claim here that the Meyers theorem is true on an open set with a

Lipschitz continuous boundary. The proof doesn’t work as before in the

Step 3. Indeed, it is not possible to extended our solution to B and find

a new problem satisfy by the extension. We use a different way.

Let us consider only the following problem:

(11)





u ∈ H1
0 (B+) ,Z

B+

A(x)∇u(x) · ∇ϕ(x) dx = hf,ϕiH−1,H1
0
, ∀ϕ ∈ H1

0 (B+) ,

where A belongs to (L1(≠))N×N which satisfies the condition (2) and f

belongs to W−1,p(B+), p > 2. So, there exists a function F , of (Lp(B+))N

such that, for all ϕ ∈ W 1,q
0 (B+),

hf,ϕi
W−1,p,W

1,q
0

=

Z

B+

F (x) · ∇ϕ(x) dx .

We define the function G on B by (we get, for all x in IRN , x = (x0, xN),

x0 in IRN−1)

• if xN > 0, G(x0, xN) = F (x0, xN),

• if xN < 0, for i = 1, . . . , N − 1, Gi(x
0, xN) = −Fi(x

0,−xN) and

GN(x0, xN) = FN(x0,−xN).

Then G belongs to (Lp(B))N and we set, for all ϕ ∈ W 1,q
0 (B),

hg,ϕi
W−1,p,W

1,q
0

=

Z

B

G(x) · ∇ϕ(x) dx .

For xn < 0 we denote by eA the extension of A onto B, defined as:

• for all k and l less or equal than N −1, let a∗
kl(x

0, xN) = akl(x
0,−xN),

• if k=N or l=N (but (k, l) 6= (N,N)), let a∗
kl(x

0, xN)=−akl(x
0,−xN),

• a∗
NN(x0, xN) = aNN(x0,−xN).



484 T. GALLOUET – A. MONIER [14]

We can now consider the following problem

(12)





v ∈ H1
0 (B) ,Z

B

eA(x)∇v(x) · ∇ϕ(x) dx = hg,ϕiH−1,H1
0
, ∀ϕ ∈ H1

0 (B) .

Because Theorem 1, there exists p0 > 2 such that the solution v of (12)

belongs to W 1,p
0 (B) if g belongs to W−1,p(B), for 2 < p < p0. We want

to prove that the restriction of v to B+, denoted v|B+
, is equal to u.

Let us prove first that the trace of v on BN−1 is null. We get

w(x0, xN) = −v(x0,−xN). Due to the construction of g and eA, w is a

solution to (12). Then by unicity, w = v in H1
0 (B). For the trace opera-

tor ∞ on BN−1, we have so

∞(v)(x0) = ∞(w)(x0) = −∞(v)(x0) ,

then ∞(v) = 0 on BN−1.

Let ϕ be a function of H1
0 (B+). We can extend ϕ on B by zero,

denoted ϕ̃. We can take ϕ̃ for test function in (12). ThenZ

B

eA(x)∇v(x) · ∇ϕ̃(x) dx = hg, ϕ̃iH−1,H1
0
.

But we have
Z

B

eA(x)∇v(x) · ∇ϕ̃(x) dx =

Z

B+

A(x)∇v|B+
(x) · ∇ϕ(x)dx

and

hg, ϕ̃iH−1,H1
0

=

Z

B

G(x) · ∇ϕ̃(x)dx =

Z

B+

F (x) · ∇ϕ(x)dx = hf,ϕiH−1,H1
0
.

As we have seen that v|B+
belongs to H1

0 (B+), we find finally that v|B+

satisfies (11). By unicity, v|B+
= u in H1

0 (B+), and so there exists a real

p0 > 2, such that u belongs to W 1,p
0 (B+) if f belongs to W−1,p(B+), for

2 < p < p0.

4.3 – The mixed value boundary problem

We are interested in the mixed boundary value problem, i.e. u sat-

isfies Dirichlet’s Condition on a part eΓ of @≠ (with a non-zero (N−1)-

dimensional measure) and a natural (Neumann or Fourier) boundary con-

dition on Γ = @≠\eΓ. We need first a regularity condition on Γ. Here, we
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use some notations of [9], but the regularity condition on Γ are different.

We set e≠ = ≠ ∪ Γ.

Definition 2. Let ≠ be an open set with a Lipschitz continuous

boundary. A measurable part Γ of @≠ is called regular, if there exists a

family (U0, U1, . . . , Uk) of open sets of IRN satisfying (3) and (J1, ·, Jk)

functions such that, for i = 1, ·, k, Ji : Ui → B is one-to-one, Ji and J−1
i

are Lipschitz continuous and we have one of the following condition

a. Ui ∩ Γ = Ui ∩ @≠, and Ji satisfies (4).

b. Ui ∩ Γ = ∅, and Ji satisfies (4).

c. Ji(Ui ∩ ≠) = {x ∈ B | xN > 0 and xN−1 > 0} = B++,

Ji(Ui ∩ eΓ) = {x ∈ B | xN = 0 and xN−1 ≥ 0},
and Ji(Ui ∩ Γ) = {x ∈ B | xN > 0 and xN−1 = 0}.
Remarks.

1. For 1≤p≤1, we denote W 1,p
0 (e≠) the closure of {u∈C1

c (IRN) | supp

u ∩ eΓ = ∅} in W 1,p(≠).

2. When Γ is regular, the functions of W 1,p
0 (e≠) are the functions of

W 1,p(≠), null on eΓ. In particular, if e≠ = ≠, then W 1,p
0 (e≠) = W 1,p

0 (≠),

of course. If e≠ = ≠, then W 1,p
0 (e≠) = W 1,p(≠).

3. We denote W−1,p(e≠), the dual space of W 1,q
0 (e≠).

Theorem 4. Let ≠ be a bounded connected open set with a Lipschitz

continuous boundary of IRN . Let Γ be a regular part of @≠ and eΓ = @≠\Γ.

Suppose eΓ has a non-null (N−1)-dimensional measure. There is a real

number p0, 2∗ ≥ p0 > 2, such that, if u is the weak solution of

(13)





u ∈ W 1,2
0 (e≠)Z

≠

A(x)∇u(x)·∇ϕ(x)dx=hf,ϕi
W−1,2(e≠),W

1,2
0

(e≠)
, ϕ ∈ W 1,2

0 (e≠) ,

where f belongs to W−1,p(e≠), for p ∈ [2, p0), then u belongs to W 1,p
0 (e≠)

and there exists a real number C(p) such that

kuk
W

1,p
0

(e≠)
≤ C(p)kfk

W−1,p(e≠)
.

Moreover, p0 only depends on A and e≠ and C(p) on A, ≠ and p, not

on f .
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Sketch of proof. We give here only the idea of the proof (due to

J. Droniou, [6]). We need to study three cases

a) First, Ui satisfies a of Definition 2. The proof works exactly as the

proof of Theorem 3 in Section 3.

b) Ui satisfies b of Definition 2. The proof works exactly as the proof in

Section 4.2.

c) We are in the third case, c of the Definition 2. We extend the solution

first to B+ by using reflection argument with respect to xN−1, as the

proof of Theorem 3 in Section 3. Then, we works exactly as the

proof in Section 4.2: we consider a new Dirichlet problem on B, and

the restriction of the solution to B++ is well the researched function.

Then we obtain W 1,p-estimate on u.

5 – Application: A uniqueness theorem

Meyers’ Theorem can notably be used to prove uniqueness of the

solution of Dirichlet’s problem for a linear elliptic differential equation

with measure data when N = 2 (see [8]).

One can now generalize this result to other boundary conditions.

Regarding Neumann’s Problem, for instance,

Theorem 5. Let ≠ be a bounded regular open set of IRN . Let

N = 2 and µ ∈ M(≠),
R
≠ 1dµ = 0, where M(≠) is the set of bounded

Radon measures. Let A be in (L1(≠))N×N , satisfying (2). Then, there

exists a unique function u such that:

(14)





u ∈
\

p<2

W 1,p(≠),

Z

≠

u = 0 ,

Z

≠

A(x)∇u(x) · ∇ϕ(x) dx =

Z

≠

ϕ(x) dµ,∀ϕ ∈
[

q>2

W 1,q(≠) .

Proof. [13], for instance, provides a proof of the existence of u. To

prove its uniqueness, we show that if v satisfies

(15)





v ∈
\

p<2

W 1,p(≠),

Z

≠

v = 0 ,

Z

≠

A(x)∇v(x) · ∇ϕ(x) dx = 0,∀ϕ ∈
[

q>2

W 1,q(≠) ,

then v is null.
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Indeed, suppose that v satisfies (15), and is not the null function. Let

B = {x|v(x) > 0}. B is a measurable part. ∏ denotes the Lebesgue mea-

sure. By hypothesis, ∏(B) 6= 0 and ∏(B) 6= ∏(≠). Let A∗ = (aji)i,j=1,2.

Let √B be the solution of the following problem

(16)





√B ∈ H1(≠) ,

Z

≠

√B(x)dx = 0 ,
Z

≠

A∗(x)∇√B(x) · ∇ϕ(x)dx =

=∏(B)−1

Z

B

ϕ(x)dx−∏(≠−B)−1

Z

≠−B

ϕ(x) dx, ∀ϕ ∈ H1(≠) .

One can then apply Theorem 2; as ∏(B)−1χB − ∏(≠ − B)−1χ≠−B is an

element of L1(≠) and its mean is null, there is a q̄ > 2 (which depends

on A and ≠ only, not on B) such that √B ∈ W 1,q̄(≠). ϕ = √B can hence

be chosen in (15):

(17)

Z
A(x)∇v(x) · ∇√B(x) dx = 0 .

As q̄0 = q̄/(q̄ − 1) < 2, we have v ∈ W 1,q̄0(≠). There exists a se-

quence of functions (ϕn)n∈IN de H1(≠) such that (ϕn)n∈IN converges to v

in W 1,q̄0(≠). Next, choose ϕ = ϕn in (16):

Z

≠

A∗(x)∇√B(x) · ∇ϕn(x) dx =

= ∏(B)−1

Z

B

ϕn(x) dx − ∏(≠− B)−1

Z

≠−B

ϕn(x) dx .

If n becomes infinite, we get:

Z

≠

A∗(x)∇√B(x)·∇v(x) dx=∏(B)−1

Z

B

v(x) dx−∏(≠−B)−1

Z

≠−B

v(x) dx .

Now A∗∇√B · ∇v = A∇v · ∇√B. Hence, using (17) and

Z

≠

v = 0, we

obtain

Z

B

v(x) dx = 0, which is impossible.
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