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Branches of solutions to a semilinear elliptic equation

with singular coefficients on IRN

M. LUCIA

Riassunto: Diamo un risultato di biforcazione globale per un problema semilineare
definito su IRN utilizzando risultati di Pejsachowicz e Rabier validi per applicazioni
Fredholm d’indice zero di classe C1.

Abstract: We give a global bifurcation result for a semilinear problem on IRN us-
ing a Theorem available for C1-Fredholm mappings of index zero stated by Pejsachowicz
and Rabier.

1 – Introduction

Given a mapping f : IRN × IR → IR satisfying

(H1) f(·, 0) ≡ 0,

we are interested in the following nonlinear Schrödinger eigenvalue prob-

lem:

(1.1)

( −4u + f(·, u) − ∏u = 0 on IRN ,

lim
|x|→1

u(x) = 0, u 6≡ 0.

This kind of problem has been investigated under various assump-

tions on f for example by Ambrosetti and Gamez [1], Edelson and
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Stuart [5], Montefusco [15] . . . Here we are interested in given some

conditions on the function f which ensure the existence of global branches

of solutions for Problem (1.1) bifurcating from a trivial solution (∏0, 0) in

IR×W 2,p(IRN) for p > max{1, N
2
}. Since the Laplacian operator does not

have a compact inverse IRN , we cannot reduce Problem (1.1) into a form

which allows to apply the Global Bifurcation Theorem of Rabinowitz [19].

In [12] this difficulty was overcome by using a result on global bifurcation

due to Fitzpatrick, Pejsachowicz and Rabier [10]. The goal of this

paper is to show how following the same approach it is possible to give a

similar result under slightly more general hypotheses on the function f .

The main improvements are:

1) As anticipated in [12], Pejsachowicz and Rabier (see [17]) have

extended to C1-Fredholm mappings a topological degree first defined

in [10] for C2-Fredholm mappings. As a consequence, it is sufficient

for our problem to assume that s 7→ f(x, s) is C1.

2) The hypotheses of equicontinuity in [12] are essentially replaced here

by a growth condition.

3) In [12], we assumed @sf(·, 0) ∈ L1(IRN). Here, we require @sf(·, 0) ∈
Lp(IRN) + L1(IRN).

The results of this paper have been organized as follows.

In Section 2, we summarize the results of bifurcation for C1-Fredholm

mappings we need.

In Section 3, we give a differentiability result for a class of Nemitsky

operators defined between the space Lp,1 := {u ∈ Lp(IRN) + L1(IRN) :

lim|x|→1 u(x) = 0} endowed with the norm kuk := kukLp + kukL1 and

the space Lp(IRN).

In Section4, we show with Proposition 4.1 that if in addition to (H1)

we assume

(H2) 1) f is a Carathéodory function,

2) for a.e. x ∈ IRN , s 7→ f(x, s) is of class C1,

3) @sf(·, 0) ∈ Lp(IRN)+L1(IRN) and there exists R0 > 0 such that

lim
|s|→0

k@sf(x, s) − @sf(x, 0)kL1(|x|>R0) = 0,
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4) for every R, δ > 0 there exists ™ := ™R,δ ∈ Lp(|x| < R) such

that

|@sf(x, s)| ≤ ™(x) ∀|s| < δ, a.e |x| < R,

then the mapping F : IR×W 2,p(IRN) → Lp(IRN), (∏, u) 7→ −4u+f(·, u)−
∏u is a C1 mapping whose zeros are clearly solutions of Problem (1.1).

Setting α := lim inf |x|→1 @sf(x, 0), we show that the operator DuF(∏,u) is

Fredholm of index zero on (−1,α) × W 2,p(IRN).

In Section 5, we show that (∏0, 0) is a bifurcation point for the equa-

tion F (∏, u) = 0 if moreover:

(H3) α > −1, ∏0 < α and Ker
£
DuF(∏0,0)

§
is of odd dimension.

In Section 6, using a maximum principle, we give a sufficient con-

dition (H4) on the mapping f which ensures that the restriction of the

mapping F to (−1,β)×W 2,p(IRN) is ”boundedly proper” (where β will

be made precise later on).

In Section 7, we show that the local result given in Section 5 is global

if (H4) is assumed.

Notations

BR := {x ∈ IRN : |x| < R}, BR,1 := {x ∈ IRN : |x| > R},
X,Y denote Banach spaces, I an open interval of IR, ≠ an open subset

of IRN ,

Φ0(X,Y ) : Set of linear operator from the space X to Y which are Fred-

holm of index 0,

α := lim inf
|x|→1

@sf(x, 0), p0 := max
©
1, N

2

™
.

2 – Bifurcation results for C1-Fredholm mapping

In this part, we summarize the notion of parity introduced in [7]

and mention a local and a global bifurcation result valid for C1-Fredholm

mappings published in [8] and [17].

A) Parity

If T ∈ GL(X) is a compact perturbation of the identity, we let

degLS(T ) be the Leray-Schauder degree of T : U → X with respect

to 0, where U is any bounded neighborhood of the origin ([4]).
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Definition 2.1. Let A : [a, b] → Φ0(X,Y ) be a continuous path.

1) A continuous path η : [a, b] → GL(Y,X) will be called a parametrix

for A if for each ∏ ∈ [a, b], η(∏) ◦ A(∏) is a compact perturbation of

the identity.

2) If A(a) and A(b) are invertible, then the parity of A in [a, b], σ(A,[a,b])

is defined by :

σ(A, [a, b]) := degLS [η(a) ◦ A(a)] · degLS [η(b) ◦ A(b)] .

3) We will denote by Σ(A) := {∏ ∈ [a, b] : KerA(∏) 6= {0}}. When ∏

is an isolated point in Σ(A), there exists a closed interval J ⊂ [a, b]

such that J ∩ Σ(A) = {∏}. The parity of the restriction of A to J

will be denoted by σ(A,∏).

Remark 2.2.

1) The existence of a parametrix in Definition 2.1 is guaranteed by the

compactness and contractibility of the interval [a, b] (See Proposi-

tion 2.3, [6]).

2) The parity is independent of the choice of parametrix ([7]) and

σ(A, I) = ±1 ([4], p. 64).

Proposition 2.3 (Theorem 6.18, [9]). Let A : [a, b] → Φ0(X,Y ) be

continuous, be differentiable at ∏0 and satisfying

(2.2) A0(∏0)[KerA(∏0)] ⊕ RanA(∏0) = Y.

Then, ∏0 is isolated in Σ(A) and σ(A,∏0)=(−1)k, where k=dimKerA(∏0).

B) A Local and a global bifurcation result

Consider a mapping F such that:

(2.3) F : I × X → Y, (∏, x) 7→ F (∏, x), with F (·, 0) = 0.

Proposition 2.4 (Fitzpatrick and Pejsachowicz, [8]). Let F be a

mapping satisfying (2.3), be of class C1 and such that DxF(∏,0) ∈ Φ0(X,Y )

for all ∏ ∈ I. Consider the mapping A : I → Φ0(X,Y ),∏ 7→ DxF(∏,0).
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Assume A continuous, A(a), A(b) ∈ GL(X,Y ) for some a, b ∈ I (a < b)

and σ(A, [a, b]) = −1. Then, there exists ∏0 ∈ (a, b) such that (∏0, 0) is a

bifurcation point for the equation F (∏, x) = 0.

Proposition 2.5. Let F be a mapping satisfying the hypotheses

of Proposition 2.4. Assume that the mapping A : I → Φ0(X,Y ),∏ 7→
DxF(∏,0) is differentiable at ∏0 and satisfies (2.2). Then, σ(A,∏0) = −1

iff dimKerA(∏0) is of odd dimension and in such a case, (∏0, 0) is a

bifurcation point for the equation F (∏, x) = 0.

This result, a direct consequence of Proposition 2.4 and 2.3, is a

local bifurcation result for C1-Fredholm maps, in the same spirit as the

well-known Theorem of Krasnoselsky [14]. In order to give a global

bifurcation theorem available for C1 Fredholm maps, we denote by

S = {(∏, x) ∈ I × X : F (∏, x) = 0 and x 6= 0},
Z∏0

= S ∪ {(∏0, 0)} (with the topology inherited from IR × X),

C∏0
: connected component of Z∏0

containing (∏0, 0)

p1 : the projection defined by I × X → I, (∏, x) 7→ ∏.

Definition 2.6. A mapping F : I ×X → Y is said to be boundedly

proper if the restriction of F to any subset of I × X which is bounded

and closed in IR × X is proper.

Proposition 2.7 (Pejsachowicz and Rabier, [17]). Let F be a

mapping satisfying (2.3). Assume that F is a C1 Fredholm mapping of

index 0 which is boundedly proper. Moreover assume the existence of a

point ∏0 isolated in Σ
≥
DxF(∏,0)

¥
and such that σ

≥
DxF(∏,0),∏0

¥
= −1.

Then C∏0
has at least one of the following properties.

1) C∏0
is unbounded,

2) the closure of C∏0
contains a point of the form (∏∗, 0) with ∏∗ ∈ I,

3) the closure of p1(C∏0
) intersects the boundary of I.
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3 – Differentiability of Nemitsky operator W 2,p(IRN) → Lp(IRN)

Proposition 3.1. Let g : ≠× IR → IR be a Carathéodory function.

1) If u : ≠ → IR is measurable, then the mapping ≠ → IR, x 7→
g(x, u(x)) is measurable.

2) If g(x, ·) ∈ C1(IR) a.e. x ∈ ≠, then @sg is a Carathéodory function.

Proof. For part 1) we refer to Theorem 18.3, p. 152 in Vainberg’s

book [21]. Part 2) is easy.

For p, q ∈ [1,1), it is shown in Krasnoselsky [14] that the Ne-

mitsky operator g̃ is well defined from Lp(≠) to Lq(≠) iff g satisfies the

following condition:

there exists a function a ∈ Lq(≠) and a constant b > 0 such that, for

a.e.x ∈ ≠ and every s ∈ IR

|g(x, s)| ≤ a(x) + b|s|p/q.

Moreover, in such a case, the operator g̃ is automatically continuous.

A similar result exists for the case p = 1, q < 1.

Definition 3.2. Let g : ≠ × IR → IR be a Carathéodory map. For

p ∈ [1,1), we say that g satisfies the property (P1,p) if for all M > 0,

there exists ηM ∈ Lp(≠) such that

|g(x, s)| ≤ ηM(x) ∀|s| < M, a.e. x ∈ ≠.

Proposition 3.3 (Theorem 3.1, [18]). Let q ≥ 1 and g : ≠× IR →
IR be a Carathéodory map. Then, the operator eg : L1(≠) → Lq(≠),

u 7→ g(·, u) is well defined iff g satisfies the property (P1,q). In such a

case, the operator eg is automatically continuous.
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Let p ∈ [1,1) and consider

(3.4) Lp,1 := {u ∈ Lp(IRN) ∩ L1(IRN) : lim
|x|→1

|u(x)| = 0},

endowed with the norm kukLp,1 := kukLp(IRN ) + kukL1(IRN ). The aim

of what follows is to study the differentiability of Nemitsky operators

defined from Lp,1(≠) to Lp(≠). With this aim, we introduce the space:

Lp(≠) + L1(≠) := {f1 + f2 : f1 ∈ Lp(≠) and f2 ∈ L1(≠)}.
Remark 3.4. Notice that if f ∈ Lp(≠) + L1(≠) and g ∈ Lp,1(≠),

then fg ∈ Lp(≠).

Proposition 3.5. Let 1 ≤ p < 1 and g : IRN × IR → IR be a

mapping such that

a) g is a Carathéodory map and g(·, 0) ∈ Lp(IRN),

b) for a.e. x ∈ IRN , s 7→ g(x, s) is of class C1,

c) @sg(·, 0) ∈ Lp(IRN) + L1(IRN) and there exists R0 > 0 such that

lim
|s|→0

k@sg(x, s) − @sg(x, 0)kL1(BR0,1) = 0,

d) for every R > 0, the restriction of @sg to BR × IR satisfies the condi-

tion (P1,p).

Then, the Nemitsky operator eg : Lp,1(IRN) → Lp(IRN), u 7→ g(·, u)

is C1 Fréchet differentiable and for every u ∈ Lp,1(IRN), the Fréchet

derivative is given by:

Deg(u) : Lp,1(IRN) −→ Lp(IRN) ξ 7−→ @sg(·, u) ξ.

Proof Step 1. We show that eg is well defined.

Using hypothesis b), we have for a.e. x ∈ IRN : g(x, s) = g(x, 0) +Z 1

0

d

dt

£
g(x, ts)

§
dt.

Thus, given u ∈ Lp,1(IRN), for a.e. x ∈ IRN , we have:

|g(x, u(x))| ≤ |g(x, 0)| + |u(x)|
Z 1

0

|@sg(x, tu(x))|dt.
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Denoting by A(x) :=

Z 1

0

|@sg(x, tu(x))|dt, above inequality shows it is

enough to prove that A ∈ Lp(IRN)+L1(IRN) (see hypothesis a) and also

Remark 3.4).

By hypothesis c), and the fact that lim
|x|→1

|u(x)| = 0, we deduce the

existence of R > 0 (depending on g and u) such that: |@sg(x, tu(x)) −
@sg(x, 0)| ≤ 1 (a.e. x ∈ BR,1, for all t ∈ [0, 1]).

Hence, on BR,1, we have

|A(x)| ≤
Z 1

0

|@sg(x, tu(x)) − @sg(x, 0)|dt + |@sg(x, 0)| ≤ 1 + |@sg(x, 0)|.

From hypothesis c), we have @sg(·, 0) ∈ Lp(IRN) + L1(IRN), which

implies

(3.5) A ∈ Lp(BR,1) + L1(BR,1).

On BR, hypothesis d) and the fact that u ∈ L1(IRN) imply the

existence of η ∈ Lp(IRN) such that |@sg(·, tu)| ≤ η on BR for all t ∈ [0, 1].

Hence,

(3.6) A ∈ Lp(BR) + L1(BR).

Relations (3.5) and (3.6) imply A ∈ Lp(IRN) + L1(IRN).

Step 2. Given u ∈ Lp,1, we verify that the linear mapping Dg̃(u)

given in the conclusion of this proposition is well defined and continuous.

By Proposition 3.1, we know that @sg is a Carathéodory map which

implies the measurability of the mapping @sg(·, u)ξ.

From hypothesis c) and the fact that lim
|x|→1

|u(x)| = 0, there exists

R > R0 such that

|@sg(·, u) − @sg(·, 0)| ≤ 1 on BR,1.

Thus,

k@sg(·,u)ξkLp(BR,1)≤k[@sg(·,u)−@sg(·,0)]ξkLp(BR,1)+k@sg(·,0)ξkLp(BR,1)≤
≤ kξkLp(BR,1) + k@sg(·, 0) ξkLp(BR,1) ≤
≤ CkξkLp,1(IRN ).
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On BR, from hypothesis d) we have @sg(·, u) ∈ Lp(BR) and thus,

k@sg(·, u) ξkLp(BR) ≤ CkξkL1(BR) ≤ CkξkLp,1(IRN ).

Step 3. limkξkLp,1→0

kg̃(u+ξ)−g̃(u)−Dg̃(u)(ξ)kLp(IRN )

kξkLp,1
= 0 (i.e g̃ is Fréchet-

differentiable).

We have,

kg̃(u + ξ) − g̃(u) − Dg̃(u)(ξ)kLp(IRN ) =

= kg(·, u + ξ) − g(·, u) − @sg(·, u) ξkLp(IRN ) ≤

≤
∞∞∞∞
Z 1

0

d

dt

£
g(·, u + tξ)

§
dt − @sg(·, u) ξ

∞∞∞∞
Lp(IRN )

=

= kξ™(u, ξ)kLp(IRN ) ,

where we have set ™(u, ξ) =

Z 1

0

[@sg(·, u + tξ) − @sg(·, u)] dt. For every

R > 0, we have

kξ™(u, ξ)kLp(IRN ) ≤ kξkL1(IRN ) k™(u, ξ)kLp(BR)+

+ kξkLp(IRN) k™(u, ξ)kL1(BR,1) ≤
≤ kξkLp,1

≥
k™(u, ξ)kLp(BR) + k™(u, ξ)kL1(BR,1)

¥
.

Thus for every R > 0 and ξ 6= 0, we have

(3.7)

kg̃(u + ξ) − g̃(u) − Dg̃(u)(ξ)kLp(IRN)

kξkLp,1
≤

≤ k™(u, ξ)kLp(BR) + k™(u, ξ)kL1(BR,1)

Let ≤ > 0. We show that for R “large enough” and kξkLp,1 “small

enough”, the right hand-side of this last inequality becomes less than

≤. From hypothesis c), and the fact that lim
|x|→1

|u(x)| = 0, there exists

δ, R > 0 such that

|@sg(x, s) − @sg(x, 0)| <
≤

4
a.e. x ∈ BR,1, ∀|s| < δ,

|u(x)| <
δ

2
a.e. x ∈ BR,1.
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Let us consider ξ ∈ Lp,1(IRN) satisfying kξkLp,1 < δ
2
. Then, for

a.e. x ∈ BR,1 and for all t ∈ [0, 1], we have |u(x) + tξ(x)| < δ and by

consequence,

(3.8) k™(u, ξ)kL1(BR,1) <
≤

2
∀kξkLp,1 <

δ

2
.

In BR, we have

k™(u, ξ)kp
Lp(BR) =

Z

BR

ØØØ
Z 1

0

[@sg(·, u + tξ) − @sg(·, u)]dt
ØØØ
p

dx ≤

≤
Z

BR

Z 1

0

|@sg(·, u + tξ) − @sg(·, u)|pdtdx =

=

Z 1

0

Z

BR

|@sg(·, u + tξ) − @sg(·, u)|pdxdt =

=

Z 1

0

k@sg(·, u + tξ) − @sg(·, u)kp
Lp(BR)dt.

Thus,

(3.9) k™(u, ξ)kp
Lp(BR) ≤

Z 1

0

k@sg(·, u + tξ) − @sg(·, u)kp
Lp(BR)dt.

By hypothesis the restriction of the mapping @sg to BR × IR satisfies

the assumptions of Proposition 3.3. Thus, there exists eδ > 0 such that:

k@sg(·, u + tξ) − @sg(·, u)kLp(BR) < ≤
2
, ∀kξkLp,1 < eδ.

From (3.9), we deduce

(3.10) k™(u, ξ)kLp(BR) <
≤

2
∀kξkLp,1 < eδ, ∀t ∈ [0, 1].

Thus, relations (3.7), (3.8) and (3.10) give for every kξkLp,1 < min{δ, eδ}

kg̃(u + ξ) − g̃(u) − Dg̃(u)(ξ)kLp(IRN )

kξkLp,1
< ≤.

Step 4. Set X := Lp,1 and Y := Lp(IRN), we show that Dg̃ : X →
L(X;Y ) is continuous.
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Let u, u0 ∈ X. For every R > 0, we have

kDg̃(u) − Dg̃(u0)kL(X,Y ) =

= sup
kξkX≤1

k[@sg(·, u) − @sg(·, u0)]ξkLp(IRN ) ≤

≤ k@sg(·, u) − @sg(·, u0)kLp(BR) + k@sg(·, u) − @sg(·, u0)kL1(BR,1).

As in the second step we verify that this last expression tends to 0 when

ku − u0kX → 0.

Since for p > p0 the injection i : W 2,p(IRN) ↪→ Lp,1 is of class C1,

above proposition can be applied to prove the differentiability of Nemitsky

operators defined from W 2,p(IRN) to Lp(IRN).

4 – A functional framework

In this section we define a mapping F : IR × X → Y of class C1,

whose zeros are solutions of Problem (1.1). From Proposition 3.5, we

have immediately :

Proposition 4.1. Let f be a mapping satisfying (H1) and (H2).

Then, the mapping defined by

(4.11) F : IR×W 2,p(IRN) −→ Lp(IRN) (∏, u) 7−→ −4u+f(·, u)−∏u

is well-defined, of class C1 and DuF(∏,u)(ξ)= −4ξ + (@2f(·, u)− ∏) ξ.

Example 4.2. A mapping of the kind f(x, s) =
≥
p(x) + q(x)r(s)

¥
s

satisfies all the hypotheses of Proposition 4.1 if:

p, q ∈ L1(IRN),(4.12)

r(s)s is C1(IR)(4.13.)

Remark 4.3.

1) Condition (4.13) is not satisfied if r(s) = sθ−1 with 0 < θ < 1. Thus,

this kind of non linearity (studied for example in [15]) cannot be

considered here.
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2) It is easy to show that the hypotheses made on f in [12] to ensure

the C1 differentiability of the mapping (4.11) are less general than

the assumptions of Proposition 4.1.

To give results of bifurcation for the problem F (∏, u) = 0 based on

the results presented in Section 2 we first discuss the Fredholm property

of DuF(∏,u) and then prove that this operator satisfy the condition (2.2).

Proposition 4.4. Let p > p0, f be a mapping satisfying (H1) and

(H2). Then, the mapping (4.11) is Fredholm with index 0 on (−1,α) ×
W 2,p(IRN) (where α := lim inf |x|→1 @sf(·, 0)).

Proof. Let u ∈ W 2,p(IRN). We have by Proposition 4.1 that

DuF(∏,u) = −4 + @sf(·, u) − ∏. Setting,

µ := ∏− α, V := @sf(·, u) − α, V + = max(V, 0), V − = −min(V, 0)

we can write, DuF(∏,u) = −4+ (V + − µ) + V −. Hypothesis (H2) implies

that V ∈ Lp(IRN) + L1(IRN) and lim inf
|x|→1

V (x) > −1. We deduce from

Pazy’s book ([16]) that −4+(V +−µ) is an isomorphism for every µ < 0.

Moreover, from the fact that V − ∈ Lp
loc(IR

N) and lim
|x|→1

V −(x) = 0, we

deduce that multiplication operator W 2,p(IRN) −→ Lp(IRN), u 7−→ V −u

is well-defined and compact.

Thus, DuF(∏,u) is a compact perturbation of a Fredholm operator of

index 0 for every µ < 0. This implies that DuF(∏,u) is again Fredholm of

index 0 for every ∏ < 0 (see [13]).

Proposition 4.5. Let p > p0, f be a mapping satisfying (H1),

(H2) and consider the mapping (4.11). Setting Ap,∏ := DuF(∏,u), we have

(4.14) KerAp,∏ ⊕ RanAp,∏ = Lp(IRN) ∀∏ < α.

Proof. Since the operator Ap,∏ is Fredholm with index 0 (Proposi-

tion 4.4), assertion (4.14) is equivalent to KerAp,∏∩RanAp,∏ = {0}. Con-

sider then, h ∈ KerAp,∏, and g ∈ W 2,p(IRN) with Ap,∏(g) = h. Roughly

speaking we have:
R
IRN |h|2 =

R
IRN Ap,∏(g)h =

R
IRN gAp,∏(h) = 0 (and each

of these equalities is meaningful by classical regularity results).
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5 – A local bifurcation result

Under the assumptions (H1) and (H2), we know from Proposition 4.1

that the mapping F defined by (4.11) is of class C1 for p > p0. We

introduce now the following hypothesis

(H3) We assume α > −1 and the existence of ∏0 < α such that

Ker
£
DuF(∏0,0)

§
is of dimension odd (and thus in particular non-

trivial).

Proposition 5.1. Let p > p0, f be a mapping satisfying the

hypotheses (H1) to (H3), and let ∏0 < α be such that Ker
£
DuF(∏0,0)

§
is of

odd dimension. Then, (∏0, 0) is a local bifurcation point for the problem

F (∏, u) = 0.

Proof. Apply Proposition 4.1, 4.5, and Proposition 2.5.

Remark 5.2. If Ker
£
DuF(∏0,0)

§
is of dimension 1, then the con-

clusion of previous theorem follows from the well-known Crandall-

Rabinowitz Theorem [3].

6 – Properness

The aim of this section is to give an additional condition on the

function f which ensures that the mapping (4.11) is boundedly proper in

the sense of Definition 2.6. With this aim, for each C ≥ 0, we introduce

the following real number,

β(C) := lim
R→1

inf
|x|≥R,|s|≤C

Ω
f(x, s)

s

æ
.

We set β = infC≥0 β(C) (note that β ≤ α) and we make the following

hypothesis

(H4) β > −1.

Under the hypothesis, we are going to prove that the mapping (4.11)

is boundedly proper on (−1,β)×W 2,p(IRN). This will be derived mainly

from the following result:
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Proposition 6.1. Let p > p0, E ⊂ W 2,p(IRN) and (Vu)u∈E a family

of function in Lp(IRN) + L1(IRN) such that:

a) there exists a,R > 0 such that inf
|x|≥R

Vu(x) ≥ a > 0, for all u ∈ E,

b) M := sup{|u|L1 : u ∈ E} is finite,

c) there exists ew ∈ Lp(IRN) such that |−4u + Vuu| ≤ ew for all u ∈ E .

Then, for all u ∈ E, we have |u| ≤ Me−
√

a(|x|−R) + (−4 + a)−1 ew.

Proof. The proof given in Theorem 3.2 of [12] for a family of func-

tion Vu ∈ L1(IRN) can be adapted immediately in our case by using the

following maximum principle:

Maximum principle: Let ≠ := IRN or ≠ := BR0,1 for some R0 > 0

and p > p0. Let also V ∈ Lp(≠)+L1(≠) with V ≥ 0. Then, the mapping

W 2,p(≠) → Lp(≠), u 7→ −4u + V u satisfies a maximum principle on ≠

in the following sense:

u(@≠) ≥ 0 and −4u + V u ≥ 0 =⇒ u ≥ 0.

Corollary 6.2. Let E and (Vu)u∈E be as in the above proposition.

Then, there exists w ∈ Lp,1 (in fact in W 2,p(IRN)) such that on IRN , we

have |u| ≤ w for all u ∈ E.

Lemma 6.3. Let p > p0, f be a mapping satisfying (H1) and (H2),

F be defined by 4.11 and K be a compact subset of Lp(IRN). Then, the

following affirmations are equivalent:

1) F−1(K) is relatively compact in IR × W 2,p(IRN),

2) F−1(K) is relatively compact in IR × Lp,1.

Proof. The fact that 1) implies 2) derives from the continuity of

W 2,p(IRN) ↪→ Lp,1. Reciprocally, let {(∏n, un)} be a sequence in F−1(K).

We have,

(6.15) (−4 + 1)un = F (∏n, un) − f(·, un) + (∏n + 1)un.

Since K is compact we can assume that the sequence F (∏n, un) con-

verges. By hypothesis, the sequence {(∏n, un)}1
n=1 converges in Lp(IRN)



[15] Branches of solutions to a semilinear elliptic equation etc. 503

(up to a subsequence). Moreover Proposition 3.5 ensures the continuity

of Lp,1 → Lp(IRN), u 7→ f(·, u). Thus, the right hand side of (6.15)

converges in Lp(IRN). Since the operator −4+1 is an isomorphism from

W 2,p(IRN) to Lp(IRN) (see Stein, [20]), we deduce that un converges in

W 2,p(IRN).

Lemma 6.4. Let p > p0 and E be a bounded subset of W 2,p(IRN).

Then, the two following assertions are equivalent,

1) E is relatively compact in Lp,1,

2) ∀≤ > 0, there exists R > 0 such that kukLp(BR,1) + kukL1(BR,1) < ≤

for all u ∈ E .

In particular, if there exists ™ ∈ Lp,1 such that |u| ≤ ™ for all u ∈ E,

then E is relatively compact in Lp,1.

Proof. The fact that 1) implies 2) is clear. Reciprocally, let q ∈
{p,1} and (un)1n=1 be a sequence of E. Since E is bounded, we can

assume that this sequence converges weakly to u ∈ W 2,p(IRN). Let ≤ > 0.

There exists R > 0 such that kukLq + kunkLq < ≤
2
. Thus, on BR,1 we

have

ku(x) − un(x)kLq(BR,1) ≤ ku(x)kLq(BR,1) + kun(x)kLq(BR,1) < ≤.

Since p > p0, W 2,p (BR) is compactly embedded in C (BR). Thus, there

exists n0 := n(≤) such that

ku − unkLq(BR) < ≤ ∀n ≥ n0.

Thus, kun − ukLq(IRN ) ≤ kun − ukLq(BR) + kun − ukLq(BR,1) < ≤.

Proposition 6.5. Let f be a mapping satisfying the hypotheses

(H1), (H2) and (H4). Then, the mapping (4.11) is boundedly proper on

(−1,β) × W 2,p(IRN).
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Proof. Let [a, b] ⊂ (−1,β), B be a bounded closed subset of [a, b]×
W 2,p(IRN) and K be a compact subset of Lp(IRN). We must prove that

every sequence {(∏n, un)} of F−1(K) ∩ B is relatively compact in IR ×
W 2,p(IRN). Without loss of generality, we can suppose that

∏n → ∏ ≤ b and F (∏n, un) → w ∈ K (strongly in Lp).

Theorem IV.9 of [2] ensures the existence of ew ∈ Lp(IRN) such that

(up to a subsequence)

|F (∏n, un)| ≤ ew a.e on IRN ,∀n ∈ IN.

Setting Vn := f(·,un)

un
− ∏, we can write

F (∏n, un) = −4un +

µ
f(·, un)

un

− ∏
∂

un = −4un + Vnun ≤ ew.

From (H4), there exists R > 0 such that: inf |x|≥R Vn(x) > 0, ∀∏ ≤ b < β,

∀n ∈ IN.

From Corollary 6.2 there exists ™ ∈ Lp(IRN) such that: |un| ≤ ™ ∀n ∈ IN.

Lemma 6.4 and 6.3 imply then that {(∏n, un)} is relatively compact in

IR × W 2,p(IRN).

7 – A global bifurcation result

Applying Proposition 4.1, 4.4, 4.5, 6.5 and Theorem 2.7 we deduce

immediately

Proposition 7.1. Let f satisfy hypotheses (H1) to (H4), and

assume the existence of a value ∏0 < β such that dimKer(DuF(∏0,u)) is

odd. Then C∏0
has at least one of the following properties:

1) C∏0
is unbounded,

2) the closure of C∏0
contains a point of the form (∏?, 0) with ∏? 6= ∏0,

3) sup
(∏,u)∈C∏0

∏ = β.
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