Branches of solutions to a semilinear elliptic equation with singular coefficients on \mathbb{R}^{N}

M. LUCIA

Abstract

RiASSunto: Diamo un risultato di biforcazione globale per un problema semilineare definito su \mathbb{R}^{N} utilizzando risultati di Pejsachowicz e Rabier validi per applicazioni Fredholm d'indice zero di classe \mathcal{C}^{1}.

AbStract: We give a global bifurcation result for a semilinear problem on \mathbb{R}^{N} using a Theorem available for \mathcal{C}^{1}-Fredholm mappings of index zero stated by Pejsachowicz and Rabier.

1 - Introduction

Given a mapping $f: \mathbb{R}^{N} \times \mathbb{R} \rightarrow \mathbb{R}$ satisfying (H1) $f(\cdot, 0) \equiv 0$,
we are interested in the following nonlinear Schrödinger eigenvalue problem:

$$
\left\{\begin{array}{l}
-\triangle u+f(\cdot, u)-\lambda u=0 \quad \text { on } \mathbb{R}^{N}, \tag{1.1}\\
\lim _{|x| \rightarrow \infty} u(x)=0, u \not \equiv 0 .
\end{array}\right.
$$

This kind of problem has been investigated under various assumptions on f for example by Ambrosetti and Gamez [1], Edelson and

Key Words and Phrases: Bifurcation - Semilinear problem - Fredholm mapping. A.M.S. Classification: 35J60 - 35B32

Stuart [5], Montefusco [15] ... Here we are interested in given some conditions on the function f which ensure the existence of global branches of solutions for Problem (1.1) bifurcating from a trivial solution $\left(\lambda_{0}, 0\right)$ in $\mathbb{R} \times W^{2, p}\left(\mathbb{R}^{N}\right)$ for $p>\max \left\{1, \frac{N}{2}\right\}$. Since the Laplacian operator does not have a compact inverse \mathbb{R}^{N}, we cannot reduce Problem (1.1) into a form which allows to apply the Global Bifurcation Theorem of Rabinowitz [19]. In [12] this difficulty was overcome by using a result on global bifurcation due to Fitzpatrick, Pejsachowicz and Rabier [10]. The goal of this paper is to show how following the same approach it is possible to give a similar result under slightly more general hypotheses on the function f. The main improvements are:

1) As anticipated in [12], Pejsachowicz and Rabier (see [17]) have extended to \mathcal{C}^{1}-Fredholm mappings a topological degree first defined in [10] for \mathcal{C}^{2}-Fredholm mappings. As a consequence, it is sufficient for our problem to assume that $s \mapsto f(x, s)$ is \mathcal{C}^{1}.
2) The hypotheses of equicontinuity in [12] are essentially replaced here by a growth condition.
3) In [12], we assumed $\partial_{s} f(\cdot, 0) \in \mathrm{L}^{\infty}\left(\mathbb{R}^{N}\right)$. Here, we require $\partial_{s} f(\cdot, 0) \in$ $\mathrm{L}^{p}\left(\mathbb{R}^{N}\right)+\mathrm{L}^{\infty}\left(\mathbb{R}^{N}\right)$.

The results of this paper have been organized as follows.
In Section 2, we summarize the results of bifurcation for \mathcal{C}^{1}-Fredholm mappings we need.

In Section 3, we give a differentiability result for a class of Nemitsky operators defined between the space $\mathrm{L}_{p, \infty}:=\left\{u \in \mathrm{~L}^{p}\left(\mathbb{R}^{N}\right)+\mathrm{L}^{\infty}\left(\mathbb{R}^{N}\right)\right.$: $\left.\lim _{|x| \rightarrow \infty} u(x)=0\right\}$ endowed with the norm $\|u\|:=\|u\|_{L^{p}}+\|u\|_{L^{\infty}}$ and the space $\mathrm{L}^{p}\left(\mathbb{R}^{N}\right)$.

In Section4, we show with Proposition 4.1 that if in addition to (H1) we assume
(H2) 1) f is a Carathéodory function,
2) for a.e. $x \in \mathbb{R}^{N}, s \mapsto f(x, s)$ is of class \mathcal{C}^{1},
3) $\partial_{s} f(\cdot, 0) \in \mathrm{L}^{p}\left(\mathbb{R}^{N}\right)+\mathrm{L}^{\infty}\left(\mathbb{R}^{N}\right)$ and there exists $R_{0}>0$ such that

$$
\lim _{|s| \rightarrow 0}\left\|\partial_{s} f(x, s)-\partial_{s} f(x, 0)\right\|_{L^{\infty}\left(|x|>R_{0}\right)}=0
$$

4) for every $R, \delta>0$ there exists $\Psi:=\Psi_{R, \delta} \in \mathrm{~L}^{p}(|x|<R)$ such that

$$
\left|\partial_{s} f(x, s)\right| \leq \Psi(x) \quad \forall|s|<\delta, \quad \text { a.e }|x|<R
$$

then the mapping $F: \mathbb{R} \times W^{2, p}\left(\mathbb{R}^{N}\right) \rightarrow \mathrm{L}^{p}\left(\mathbb{R}^{N}\right),(\lambda, u) \mapsto-\triangle u+f(\cdot, u)-$ λu is a \mathcal{C}^{1} mapping whose zeros are clearly solutions of Problem (1.1). Setting $\alpha:=\liminf _{|x| \rightarrow \infty} \partial_{s} f(x, 0)$, we show that the operator $D_{u} F_{(\lambda, u)}$ is Fredholm of index zero on $(-\infty, \alpha) \times W^{2, p}\left(\mathbb{R}^{N}\right)$.

In Section 5 , we show that $\left(\lambda_{0}, 0\right)$ is a bifurcation point for the equation $F(\lambda, u)=0$ if moreover:
(H3) $\alpha>-\infty, \lambda_{0}<\alpha$ and $\operatorname{Ker}\left[D_{u} F_{\left(\lambda_{0}, 0\right)}\right]$ is of odd dimension.
In Section 6, using a maximum principle, we give a sufficient condition ($\mathbf{H} 4$) on the mapping f which ensures that the restriction of the mapping F to $(-\infty, \beta) \times W^{2, p}\left(\mathbb{R}^{N}\right)$ is "boundedly proper" (where β will be made precise later on).

In Section 7, we show that the local result given in Section 5 is global if (H4) is assumed.

Notations

$B_{R}:=\left\{x \in \mathbb{R}^{N}:|x|<R\right\}, \quad B_{R, \infty}:=\left\{x \in \mathbb{R}^{N}:|x|>R\right\}$,
X, Y denote Banach spaces, I an open interval of \mathbb{R}, Ω an open subset of \mathbb{R}^{N},
$\Phi_{0}(X, Y)$: Set of linear operator from the space X to Y which are Fredholm of index 0 ,
$\alpha:=\liminf _{|x| \rightarrow \infty} \partial_{s} f(x, 0), \quad p_{0}:=\max \left\{1, \frac{N}{2}\right\}$.

2 - Bifurcation results for \mathcal{C}^{1}-Fredholm mapping

In this part, we summarize the notion of parity introduced in [7] and mention a local and a global bifurcation result valid for \mathcal{C}^{1}-Fredholm mappings published in [8] and [17].
A) Parity

If $T \in G L(X)$ is a compact perturbation of the identity, we let $\operatorname{deg}_{L S}(T)$ be the Leray-Schauder degree of $T: U \rightarrow X$ with respect to 0 , where U is any bounded neighborhood of the origin ([4]).

Definition 2.1. Let $A:[a, b] \rightarrow \Phi_{0}(X, Y)$ be a continuous path.

1) A continuous path $\eta:[a, b] \rightarrow G L(Y, X)$ will be called a parametrix for A if for each $\lambda \in[a, b], \eta(\lambda) \circ A(\lambda)$ is a compact perturbation of the identity.
2) If $A(a)$ and $A(b)$ are invertible, then the parity of A in $[a, b], \sigma(A,[a, b])$ is defined by :

$$
\sigma(A,[a, b]):=d e g_{L S}[\eta(a) \circ A(a)] \cdot d e g_{L S}[\eta(b) \circ A(b)] .
$$

3) We will denote by $\Sigma(A):=\{\lambda \in[a, b]: \operatorname{Ker} A(\lambda) \neq\{0\}\}$. When λ is an isolated point in $\Sigma(A)$, there exists a closed interval $J \subset[a, b]$ such that $J \cap \Sigma(A)=\{\lambda\}$. The parity of the restriction of A to J will be denoted by $\sigma(A, \lambda)$.

Remark 2.2.

1) The existence of a parametrix in Definition 2.1 is guaranteed by the compactness and contractibility of the interval $[a, b]$ (See Proposition $2.3,[6])$.
2) The parity is independent of the choice of parametrix ([7]) and $\sigma(A, I)= \pm 1([4]$, p. 64) .

Proposition 2.3 (Theorem 6.18, [9]). Let $A:[a, b] \rightarrow \Phi_{0}(X, Y)$ be continuous, be differentiable at λ_{0} and satisfying

$$
\begin{equation*}
A^{\prime}\left(\lambda_{0}\right)\left[\operatorname{Ker} A\left(\lambda_{0}\right)\right] \oplus \operatorname{Ran} A\left(\lambda_{0}\right)=Y \tag{2.2}
\end{equation*}
$$

Then, λ_{0} is isolated in $\Sigma(A)$ and $\sigma\left(A, \lambda_{0}\right)=(-1)^{k}$, where $k=\operatorname{dim} \operatorname{Ker} A\left(\lambda_{0}\right)$.
B) A Local and a global bifurcation result

Consider a mapping F such that:

$$
\begin{equation*}
F: I \times X \rightarrow Y, \quad(\lambda, x) \mapsto F(\lambda, x), \quad \text { with } F(\cdot, 0)=0 \tag{2.3}
\end{equation*}
$$

Proposition 2.4 (Fitzpatrick and Pejsachowicz, [8]). Let F be a mapping satisfying (2.3), be of class \mathcal{C}^{1} and such that $D_{x} F_{(\lambda, 0)} \in \Phi_{0}(X, Y)$ for all $\lambda \in I$. Consider the mapping $A: I \rightarrow \Phi_{0}(X, Y), \lambda \mapsto D_{x} F_{(\lambda, 0)}$.

Assume A continuous, $A(a), A(b) \in G L(X, Y)$ for some $a, b \in I(a<b)$ and $\sigma(A,[a, b])=-1$. Then, there exists $\lambda_{0} \in(a, b)$ such that $\left(\lambda_{0}, 0\right)$ is a bifurcation point for the equation $F(\lambda, x)=0$.

Proposition 2.5. Let F be a mapping satisfying the hypotheses of Proposition 2.4. Assume that the mapping $A: I \rightarrow \Phi_{0}(X, Y), \lambda \mapsto$ $D_{x} F_{(\lambda, 0)}$ is differentiable at λ_{0} and satisfies (2.2). Then, $\sigma\left(A, \lambda_{0}\right)=-1$ iff $\operatorname{dim} \operatorname{Ker} A\left(\lambda_{0}\right)$ is of odd dimension and in such a case, $\left(\lambda_{0}, 0\right)$ is a bifurcation point for the equation $F(\lambda, x)=0$.

This result, a direct consequence of Proposition 2.4 and 2.3 , is a local bifurcation result for \mathcal{C}^{1}-Fredholm maps, in the same spirit as the well-known Theorem of Krasnoselsky [14]. In order to give a global bifurcation theorem available for \mathcal{C}^{1} Fredholm maps, we denote by

$$
\begin{aligned}
\mathcal{S} & =\{(\lambda, x) \in I \times X: F(\lambda, x)=0 \text { and } x \neq 0\} \\
\mathcal{Z}_{\lambda_{0}} & \left.=\mathcal{S} \cup\left\{\left(\lambda_{0}, 0\right)\right\} \text { (with the topology inherited from } \mathbb{R} \times X\right), \\
\mathcal{C}_{\lambda_{0}} & : \text { connected component of } \mathcal{Z}_{\lambda_{0}} \text { containing }\left(\lambda_{0}, 0\right) \\
p_{1} & : \text { the projection defined by } I \times X \rightarrow I,(\lambda, x) \mapsto \lambda
\end{aligned}
$$

Definition 2.6. A mapping $F: I \times X \rightarrow Y$ is said to be boundedly proper if the restriction of F to any subset of $I \times X$ which is bounded and closed in $\mathbb{R} \times X$ is proper.

Proposition 2.7 (Pejsachowicz and Rabier, [17]). Let F be a mapping satisfying (2.3). Assume that F is a \mathcal{C}^{1} Fredholm mapping of index 0 which is boundedly proper. Moreover assume the existence of a point λ_{0} isolated in $\Sigma\left(D_{x} F_{(\lambda, 0)}\right)$ and such that $\sigma\left(D_{x} F_{(\lambda, 0)}, \lambda_{0}\right)=-1$. Then $\mathcal{C}_{\lambda_{0}}$ has at least one of the following properties.

1) $\mathcal{C}_{\lambda_{0}}$ is unbounded,
2) the closure of $\mathcal{C}_{\lambda_{0}}$ contains a point of the form $\left(\lambda^{*}, 0\right)$ with $\lambda^{*} \in I$,
3) the closure of $p_{1}\left(\mathcal{C}_{\lambda_{0}}\right)$ intersects the boundary of I.

3 - Differentiability of Nemitsky operator $W^{2, p}\left(\mathbb{R}^{N}\right) \rightarrow \mathrm{L}^{p}\left(\mathbb{R}^{N}\right)$

Proposition 3.1. Let $g: \Omega \times \mathbb{R} \rightarrow \mathbb{R}$ be a Carathéodory function.

1) If $u: \Omega \rightarrow \mathbb{R}$ is measurable, then the mapping $\Omega \rightarrow \mathbb{R}, x \mapsto$ $g(x, u(x))$ is measurable.
2) If $g(x, \cdot) \in \mathcal{C}^{1}(\mathbb{R})$ a.e. $x \in \Omega$, then $\partial_{s} g$ is a Carathéodory function.

Proof. For part 1) we refer to Theorem 18.3, p. 152 in Vainberg's book [21]. Part 2) is easy.

For $p, q \in[1, \infty)$, it is shown in Krasnoselsky [14] that the Nemitsky operator \tilde{g} is well defined from $\mathrm{L}^{p}(\Omega)$ to $\mathrm{L}^{q}(\Omega)$ iff g satisfies the following condition:
there exists a function $a \in \mathrm{~L}^{q}(\Omega)$ and a constant $b>0$ such that, for a.e. $x \in \Omega$ and every $s \in \mathbb{R}$

$$
|g(x, s)| \leq a(x)+b|s|^{p / q}
$$

Moreover, in such a case, the operator \tilde{g} is automatically continuous.
A similar result exists for the case $p=\infty, q<\infty$.
DEFINITION 3.2. Let $g: \Omega \times \mathbb{R} \rightarrow \mathbb{R}$ be a Carathéodory map. For $p \in[1, \infty)$, we say that g satisfies the property $\left(P_{\infty, p}\right)$ if for all $M>0$, there exists $\eta_{M} \in \mathrm{~L}^{p}(\Omega)$ such that

$$
|g(x, s)| \leq \eta_{M}(x) \quad \forall|s|<M, \quad \text { a.e. } x \in \Omega
$$

Proposition 3.3 (Theorem 3.1, [18]). Let $q \geq 1$ and $g: \Omega \times \mathbb{R} \rightarrow$ \mathbb{R} be a Carathéodory map. Then, the operator $\widetilde{g}: \mathrm{L}^{\infty}(\Omega) \rightarrow \mathrm{L}^{q}(\Omega)$, $u \mapsto g(\cdot, u)$ is well defined iff g satisfies the property $\left(P_{\infty, q}\right)$. In such a case, the operator \widetilde{g} is automatically continuous.

Let $p \in[1, \infty)$ and consider

$$
\begin{equation*}
\mathrm{L}_{p, \infty}:=\left\{u \in \mathrm{~L}^{p}\left(\mathbb{R}^{N}\right) \cap \mathrm{L}^{\infty}\left(\mathbb{R}^{N}\right): \lim _{|x| \rightarrow \infty}|u(x)|=0\right\} \tag{3.4}
\end{equation*}
$$

endowed with the norm $\|u\|_{L_{p, \infty}}:=\|u\|_{L^{p}\left(\mathbb{R}^{N}\right)}+\|u\|_{L^{\infty}\left(\mathbb{R}^{N}\right)}$. The aim of what follows is to study the differentiability of Nemitsky operators defined from $\mathrm{L}_{p, \infty}(\Omega)$ to $\mathrm{L}^{p}(\Omega)$. With this aim, we introduce the space: $\mathrm{L}^{p}(\Omega)+\mathrm{L}^{\infty}(\Omega):=\left\{f_{1}+f_{2}: f_{1} \in \mathrm{~L}^{p}(\Omega)\right.$ and $\left.f_{2} \in \mathrm{~L}^{\infty}(\Omega)\right\}$.

Remark 3.4. Notice that if $f \in \mathrm{~L}^{p}(\Omega)+\mathrm{L}^{\infty}(\Omega)$ and $g \in \mathrm{~L}_{p, \infty}(\Omega)$, then $f g \in \mathrm{~L}^{p}(\Omega)$.

Proposition 3.5. Let $1 \leq p<\infty$ and $g: \mathbb{R}^{N} \times \mathbb{R} \rightarrow \mathbb{R}$ be a mapping such that
a) g is a Carathéodory map and $g(\cdot, 0) \in \mathrm{L}^{p}\left(\mathbb{R}^{N}\right)$,
b) for a.e. $x \in \mathbb{R}^{N}, s \mapsto g(x, s)$ is of class \mathcal{C}^{1},
c) $\partial_{s} g(\cdot, 0) \in \mathrm{L}^{p}\left(\mathbb{R}^{N}\right)+\mathrm{L}^{\infty}\left(\mathbb{R}^{N}\right)$ and there exists $R_{0}>0$ such that

$$
\lim _{|s| \rightarrow 0}\left\|\partial_{s} g(x, s)-\partial_{s} g(x, 0)\right\|_{L^{\infty}\left(B_{R_{0}, \infty}\right)}=0
$$

d) for every $R>0$, the restriction of $\partial_{s} g$ to $B_{R} \times \mathbb{R}$ satisfies the condition $\left(P_{\infty, p}\right)$.
Then, the Nemitsky operator $\tilde{g}: \mathrm{L}_{p, \infty}\left(\mathbb{R}^{N}\right) \rightarrow \mathrm{L}^{p}\left(\mathbb{R}^{N}\right), u \mapsto g(\cdot, u)$ is \mathcal{C}^{1} Fréchet differentiable and for every $u \in \mathrm{~L}_{p, \infty}\left(\mathbb{R}^{N}\right)$, the Fréchet derivative is given by:

$$
D \tilde{g}_{(u)}: \mathrm{L}_{p, \infty}\left(\mathbb{R}^{N}\right) \longrightarrow \mathrm{L}^{p}\left(\mathbb{R}^{N}\right) \quad \xi \longmapsto \partial_{s} g(\cdot, u) \xi .
$$

Proof Step 1. We show that \tilde{g} is well defined.
Using hypothesis b), we have for a.e. $x \in \mathbb{R}^{N}: g(x, s)=g(x, 0)+$ $\int_{0}^{1} \frac{d}{d t}[g(x, t s)] d t$.

Thus, given $u \in \mathrm{~L}_{p, \infty}\left(\mathbb{R}^{N}\right)$, for a.e. $x \in \mathbb{R}^{N}$, we have:

$$
|g(x, u(x))| \leq|g(x, 0)|+|u(x)| \int_{0}^{1}\left|\partial_{s} g(x, t u(x))\right| d t .
$$

Denoting by $A(x):=\int_{0}^{1}\left|\partial_{s} g(x, t u(x))\right| d t$, above inequality shows it is enough to prove that $A \in \mathrm{~L}^{p}\left(\mathbb{R}^{N}\right)+\mathrm{L}^{\infty}\left(\mathbb{R}^{N}\right)$ (see hypothesis a) and also Remark 3.4).

By hypothesis c), and the fact that $\lim _{|x| \rightarrow \infty}|u(x)|=0$, we deduce the existence of $R>0$ (depending on g and u) such that: $\mid \partial_{s} g(x, t u(x))-$ $\partial_{s} g(x, 0) \mid \leq 1$ (a.e. $x \in B_{R, \infty}$, for all $\left.t \in[0,1]\right)$.

Hence, on $B_{R, \infty}$, we have

$$
|A(x)| \leq \int_{0}^{1}\left|\partial_{s} g(x, t u(x))-\partial_{s} g(x, 0)\right| d t+\left|\partial_{s} g(x, 0)\right| \leq 1+\left|\partial_{s} g(x, 0)\right|
$$

From hypothesis c), we have $\partial_{s} g(\cdot, 0) \in \mathrm{L}^{p}\left(\mathbb{R}^{N}\right)+\mathrm{L}^{\infty}\left(\mathbb{R}^{N}\right)$, which implies

$$
\begin{equation*}
A \in \mathrm{~L}^{p}\left(B_{R, \infty}\right)+\mathrm{L}^{\infty}\left(B_{R, \infty}\right) \tag{3.5}
\end{equation*}
$$

On B_{R}, hypothesis d) and the fact that $u \in \mathrm{~L}^{\infty}\left(\mathbb{R}^{N}\right)$ imply the existence of $\eta \in \mathrm{L}^{p}\left(\mathbb{R}^{N}\right)$ such that $\left|\partial_{s} g(\cdot, t u)\right| \leq \eta$ on B_{R} for all $t \in[0,1]$. Hence,

$$
\begin{equation*}
A \in \mathrm{~L}^{p}\left(B_{R}\right)+\mathrm{L}^{\infty}\left(B_{R}\right) \tag{3.6}
\end{equation*}
$$

Relations (3.5) and (3.6) imply $A \in \mathrm{~L}^{p}\left(\mathbb{R}^{N}\right)+\mathrm{L}^{\infty}\left(\mathbb{R}^{N}\right)$.
Step 2. Given $u \in \mathrm{~L}_{p, \infty}$, we verify that the linear mapping $D \tilde{g}_{(u)}$ given in the conclusion of this proposition is well defined and continuous.

By Proposition 3.1, we know that $\partial_{s} g$ is a Carathéodory map which implies the measurability of the mapping $\partial_{s} g(\cdot, u) \xi$.

From hypothesis c) and the fact that $\lim _{|x| \rightarrow \infty}|u(x)|=0$, there exists $R>R_{0}$ such that

$$
\left|\partial_{s} g(\cdot, u)-\partial_{s} g(\cdot, 0)\right| \leq 1 \quad \text { on } B_{R, \infty}
$$

Thus,

$$
\begin{aligned}
\left\|\partial_{s} g(\cdot, u) \xi\right\|_{L^{p}\left(B_{R, \infty}\right)} & \leq\left\|\left[\partial_{s} g(\cdot, u)-\partial_{s} g(\cdot, 0)\right] \xi\right\|_{L^{p}\left(B_{R, \infty}\right)}+\left\|\partial_{s} g(\cdot, 0) \xi\right\|_{L^{p}\left(B_{R, \infty}\right)} \leq \\
& \leq\|\xi\|_{L^{p}\left(B_{R, \infty}\right)}+\left\|\partial_{s} g(\cdot, 0) \xi\right\|_{L^{p}\left(B_{R, \infty}\right)} \leq \\
& \leq C\|\xi\|_{L_{p, \infty}\left(\mathbb{R}^{N}\right)} .
\end{aligned}
$$

On B_{R}, from hypothesis d) we have $\partial_{s} g(\cdot, u) \in \mathrm{L}^{p}\left(B_{R}\right)$ and thus,

$$
\left\|\partial_{s} g(\cdot, u) \xi\right\|_{L^{p}\left(B_{R}\right)} \leq C\|\xi\|_{L^{\infty}\left(B_{R}\right)} \leq C\|\xi\|_{L_{p, \infty}\left(\mathbb{R}^{N}\right)}
$$

STEP 3. $\lim _{\|\xi\|_{L_{p, \infty}} \rightarrow 0} \frac{\left\|\tilde{g}(u+\xi)-\tilde{g}(u)-D \tilde{g}_{(u)}(\xi)\right\|_{L^{p}\left(\mathbb{R}^{N}\right)}}{\|\xi\|_{L_{p}, \infty}}=0$ (i.e \tilde{g} is Fréchetdifferentiable).

We have,

$$
\begin{aligned}
\| \tilde{g}(u+\xi)-\tilde{g}(u) & -D \tilde{g}_{(u)}(\xi) \|_{L^{p}\left(\mathbb{R}^{N}\right)}= \\
& =\left\|g(\cdot, u+\xi)-g(\cdot, u)-\partial_{s} g(\cdot, u) \xi\right\|_{L^{p}\left(\mathbb{R}^{N}\right)} \leq \\
& \leq\left\|\int_{0}^{1} \frac{d}{d t}[g(\cdot, u+t \xi)] d t-\partial_{s} g(\cdot, u) \xi\right\|_{L^{p}\left(\mathbb{R}^{N}\right)}= \\
& =\|\xi \Psi(u, \xi)\|_{L^{p}\left(\mathbb{R}^{N}\right)},
\end{aligned}
$$

where we have set $\Psi(u, \xi)=\int_{0}^{1}\left[\partial_{s} g(\cdot, u+t \xi)-\partial_{s} g(\cdot, u)\right] d t$. For every $R>0$, we have

$$
\begin{aligned}
&\|\xi \Psi(u, \xi)\|_{L^{p}\left(\mathbb{R}^{N}\right)} \leq\|\xi\|_{L^{\infty}\left(\mathbb{R}^{N}\right)} \\
&\|\Psi(u, \xi)\|_{L^{p}\left(B_{R}\right)}+ \\
&+\|\xi\|_{L^{p}}\left(\mathbb{R}^{N}\right)\|\Psi(u, \xi)\|_{L^{\infty}\left(B_{R, \infty}\right)} \leq \\
& \leq\|\xi\|_{L_{p, \infty}}\left(\|\Psi(u, \xi)\|_{L^{p}\left(B_{R}\right)}+\|\Psi(u, \xi)\|_{L^{\infty}\left(B_{R, \infty}\right)}\right)
\end{aligned}
$$

Thus for every $R>0$ and $\xi \neq 0$, we have

$$
\begin{align*}
& \frac{\left\|\tilde{g}(u+\xi)-\tilde{g}(u)-D \tilde{g}_{(u)}(\xi)\right\|_{L^{p}\left(\mathbb{R}^{N)}\right.}}{\|\xi\|_{L_{p, \infty}}} \leq \tag{3.7}\\
& \quad \leq\|\Psi(u, \xi)\|_{L^{p}\left(B_{R}\right)}+\|\Psi(u, \xi)\|_{L^{\infty}\left(B_{R, \infty}\right)}
\end{align*}
$$

Let $\epsilon>0$. We show that for R "large enough" and $\|\xi\|_{L_{p, \infty}}$ "small enough", the right hand-side of this last inequality becomes less than ϵ. From hypothesis c , and the fact that $\lim _{|x| \rightarrow \infty}|u(x)|=0$, there exists $\delta, R>0$ such that

$$
\begin{aligned}
\left|\partial_{s} g(x, s)-\partial_{s} g(x, 0)\right|<\frac{\epsilon}{4} & \text { a.e. } x \in B_{R, \infty}, \forall|s|<\delta, \\
|u(x)|<\frac{\delta}{2} & \text { a.e. } x \in B_{R, \infty} .
\end{aligned}
$$

Let us consider $\xi \in L_{p, \infty}\left(\mathbb{R}^{N}\right)$ satisfying $\|\xi\|_{L_{p, \infty}}<\frac{\delta}{2}$. Then, for a.e. $x \in B_{R, \infty}$ and for all $t \in[0,1]$, we have $|u(x)+t \xi(x)|<\delta$ and by consequence,

$$
\begin{equation*}
\|\Psi(u, \xi)\|_{L^{\infty}\left(B_{R, \infty}\right)}<\frac{\epsilon}{2} \quad \forall\|\xi\|_{L_{p, \infty}}<\frac{\delta}{2} \tag{3.8}
\end{equation*}
$$

In B_{R}, we have

$$
\begin{aligned}
\|\Psi(u, \xi)\|_{L^{p}\left(B_{R}\right)}^{p} & =\int_{B_{R}}\left|\int_{0}^{1}\left[\partial_{s} g(\cdot, u+t \xi)-\partial_{s} g(\cdot, u)\right] d t\right|^{p} d x \leq \\
& \leq \int_{B_{R}} \int_{0}^{1}\left|\partial_{s} g(\cdot, u+t \xi)-\partial_{s} g(\cdot, u)\right|^{p} d t d x= \\
& =\int_{0}^{1} \int_{B_{R}}\left|\partial_{s} g(\cdot, u+t \xi)-\partial_{s} g(\cdot, u)\right|^{p} d x d t= \\
& =\int_{0}^{1}\left\|\partial_{s} g(\cdot, u+t \xi)-\partial_{s} g(\cdot, u)\right\|_{L^{p}\left(B_{R}\right)}^{p} d t .
\end{aligned}
$$

Thus,

$$
\begin{equation*}
\|\Psi(u, \xi)\|_{L^{p}\left(B_{R}\right)}^{p} \leq \int_{0}^{1}\left\|\partial_{s} g(\cdot, u+t \xi)-\partial_{s} g(\cdot, u)\right\|_{L^{p}\left(B_{R}\right)}^{p} d t \tag{3.9}
\end{equation*}
$$

By hypothesis the restriction of the mapping $\partial_{s} g$ to $B_{R} \times \mathbb{R}$ satisfies the assumptions of Proposition 3.3. Thus, there exists $\widetilde{\delta}>0$ such that: $\left\|\partial_{s} g(\cdot, u+t \xi)-\partial_{s} g(\cdot, u)\right\|_{L^{p}\left(B_{R}\right)}<\frac{\epsilon}{2}, \forall\|\xi\|_{L_{p, \infty}}<\widetilde{\delta}$.

From (3.9), we deduce

$$
\begin{equation*}
\|\Psi(u, \xi)\|_{L^{p}\left(B_{R}\right)}<\frac{\epsilon}{2} \quad \forall\|\xi\|_{L_{p, \infty}}<\widetilde{\delta}, \quad \forall t \in[0,1] \tag{3.10}
\end{equation*}
$$

Thus, relations (3.7), (3.8) and (3.10) give for every $\|\xi\|_{L_{p, \infty}}<\min \{\delta, \widetilde{\delta}\}$

$$
\frac{\left\|\tilde{g}(u+\xi)-\tilde{g}(u)-D \tilde{g}_{(u)}(\xi)\right\|_{L^{p}\left(\mathbb{R}^{N}\right)}}{\|\xi\|_{L_{p, \infty}}}<\epsilon
$$

Step 4. Set $X:=\mathrm{L}_{p, \infty}$ and $Y:=\mathrm{L}^{p}\left(\mathbb{R}^{N}\right)$, we show that $D \tilde{g}: X \rightarrow$ $\mathcal{L}(X ; Y)$ is continuous.

Let $u, u_{0} \in X$. For every $R>0$, we have

$$
\begin{aligned}
\| D \tilde{g}_{(u)} & -D \tilde{g}_{\left(u_{0}\right)} \|_{\mathcal{L}(X, Y)}= \\
& =\sup _{\|\xi\|_{X} \leq 1}\left\|\left[\partial_{s} g(\cdot, u)-\partial_{s} g\left(\cdot, u_{0}\right)\right] \xi\right\|_{L^{p}\left(\mathbb{R}^{N}\right)} \leq \\
& \leq\left\|\partial_{s} g(\cdot, u)-\partial_{s} g\left(\cdot, u_{0}\right)\right\|_{L^{p}\left(B_{R}\right)}+\left\|\partial_{s} g(\cdot, u)-\partial_{s} g\left(\cdot, u_{0}\right)\right\|_{L^{\infty}\left(B_{R, \infty}\right)} .
\end{aligned}
$$

As in the second step we verify that this last expression tends to 0 when $\left\|u-u_{0}\right\|_{X} \rightarrow 0$.

Since for $p>p_{0}$ the injection $i: W^{2, p}\left(\mathbb{R}^{N}\right) \hookrightarrow \mathrm{L}_{p, \infty}$ is of class \mathcal{C}^{∞}, above proposition can be applied to prove the differentiability of Nemitsky operators defined from $W^{2, p}\left(\mathbb{R}^{N}\right)$ to $\mathrm{L}^{p}\left(\mathbb{R}^{N}\right)$.

4- A functional framework

In this section we define a mapping $F: \mathbb{R} \times X \rightarrow Y$ of class \mathcal{C}^{1}, whose zeros are solutions of Problem (1.1). From Proposition 3.5, we have immediately :

Proposition 4.1. Let f be a mapping satisfying (H1) and (H2). Then, the mapping defined by
(4.11) $F: \mathbb{R} \times W^{2, p}\left(\mathbb{R}^{N}\right) \longrightarrow \mathrm{L}^{p}\left(\mathbb{R}^{N}\right) \quad(\lambda, u) \longmapsto-\triangle u+f(\cdot, u)-\lambda u$ is well-defined, of class \mathcal{C}^{1} and $D_{u} F_{(\lambda, u)}(\xi)=-\triangle \xi+\left(\partial_{2} f(\cdot, u)-\lambda\right) \xi$.

Example 4.2. A mapping of the kind $f(x, s)=(p(x)+q(x) r(s)) s$ satisfies all the hypotheses of Proposition 4.1 if:

$$
\begin{array}{r}
p, q \in \mathrm{~L}^{\infty}\left(\mathbb{R}^{N}\right) \\
r(s) s \text { is } \mathcal{C}^{1}(\mathbb{R}) \tag{4.13.}
\end{array}
$$

Remark 4.3 .

1) Condition (4.13) is not satisfied if $r(s)=s^{\theta-1}$ with $0<\theta<1$. Thus, this kind of non linearity (studied for example in [15]) cannot be considered here.
2) It is easy to show that the hypotheses made on f in [12] to ensure the \mathcal{C}^{1} differentiability of the mapping (4.11) are less general than the assumptions of Proposition 4.1.

To give results of bifurcation for the problem $F(\lambda, u)=0$ based on the results presented in Section 2 we first discuss the Fredholm property of $D_{u} F_{(\lambda, u)}$ and then prove that this operator satisfy the condition (2.2).

Proposition 4.4. Let $p>p_{0}$, f be a mapping satisfying (H1) and (H2). Then, the mapping (4.11) is Fredholm with index 0 on $(-\infty, \alpha) \times$ $W^{2, p}\left(\mathbb{R}^{N}\right)\left(\right.$ where $\left.\alpha:=\liminf _{|x| \rightarrow \infty} \partial_{s} f(\cdot, 0)\right)$.

Proof. Let $u \in W^{2, p}\left(\mathbb{R}^{N}\right)$. We have by Proposition 4.1 that $D_{u} F_{(\lambda, u)}=-\triangle+\partial_{s} f(\cdot, u)-\lambda$. Setting,
$\mu:=\lambda-\alpha, \quad V:=\partial_{s} f(\cdot, u)-\alpha, \quad V^{+}=\max (V, 0), \quad V^{-}=-\min (V, 0)$ we can write, $D_{u} F_{(\lambda, u)}=-\triangle+\left(V^{+}-\mu\right)+V^{-}$. Hypothesis (H2) implies that $V \in \mathrm{~L}^{p}\left(\mathbb{R}^{N}\right)+\mathrm{L}^{\infty}\left(\mathbb{R}^{N}\right)$ and $\liminf _{|x| \rightarrow \infty} V(x)>-\infty$. We deduce from PAZY's book ([16]) that $-\triangle+\left(V^{+}-\mu\right)$ is an isomorphism for every $\mu<0$.

Moreover, from the fact that $V^{-} \in \mathrm{L}_{l o c}^{p}\left(\mathbb{R}^{N}\right)$ and $\lim _{|x| \rightarrow \infty} V^{-}(x)=0$, we deduce that multiplication operator $W^{2, p}\left(\mathbb{R}^{N}\right) \longrightarrow \mathrm{L}^{p}\left(\mathbb{R}^{N}\right), u \longmapsto V^{-} u$ is well-defined and compact.

Thus, $D_{u} F_{(\lambda, u)}$ is a compact perturbation of a Fredholm operator of index 0 for every $\mu<0$. This implies that $D_{u} F_{(\lambda, u)}$ is again Fredholm of index 0 for every $\lambda<0$ (see [13]).

Proposition 4.5. Let $p>p_{0}$, f be a mapping satisfying (H1), (H2) and consider the mapping (4.11). Setting $A_{p, \lambda}:=D_{u} F_{(\lambda, u)}$, we have

$$
\begin{equation*}
\operatorname{Ker} A_{p, \lambda} \oplus \operatorname{Ran} A_{p, \lambda}=\mathrm{L}^{p}\left(\mathbb{R}^{N}\right) \quad \forall \lambda<\alpha \tag{4.14}
\end{equation*}
$$

Proof. Since the operator $A_{p, \lambda}$ is Fredholm with index 0 (Proposition 4.4), assertion (4.14) is equivalent to $\operatorname{Ker} A_{p, \lambda} \cap \operatorname{Ran} A_{p, \lambda}=\{0\}$. Consider then, $h \in \operatorname{Ker} A_{p, \lambda}$, and $g \in W^{2, p}\left(\mathbb{R}^{N}\right)$ with $A_{p, \lambda}(g)=h$. Roughly speaking we have: $\int_{\mathbb{R}^{N}}|h|^{2}=\int_{\mathbb{R}^{N}} A_{p, \lambda}(g) h=\int_{\mathbb{R}^{N}} g A_{p, \lambda}(h)=0$ (and each of these equalities is meaningful by classical regularity results).

5-A local bifurcation result

Under the assumptions (H1) and (H2), we know from Proposition 4.1 that the mapping F defined by (4.11) is of class \mathcal{C}^{1} for $p>p_{0}$. We introduce now the following hypothesis
(H3) We assume $\alpha>-\infty$ and the existence of $\lambda_{0}<\alpha$ such that $\operatorname{Ker}\left[D_{u} F_{\left(\lambda_{0}, 0\right)}\right]$ is of dimension odd (and thus in particular nontrivial).

Proposition 5.1. Let $p>p_{0}, f$ be a mapping satisfying the hypotheses (H1) to (H3), and let $\lambda_{0}<\alpha$ be such that $\operatorname{Ker}\left[D_{u} F_{\left(\lambda_{0}, 0\right)}\right]$ is of odd dimension. Then, $\left(\lambda_{0}, 0\right)$ is a local bifurcation point for the problem $F(\lambda, u)=0$.

Proof. Apply Proposition 4.1, 4.5, and Proposition 2.5.
Remark 5.2. If $\operatorname{Ker}\left[D_{u} F_{\left(\lambda_{0}, 0\right)}\right]$ is of dimension 1, then the conclusion of previous theorem follows from the well-known CrandallRabinowitz Theorem [3].

6 - Properness

The aim of this section is to give an additional condition on the function f which ensures that the mapping (4.11) is boundedly proper in the sense of Definition 2.6. With this aim, for each $C \geq 0$, we introduce the following real number,

$$
\beta(C):=\lim _{R \rightarrow \infty} \inf _{|x| \geq R,|s| \leq C}\left\{\frac{f(x, s)}{s}\right\} .
$$

We set $\beta=\inf _{C \geq 0} \beta(C)$ (note that $\beta \leq \alpha$) and we make the following hypothesis
(H4) $\beta>-\infty$.
Under the hypothesis, we are going to prove that the mapping (4.11) is boundedly proper on $(-\infty, \beta) \times W^{2, p}\left(\mathbb{R}^{N}\right)$. This will be derived mainly from the following result:

Proposition 6.1. Let $p>p_{0}, E \subset W^{2, p}\left(\mathbb{R}^{N}\right)$ and $\left(V_{u}\right)_{u \in E}$ a family of function in $\mathrm{L}^{p}\left(\mathbb{R}^{N}\right)+\mathrm{L}^{\infty}\left(\mathbb{R}^{N}\right)$ such that:
a) there exists $a, R>0$ such that $\inf _{|x| \geq R} V_{u}(x) \geq a>0$, for all $u \in E$,
b) $M:=\sup \left\{|u|_{L^{\infty}}: u \in E\right\}$ is finite,
c) there exists $\widetilde{w} \in \mathrm{~L}^{p}\left(\mathbb{R}^{N}\right)$ such that $\left|-\triangle u+V_{u} u\right| \leq \widetilde{w}$ for all $u \in E$. Then, for all $u \in E$, we have $|u| \leq M e^{-\sqrt{a}(|x|-R)}+(-\triangle+a)^{-1} \widetilde{w}$.

Proof. The proof given in Theorem 3.2 of [12] for a family of function $V_{u} \in \mathrm{~L}^{\infty}\left(\mathbb{R}^{N}\right)$ can be adapted immediately in our case by using the following maximum principle:

MAXIMUM PRINCIPLE: Let $\Omega:=\mathbb{R}^{N}$ or $\Omega:=B_{R_{0}, \infty}$ for some $R_{0}>0$ and $p>p_{0}$. Let also $V \in \mathrm{~L}^{p}(\Omega)+\mathrm{L}^{\infty}(\Omega)$ with $V \geq 0$. Then, the mapping $W^{2, p}(\Omega) \rightarrow \mathrm{L}^{p}(\Omega), u \mapsto-\triangle u+V u$ satisfies a maximum principle on Ω in the following sense:

$$
u(\partial \Omega) \geq 0 \quad \text { and } \quad-\triangle u+V u \geq 0 \quad \Longrightarrow \quad u \geq 0
$$

Corollary 6.2. Let E and $\left(V_{u}\right)_{u \in E}$ be as in the above proposition. Then, there exists $w \in \mathrm{~L}_{p, \infty}\left(\right.$ in fact in $W^{2, p}\left(\mathbb{R}^{N}\right)$) such that on \mathbb{R}^{N}, we have $|u| \leq w$ for all $u \in E$.

Lemma 6.3. Let $p>p_{0}$, f be a mapping satisfying (H1) and (H2), F be defined by 4.11 and K be a compact subset of $\mathrm{L}^{p}\left(\mathbb{R}^{N}\right)$. Then, the following affirmations are equivalent:

1) $F^{-1}(K)$ is relatively compact in $\mathbb{R} \times W^{2, p}\left(\mathbb{R}^{N}\right)$,
2) $F^{-1}(K)$ is relatively compact in $\mathbb{R} \times \mathrm{L}_{p, \infty}$.

Proof. The fact that 1) implies 2) derives from the continuity of $W^{2, p}\left(\mathbb{R}^{N}\right) \hookrightarrow \mathrm{L}_{p, \infty}$. Reciprocally, let $\left\{\left(\lambda_{n}, u_{n}\right)\right\}$ be a sequence in $F^{-1}(K)$. We have,

$$
\begin{equation*}
(-\triangle+1) u_{n}=F\left(\lambda_{n}, u_{n}\right)-f\left(\cdot, u_{n}\right)+\left(\lambda_{n}+1\right) u_{n} . \tag{6.15}
\end{equation*}
$$

Since K is compact we can assume that the sequence $F\left(\lambda_{n}, u_{n}\right)$ converges. By hypothesis, the sequence $\left\{\left(\lambda_{n}, u_{n}\right)\right\}_{n=1}^{\infty}$ converges in $\mathrm{L}^{p}\left(\mathbb{R}^{N}\right)$
(up to a subsequence). Moreover Proposition 3.5 ensures the continuity of $\mathrm{L}_{p, \infty} \rightarrow \mathrm{~L}^{p}\left(\mathbb{R}^{N}\right), u \mapsto f(\cdot, u)$. Thus, the right hand side of (6.15) converges in $L^{p}\left(\mathbb{R}^{N}\right)$. Since the operator $-\Delta+1$ is an isomorphism from $W^{2, p}\left(\mathbb{R}^{N}\right)$ to $L^{p}\left(\mathbb{R}^{N}\right)$ (see Stein, [20]), we deduce that u_{n} converges in $W^{2, p}\left(\mathbb{R}^{N}\right)$.

Lemma 6.4. Let $p>p_{0}$ and E be a bounded subset of $W^{2, p}\left(\mathbb{R}^{N}\right)$. Then, the two following assertions are equivalent,

1) E is relatively compact in $\mathrm{L}_{p, \infty}$,
2) $\forall \epsilon>0$, there exists $R>0$ such that $\|u\|_{L^{p}\left(B_{R, \infty}\right)}+\|u\|_{L^{\infty}\left(B_{R, \infty}\right)}<\epsilon$ for all $u \in E$.

In particular, if there exists $\Psi \in \mathrm{L}_{p, \infty}$ such that $|u| \leq \Psi$ for all $u \in E$, then E is relatively compact in $\mathrm{L}_{p, \infty}$.

Proof. The fact that 1) implies 2) is clear. Reciprocally, let $q \in$ $\{p, \infty\}$ and $\left(u_{n}\right)_{n=1}^{\infty}$ be a sequence of E. Since E is bounded, we can assume that this sequence converges weakly to $u \in W^{2, p}\left(\mathbb{R}^{N}\right)$. Let $\epsilon>0$. There exists $R>0$ such that $\|u\|_{L^{q}}+\left\|u_{n}\right\|_{L^{q}}<\frac{\epsilon}{2}$. Thus, on $B_{R, \infty}$ we have

$$
\left\|u(x)-u_{n}(x)\right\|_{L^{q}\left(B_{R, \infty}\right)} \leq\|u(x)\|_{L^{q}\left(B_{R, \infty}\right)}+\left\|u_{n}(x)\right\|_{L^{q}\left(B_{R, \infty}\right)}<\epsilon .
$$

Since $p>p_{0}, W^{2, p}\left(B_{R}\right)$ is compactly embedded in $\mathcal{C}\left(B_{R}\right)$. Thus, there exists $n_{0}:=n(\epsilon)$ such that

$$
\left\|u-u_{n}\right\|_{L^{q}\left(B_{R}\right)}<\epsilon \quad \forall n \geq n_{0}
$$

Thus, $\left\|u_{n}-u\right\|_{L^{q}\left(\mathbb{R}^{N}\right)} \leq\left\|u_{n}-u\right\|_{L^{q}\left(B_{R}\right)}+\left\|u_{n}-u\right\|_{L^{q}\left(B_{R, \infty}\right)}<\epsilon$.
Proposition 6.5. Let f be a mapping satisfying the hypotheses (H1), (H2) and (H4). Then, the mapping (4.11) is boundedly proper on $(-\infty, \beta) \times W^{2, p}\left(\mathbb{R}^{N}\right)$.

Proof. Let $[a, b] \subset(-\infty, \beta), B$ be a bounded closed subset of $[a, b] \times$ $W^{2, p}\left(\mathbb{R}^{N}\right)$ and K be a compact subset of $\mathrm{L}^{p}\left(\mathbb{R}^{N}\right)$. We must prove that every sequence $\left\{\left(\lambda_{n}, u_{n}\right)\right\}$ of $F^{-1}(K) \cap B$ is relatively compact in $\mathbb{R} \times$ $W^{2, p}\left(\mathbb{R}^{N}\right)$. Without loss of generality, we can suppose that

$$
\lambda_{n} \rightarrow \lambda \leq b \quad \text { and } \quad F\left(\lambda_{n}, u_{n}\right) \rightarrow w \in K \quad\left(\text { strongly in } \mathrm{L}^{p}\right) .
$$

Theorem IV. 9 of [2] ensures the existence of $\widetilde{w} \in \mathrm{~L}^{p}\left(\mathbb{R}^{N}\right)$ such that (up to a subsequence)

$$
\left|F\left(\lambda_{n}, u_{n}\right)\right| \leq \widetilde{w} \quad \text { a.e on } \mathbb{R}^{N}, \forall n \in \mathbb{N} \text {. }
$$

Setting $V_{n}:=\frac{f\left(, u_{n}\right)}{u_{n}}-\lambda$, we can write

$$
F\left(\lambda_{n}, u_{n}\right)=-\triangle u_{n}+\left(\frac{f\left(\cdot, u_{n}\right)}{u_{n}}-\lambda\right) u_{n}=-\triangle u_{n}+V_{n} u_{n} \leq \widetilde{w} .
$$

From (H4), there exists $R>0$ such that: $\inf _{|x| \geq R} V_{n}(x)>0, \forall \lambda \leq b<\beta$, $\forall n \in \mathbb{N}$.
From Corollary 6.2 there exists $\Psi \in \mathrm{L}^{p}\left(\mathbb{R}^{N}\right)$ such that: $\left|u_{n}\right| \leq \Psi \forall n \in \mathbb{N}$. Lemma 6.4 and 6.3 imply then that $\left\{\left(\lambda_{n}, u_{n}\right)\right\}$ is relatively compact in $\mathbb{R} \times W^{2, p}\left(\mathbb{R}^{N}\right)$.

7 - A global bifurcation result

Applying Proposition 4.1, 4.4, 4.5, 6.5 and Theorem 2.7 we deduce immediately

Proposition 7.1. Let f satisfy hypotheses (H1) to (H4), and assume the existence of a value $\lambda_{0}<\beta$ such that $\operatorname{dim} \operatorname{Ker}\left(D_{u} F_{\left(\lambda_{0}, u\right)}\right)$ is odd. Then $\mathcal{C}_{\lambda_{0}}$ has at least one of the following properties:

1) $\mathcal{C}_{\lambda_{0}}$ is unbounded,
2) the closure of $\mathcal{C}_{\lambda_{0}}$ contains a point of the form $\left(\lambda^{\star}, 0\right)$ with $\lambda^{\star} \neq \lambda_{0}$,
3) $\sup _{(\lambda, u) \in \mathcal{C}_{\lambda_{0}}} \lambda=\beta$.

REFERENCES

[1] A. Ambrosetti - J. L. Gámez: Branches of positive solutions for some semilinear Schrödinger equations, Math. Z. (to appear).
[2] H. Brézis: Analyse fonctionnelle, Masson, Paris, 1983.
[3] M. G. Crandall - P. H. Rabinowitz: Bifurcation from simple eigenvalues, J. Func. Anal., 8 (1971), 321-340.
[4] K. Deimling: Nonlinear functional analysis, Springer-Verlag, Berlin, 1985.
[5] A. L. Edelson - C. A. Stuart: The principal branch of solutions of a nonlinear elliptic eigenvalue problem on \mathbb{R}^{N}, J. Differential equations, 124 (1996), 279-301.
[6] P. M. Fitzpatrick - J. Pejsachowicz: An extension of the Leray-Schauder degree for fully nonlinear elliptic problems, Proc. Symp. Pure Math., 45, Part I (1986), 425-438.
[7] P. M. Fitzpatrick - J. Pejsachowicz: The fundamental group of linear Fredholm operators and the global analysis of semilinear equations, Contemp. Math., 72 (1988), 47-87.
[8] P. M. Fitzpatrick - J. Pejsachowicz: A local bifurcation Theorem for \mathcal{C}^{1} Fredholm maps, Proc. Am. Math. Soc., 109 (1990), 995-1002.
[9] P. M. Fitzpatrick - J. Pejsachowicz: Parity and generalized multiplicity, Trans. Am. Math. Soc., 1 (1991), 281-305.
[10] P. M. Fitzpatrick - J. Pejsachowicz - P. J. Rabier: The degree of proper C^{2} Fredholm mappings, J. reine angew. Math., 427 (1992), 1-33.
[11] P. Fitzpatrick - M. Martelli - J. Mawhin - R. Nussbaum: Topological methods for ordinary differential equations, Lecture notes in mathematics (1537), Springer-Verlag, Berlin, 1993.
[12] H. Jeanjean - M. Lucia - C. A. Stuart: Branches of solutions to a semilinear elliptic equation on \mathbb{R}^{N}, Math. Z., 230 (1999), 79-105.
[13] T. Kato.: Perturbation theory for linear operators, Springer-Verlag, Berlin, 1976.
[14] M. A. Krasnoselsky: Topological methods in the theory of nonlinear integral equations, MacMillan, 1964.
[15] E. Montefusco: Sublinear elliptic eigenvalue problems in \mathbb{R}^{N}, Atti Sem. Mat. and Fis. Univ. Modena (to appear).
[16] A. Pazy: Semigroups of linear operators and applications to partial differential equations, Appl. Math. Sci., Vol. 44, Springer-Verlag, 1983.
[17] J. Pejsachowicz - P. J. Rabier: Degree theory for \mathcal{C}^{1} Fredholm mappings of index 0, Preprint (1997).
[18] P. Rabier: Definition and properties of a particular notion of convexity, Numer. Funct. Anal. and Optimiz., 7 (4) (1984-85), 279-302.
[19] P. H. Rabinowitz: Some global results for nonlinear eigenvalues problems, J. Func. Anal., 7 (1971), 487-513.
[20] E. Stein: Singular integrals and differentiability properties of functions, Princeton University Press, 1970.
[21] M. M. Vainberg: Variational methods for the study of nonlinear operators, Holden-day, San-Francisco, 1964.

Lavoro pervenuto alla redazione il 20 gennaio 1999 ed accettato per la pubblicazione il 9 novembre 1999.

Bozze licenziate il 13 aprile 2000

INDIRIZZO DELL'AUTORE:
M. Lucia - Département de Mathématiques - EPFL, CH-1015 Lausanne - Switzerland

This paper is part of the author's thesis. The author would like to thank his thesis advisor Professor C.A. Stuart for his useful suggestions and comments.

