Bounds for products of singular values of a matrix

R. PELUSO - G. PIAZZA

Riassunto: Assegnata una matrice complessa quadrata di ordine n con valori singolari $\sigma_{1}(A) \geq \sigma_{2}(A) \geq \cdots \geq \sigma_{n}(A)>0$, in questo articolo sono presentati limiti inferiori e superiori per $\prod_{i \in I} \sigma_{i}(A), I \subset\{1,2, \ldots, n\}$. In particolare sono migliorati alcuni noti limiti inferiori per il più piccolo valore singolare di A.

Abstract: Given an order n complex matrix with singular values $\sigma_{1}(A) \geq \sigma_{2}(A) \geq$ $\cdots \geq \sigma_{n}(A)>0$, in this paper some lower and upper bounds for $\prod_{i \in I} \sigma_{i}(A), I \subset$ $\{1,2, \ldots, n\}$, are shown. In particular some note lower bounds for the smallest singular value of A are improved.

1 - Introduction

Let A be a square complex matrix of order $n, n \geq 3$, and let $\sigma_{1}(A) \geq$ $\sigma_{2}(A) \geq \cdots \geq \sigma_{n}(A)>0$ be the singular values of A. In this paper we show some lower and upper bounds for the product of k singular values of $A, k<n$, involving only the determinant of A and the 2 norms of the rows of A, that we denote by $r_{i}, i=1, \ldots, n$. Since the singular values of A are the same of $P A$, where P is a permutation matrix in the following we suppose $r_{1} \geq r_{2} \geq \cdots \geq r_{n}>0$, without loss of generality.

[^0]The simplest inequalities are
(1) $\quad \sigma_{1}(A) \sigma_{2}(A) \ldots \sigma_{k}(A) \leq P_{k}\left(\frac{n}{k}\right)^{\frac{k}{2}} \prod_{i=1}^{k} r_{i}, \quad \quad P_{k} \leq 1$
and
(2) $\sigma_{n-k+1}(A) \sigma_{n-k}(A) \ldots \sigma_{n}(A) \geq Q_{k}\left(\frac{n-k}{n}\right)^{\frac{n-k}{2}} \frac{|\operatorname{det} A|}{\prod_{i=1}^{n-k} r_{i}}, \quad Q_{k} \geq 1$.

Paying attention to the rows of A inequality (1) can be modified in the following way

$$
\sigma_{1}(A) \sigma_{2}(A) \ldots \sigma_{k}(A) \leq R_{k}\left(\frac{n}{k}\right)^{\frac{k}{2}} \prod_{i=1}^{k} r_{i}\left(\frac{k+\sum_{i=k+1}^{n} t_{i}}{n}\right)^{\frac{k}{2}}, \quad R_{k} \leq 1
$$

where

$$
t_{i}=\left(\frac{r_{i}}{r_{k}}\right)^{2}, \quad i=k+1, \ldots, n
$$

While inequality (2) becomes

$$
\begin{align*}
& \sigma_{n-k+1}(A) \sigma_{n-k}(A) \ldots \sigma_{n}(A) \geq \\
& \quad \geq T_{k}\left(\frac{n-k}{n}\right)^{\frac{n-k}{2}} \frac{|\operatorname{det} A|}{\left(\frac{n-k+\sum_{i=n-k+1}^{n} t_{i}}{n}\right)^{\frac{n-k}{2}} \prod_{i=1}^{n-k} r_{i}} \tag{3}
\end{align*}
$$

with $T_{k} \geq 1$ and where

$$
t_{i}=\left(\frac{r_{i}}{r_{n-k}}\right)^{2}, \quad i=n-k+1, \ldots, n
$$

The constants P_{k}, Q_{k}, R_{k} and T_{k} depend on matrix A and an arbitrary parameter $\psi, 0 \leq \psi \leq 1$. If $\psi=0$ then $P_{k}=Q_{k}=R_{k}=T_{k}=1$. For $k=1$ and $\psi=0$ (hence $Q_{1}=1$), inequality (2) becomes

$$
\sigma_{n}(A) \geq\left(\frac{n-1}{n}\right)^{\frac{n-1}{2}} \frac{|\operatorname{det} A|}{\prod_{i=1}^{n-1} r_{i}}
$$

that is the some lower bound for the smallest singular values given in [2] (considering only the rows of A). This bound is improved in [4]. We prefer to rewrite the bound given in [4], referring only to rows of A, as

$$
\sigma_{n}(A) \geq\left(\frac{n-1}{n-1+t}\right)^{\frac{n-1}{2}}\left(1+\frac{1}{2} G\right) \frac{|\operatorname{det} A|}{\prod_{i=1}^{n-1} r_{i}}, \quad t=t_{n}
$$

where

$$
G=\frac{|\operatorname{det} A|^{2}}{r_{n-1}^{2}\left(\prod_{i=1}^{n-1} r_{i}^{2}\right)\left(\frac{n-1+t}{n-1}\right)^{n}}
$$

The bound is better than bound (3) with $k=1$ and $\psi=0$. Moreover with an opportune choise for ψ, inequality (3) gives, for $k=1$:

$$
\sigma_{n}(A) \geq\left(\frac{n-1}{n-1+t}\right)^{\frac{n-1}{2}}\left(\frac{1-G}{1-\frac{n}{n-1} G}\right)^{\frac{n-1}{2}} \frac{|\operatorname{det} A|}{\prod_{i=1}^{n-1} r_{i}}
$$

that improves the bound given in [4].
Moreover in this paper the following bound is proved

$$
\sigma_{n}(A) \geq \min \left(\frac{r_{n-2}}{\gamma}, r_{n}\right) \sqrt{1-\sqrt{1-S^{2}}}
$$

where

$$
S=\frac{|\operatorname{det} A|}{\prod_{i=1}^{n} r_{i}} \leq 1 .
$$

and

$$
\gamma=\sqrt{1+\sqrt{1-S^{2}}}
$$

Since $1 \leq \gamma \leq \sqrt{2}$, it is improved also another bound given in [4], which can be written

$$
\sigma_{n}(A) \geq \min \left(\frac{r_{n-2}}{\sqrt{2}}, r_{n}\right) \sqrt{1-\sqrt{1-S^{2}}}
$$

The paper is organized as follows. In sections 2, 3, 4 and 5 starting from the arithmetic-geometric mean inequality bounds for the product of k among n positive numbers $\sigma_{i}, i=1, \ldots, n$, are derived. These bounds involve $\sum_{i=1}^{n} \sigma_{i}$ and $\prod_{i=1}^{n} \sigma_{i}$. In section 6 these results are applied to obtain bounnds for the product of k singular values of a matrix A involving the determinant and the Frobenius norm of A. Starting from these bounds and taking a nonsingular arbitrary matrix X new bounds are obtained rewriting the previous for matrix $X^{-1} A$ and using classical inequalities for the singular values of the product of two matrices. In section 7 for some particular choices for matrix X the results written previously are obtained. Finally in section 8 the bounds founds in this paper are compared with those given in [2] and [4].

Throughout the paper we use the following notations:

$$
\begin{array}{ll}
\Pi:=\prod_{i=1}^{n} \sigma_{i} & \sigma^{2}:=\sum_{i=1}^{n} \sigma_{i}^{2} \\
I \subset\{1,2, \ldots, n\}, I \neq \emptyset, & I \neq\{1,2, \ldots, n\}
\end{array}
$$

\bar{I} the complementary set of I;

$$
p(I):=\prod_{i \in I} \sigma_{i} \quad s^{2}(I):=\sum_{i \in I} \sigma_{i}^{2}
$$

$\|A\|_{F}$ the Frobenius norm of A.
When it is not essential to specify the set, we also write $p=p(I), s=s(I)$ $\bar{p}=p(\bar{I})$ and $\bar{s}=s(\bar{I})$.

2 - The Main Lemma

Lemma 2.1. For $p:=p(I), s:=s(I), \operatorname{card}(I):=k$, the following inequalities hold:

$$
\begin{align*}
& p^{2} \geq \frac{\Pi^{2}}{\left[\frac{\sigma^{2}-k\left(p^{2}\right)^{1 / k}}{n-k}\right]^{n-k}} \tag{4}\\
& s^{2} \geq \frac{k\left(\Pi^{2}\right)^{1 / k}}{\left[\frac{\sigma^{2}-s^{2}}{n-k}\right]^{\frac{n-k}{k}}}
\end{align*}
$$

and the equality occurs if and only if $\sigma_{1}=\sigma_{2}=\cdots=\sigma_{n}$.
Proof. From arithmetic-geometric mean inequality, we have
(6) $\quad \Pi^{2} \leq\left(\frac{\sigma^{2}}{n}\right)^{n}$;

$$
p^{2} \leq\left(\frac{s^{2}}{k}\right)^{k} ; \quad \quad \bar{p}^{2} \leq\left(\frac{\bar{s}^{2}}{n-k}\right)^{n-k}
$$

with equality if and only if $\sigma_{1}=\sigma_{2}=\cdots=\sigma_{n}$. Furthermore, since

$$
\begin{equation*}
p \bar{p}=\Pi \tag{7}
\end{equation*}
$$

using the third inequality in (6), we have

$$
p^{2} \geq \frac{\Pi^{2}}{\left[\frac{\bar{s}^{2}}{n-k}\right]^{n-k}}=\frac{\Pi^{2}}{\left[\frac{\sigma^{2}-s^{2}}{n-k}\right]^{n-k}}
$$

Now (4) follows from the second inequality in (6). Analogously, (5) is a consequence of $s^{2}+\bar{s}^{2}=\sigma^{2}$, and of the second inequality in (6).

Corollary 2.1. Put

$$
q_{k}=\frac{n-k}{k}\left(\Pi^{2}\right)^{\frac{1}{n-k}}
$$

and

$$
g_{k}(x)=x^{\frac{n}{k}}-\frac{\sigma^{2}}{k} x+q_{k}, \quad k=1, \ldots, n-1
$$

we have
i) the inequality in Lemma 2.1 is equivalent to

$$
g_{k}(x) \leq 0, \quad x>0
$$

with $x=\left(p^{2}\right)^{1 /(n-k)}$;
ii) the inequality in Lemma 2.1 is equivalent to

$$
g_{k}(x) \leq 0, \quad x>0
$$

with $x=\left(s^{2} / k\right)^{k /(n-k)}$.

3 - On the function $g_{k}(x)$

Let $g_{k}(x)$ be the function defined in Corollary 2.1. Evidently $g_{k}^{\prime \prime}(x)>$ 0 for $x>0$, and

$$
\begin{equation*}
\widehat{x}=\left(\frac{\sigma^{2}}{n}\right)^{\frac{k}{n-k}} \tag{8}
\end{equation*}
$$

is the unique point such that

$$
g_{k}(\widehat{x})=\min _{x \geq 0} g_{k}(x)
$$

Also from the first inequality in (6):

$$
\begin{equation*}
g_{k}(\widehat{x})=\frac{n-k}{k}\left[\left(\Pi^{2}\right)^{\frac{1}{n-k}}-\left(\frac{\sigma^{2}}{n}\right)^{\frac{n}{n-k}}\right] \leq 0 \tag{9}
\end{equation*}
$$

Furthermore, $g_{k}(0)=q_{k}>0$ and $\lim _{x \rightarrow+\infty} g_{k}(x)=+\infty$. Hence $g_{k}(x)$ admits only two zeros $r_{k}^{\prime}, r_{k}^{\prime \prime}$, with $r_{k}^{\prime} \leq r_{k}^{\prime \prime}$. Consequently, from Corollary 2.1, the following bounds for p and s are established:

$$
\begin{gather*}
\left(r_{k}^{\prime}\right)^{n-k} \leq p^{2} \leq\left(r_{k}^{\prime \prime}\right)^{n-k} \tag{10}\\
k\left(r_{k}^{\prime}\right)^{\frac{n-k}{k}} \leq s^{2} \leq k\left(r_{k}^{\prime \prime}\right)^{\frac{n-k}{k}} \tag{11}
\end{gather*}
$$

Lemma 3.1. The following equalities hold

$$
\begin{equation*}
\left(r_{k}^{\prime}\right)^{n-k}\left(r_{n-k}^{\prime \prime}\right)^{k}=\Pi^{2} \tag{12}
\end{equation*}
$$

$$
\begin{equation*}
k\left(r_{k}^{\prime}\right)^{\frac{n-k}{k}}+(n-k)\left(r_{n-k}^{\prime \prime}\right)^{\frac{k}{n-k}}=\sigma^{2} \tag{13}
\end{equation*}
$$

Proof. A simple calculus reveals that

$$
g_{n-k}(x)=\frac{x^{\frac{n}{n-k}}}{q_{k}} g_{k}\left(\frac{\left(\Pi^{2}\right)^{\frac{1}{n-k}}}{x^{\frac{k}{n-k}}}\right)
$$

from which (12) follows evaluating $g_{n-k}(x)$ in $r_{n-k}^{\prime \prime}$. Now (13) is a consequence of (12) and $g_{k}\left(r_{k}^{\prime}\right)=0$.

REmARK. Exchanging the role of k and $n-k$ in (12) we have

$$
\begin{equation*}
\left(\frac{r_{k}^{\prime \prime}}{r_{k}^{\prime}}\right)^{n-k}=\left(\frac{r_{n-k}^{\prime \prime}}{r_{n-k}^{\prime}}\right)^{k} \tag{14}
\end{equation*}
$$

Now assuming

$$
\sigma_{1} \geq \sigma_{2} \geq \cdots \geq \sigma_{n}>0
$$

from (10) and (11) it follows

$$
\begin{equation*}
\left(r_{k}^{\prime}\right)^{n-k} \leq \prod_{j=0}^{k-1} \sigma_{n-j}^{2} \leq \prod_{j=1}^{k} \sigma_{j}^{2} \leq\left(r_{k}^{\prime \prime}\right)^{n-k} \tag{15}
\end{equation*}
$$

and

$$
\begin{equation*}
k\left(r_{k}^{\prime}\right)^{\frac{n-k}{k}} \leq \sum_{j=0}^{k-1} \sigma_{n-j}^{2} \leq \sum_{j=1}^{k} \sigma_{j}^{2} \leq k\left(r_{k}^{\prime \prime}\right)^{\frac{n-k}{k}} \tag{16}
\end{equation*}
$$

REMARK. For $k=1$ and $k=n-1$ (15) furnish, respectively

$$
\frac{\sigma_{1}^{2}}{\sigma_{n}^{2}} \leq\left(\frac{r_{1}^{\prime \prime}}{r_{1}^{\prime}}\right)^{n-1}
$$

and

$$
\frac{\sigma_{1}^{2}}{\sigma_{n}^{2}} \leq \frac{r_{n-1}^{\prime \prime}}{r_{n-1}^{\prime}}
$$

Equation (14) shows that these are the same bound.

4 - Lower and upper bounds for the zeros of $g_{k}(x)$

Let

$$
x_{0}=t \frac{\left(\Pi^{2}\right)^{\frac{1}{n-k}}}{\sigma^{2}}, \quad t \geq 0
$$

Evaluating $g_{k}^{\prime}(x)$ in $x=x_{0}$, we have

$$
g_{k}^{\prime}\left(x_{0}\right)=\frac{\sigma^{2}}{k}\left[\frac{t^{\frac{n-k}{k}}}{n^{\frac{n-k}{k}}}\left(\frac{\Pi^{2}}{\left(\frac{\sigma^{2}}{n}\right)^{n}}\right)^{\frac{1}{k}}-1\right] .
$$

Therefore

$$
g_{k}^{\prime}\left(x_{0}\right) \leq 0 \quad \text { for } t \geq 0, \quad t \leq n
$$

and

$$
g_{k}^{\prime}\left(x_{0}\right)=0 \quad \text { if and only if } \sigma_{1}=\cdots=\sigma_{n}, \text { and } t=n
$$

Putting

$$
\begin{equation*}
\rho=\frac{\Pi^{2}}{\left(\frac{\sigma^{2}}{n}\right)^{n}} \leq 1, \quad \text { and } \quad \psi=\frac{t}{n}, \quad 0 \leq \psi \leq 1 \tag{17}
\end{equation*}
$$

it is

$$
g^{\prime}\left(x_{0}\right)<0, \quad \text { if }(\rho, \psi) \neq(1,1)
$$

Supposing $\sigma_{i} \neq \sigma_{j}$, for any $i \neq j$, it is $\rho<1$. In the following we shall assume that $\rho<1$. Then the following theorem holds.

THEOREM 4.1. If $\rho<1$, for every $\psi, 0 \leq \psi \leq 1$, it is

$$
\begin{equation*}
(n-k) \frac{\left(\Pi^{2}\right)^{\frac{1}{n-k}}}{\sigma^{2}} C_{k}(\psi, \rho) \leq r_{k}^{\prime} \leq r_{k}^{\prime \prime} \leq\left[\frac{\sigma^{2}}{k C_{n-k}(\psi, \rho)}\right]^{\frac{k}{n-k}} \tag{18}
\end{equation*}
$$

where

$$
\begin{equation*}
C_{k}(\psi, \rho)=\frac{1-\psi^{\frac{n}{k}} \rho^{\frac{1}{k}}}{1-\psi^{\frac{n-k}{k}} \rho^{\frac{1}{k}}}, \quad 0 \leq \psi \leq 1,0 \leq \rho<1 \tag{19}
\end{equation*}
$$

Proof. Since

$$
\begin{gathered}
0=g_{k}\left(r_{k}^{\prime}\right)=g_{k}\left(x_{0}\right)+g_{k}^{\prime}\left(x_{0}\right)\left(r_{k}^{\prime}-x_{0}\right)+g_{k}^{\prime \prime}(\xi) \frac{\left(r_{k}^{\prime}-x_{0}\right)^{2}}{2} \\
\xi \in\left(x_{0}, r_{k}^{\prime}\right) \text { or } \xi \in\left(r_{k}^{\prime}, x_{0}\right)
\end{gathered}
$$

and $g_{k}^{\prime \prime}(x)>0$, for $x>0$, it follows

$$
x_{0}-\frac{g_{k}\left(x_{0}\right)}{g_{k}^{\prime}\left(x_{0}\right)} \leq r_{k}^{\prime}
$$

Thus, computing $g_{k}\left(x_{0}\right)$, it follows

$$
(n-k) \frac{\left(\Pi^{2}\right)^{\frac{1}{n-k}}}{\sigma^{2}} C_{k}(\psi, \rho) \leq r_{k}^{\prime}
$$

and, as a consequence of (12) we have

$$
r_{k}^{\prime \prime} \leq\left[\frac{\sigma^{2}}{k C_{n-k}(\psi, \rho)}\right]^{\frac{k}{n-k}}
$$

5 - On the function $C_{k}(\psi, \rho)$
For the function

$$
C_{k}(\psi, \rho)=\frac{1-\psi^{\frac{n}{k}} \rho^{\frac{1}{k}}}{1-\psi^{\frac{n-k}{k}} \rho^{\frac{1}{k}}}, \quad 0 \leq \psi \leq 1,0 \leq \rho<1
$$

we have:
a) $C_{k}(\psi, \rho) \geq 1$, and $C_{k}(\psi, \rho)=1$ if and only if $\psi=0$ or $\psi=1$;
b) $C_{k}(\psi, \rho)$ assumes the maximum value in $\psi_{k}(\rho)$, unique solution in $[0,1]$ of the equation

$$
\begin{equation*}
C_{k}(\psi, \rho)=\frac{n}{n-k} \psi \tag{20}
\end{equation*}
$$

or equivalently

$$
\begin{equation*}
\frac{k}{n-k} \psi^{\frac{n}{k}} \rho^{\frac{1}{k}}-\frac{n}{n-k} \psi+1=0 \tag{21}
\end{equation*}
$$

c) if $\psi_{k}=\psi_{k}(\rho)$ is the solution of (21), then

$$
\lim _{\rho \rightarrow 1} \psi_{k}(\rho)=1
$$

and

$$
\lim _{\rho \rightarrow 1} \psi_{k}^{\prime}(\rho)=\infty
$$

d) from (20) and c):

$$
\lim _{\rho \rightarrow 1} C_{k}\left(\psi_{k}, \rho\right)=\frac{n}{n-k} \lim _{\rho \rightarrow 1} \psi_{k}(\rho)=\frac{n}{n-k}
$$

Moreover we observe that, for n even and $k=n / 2$, (21) reduces to

$$
\rho^{\frac{2}{n}} \psi^{2}-2 \psi+1=0
$$

from which

$$
\begin{equation*}
\psi_{n / 2}(\rho)=\frac{1-\sqrt{1-\rho^{\frac{2}{n}}}}{\rho^{\frac{2}{n}}} \tag{22}
\end{equation*}
$$

Equation (22) can be considered as an approximation to $\psi_{k}(\rho)$, solution of (21) for every k.

Moreover it is easy to verify that for every function $\psi=\psi(\rho)$, such that

$$
\begin{equation*}
\lim _{\rho \rightarrow 1} \psi(\rho)=1, \quad \text { and } \quad \lim _{\rho \rightarrow 1} \psi^{\prime}(\rho)=\infty \tag{23}
\end{equation*}
$$

it is

$$
\lim _{\rho \rightarrow 1} C_{k}(\psi(\rho), \rho)=\frac{n}{n-k}
$$

6 - Application to singular values

Let A be an order n nonsingular complex matrix with singular values

$$
\sigma_{\max }(A)=\sigma_{1}(A) \geq \sigma_{2}(A) \geq \cdots \geq \sigma_{n}(A)=\sigma_{\min }(A)
$$

In this case

$$
\begin{aligned}
\Pi & =|\operatorname{det} A| \quad \sigma^{2}=\|A\|_{F}^{2} \\
\rho & =\frac{|\operatorname{det} A|^{2}}{\left(\frac{\|A\|_{F}^{2}}{n}\right)^{n}}
\end{aligned}
$$

Evidently $\rho=1$ if and only if A is proportional to a unitary matrix. Now, from (15) and Theorem 4.1, we have, for an arbitrary function $\psi=\psi(\rho)$, $0 \leq \rho \leq 1$,

$$
\begin{align*}
{\left[\frac{n-k}{n} C_{k}(\psi, \rho)\right]^{\frac{n-k}{2}} \frac{|\operatorname{det} A|}{\left[\frac{\|A\|_{F}^{2}}{n}\right]^{\frac{n-k}{2}}} } & \leq \sigma_{n} \ldots \sigma_{n-k+1} \leq \sigma_{1} \sigma_{2} \ldots \sigma_{k} \leq \tag{24}\\
& \leq\left[\frac{n}{k C_{n-k}(\psi, \rho)}\right]^{\frac{k}{2}}\left[\frac{\|A\|_{F}^{2}}{n}\right]^{\frac{k}{2}}
\end{align*}
$$

We note that if ψ is chosen to satisfy (23), then (24) is an equality when A is proportional to a unitary matrix.

In [1] it is shown a bound for the condition number of a matrix A involving the determinant and the Frobenius norm of A, as in inequality (24). Finally, to improve the bounds in (24) we remark that if A and B are two order n complex matrices (see [3], p. 193), then

$$
\prod_{r=1}^{k} \sigma_{i_{r}+j_{r}-r}(A B) \leq \prod_{r=1}^{k} \sigma_{i_{r}}(A) \prod_{r=1}^{k} \sigma_{j_{r}}(B), \quad k=1, \ldots, n
$$

In particular, if $i_{r}=j_{r}=r, r=1, \ldots, k$, then

$$
\prod_{r=1}^{k} \sigma_{r}(A B) \leq \prod_{r=1}^{k} \sigma_{r}(A) \prod_{r=1}^{k} \sigma_{r}(B)
$$

while, for $j_{r}=n-r+1, i_{r}=r, r=1, \ldots, k$, we have

$$
\prod_{r=1}^{k} \sigma_{n-r+1}(A B) \leq \prod_{r=1}^{k} \sigma_{r}(A) \prod_{r=1}^{k} \sigma_{n-r+1}(B)
$$

From the previous inequality it follows, for every nonsingular matrix X :

$$
\prod_{r=1}^{k} \sigma_{r}(A)=\prod_{r=1}^{k} \sigma_{r}\left(X X^{-1} A\right) \leq \prod_{r=1}^{k} \sigma_{r}(X) \prod_{r=1}^{k} \sigma_{r}\left(X^{-1} A\right)
$$

and

$$
\prod_{r=1}^{k} \sigma_{n-r+1}\left(X^{-1} A\right) \leq \prod_{r=1}^{k} \sigma_{r}\left(X^{-1}\right) \prod_{r=1}^{k} \sigma_{n-r+1}(A)
$$

Therefore

$$
\begin{equation*}
\sigma_{1}(A) \ldots \sigma_{k}(A) \leq\left[\frac{n}{k C_{n-k}\left(\psi, \rho\left(X^{-1} A\right)\right)}\right]^{\frac{k}{2}} \prod_{r=1}^{k} \sigma_{r}(X)\left[\frac{\left\|X^{-1} A\right\|_{F}^{2}}{n}\right]^{\frac{k}{2}} \tag{25}
\end{equation*}
$$

and

$$
\begin{align*}
& {\left[\frac{n-k}{n} C_{k}\left(\psi, \rho\left(X^{-1} A\right)\right)\right]^{\frac{n-k}{2}} \frac{|\operatorname{det} A|}{\frac{|\operatorname{det} X|}{\prod_{r=n-k+1}^{n} \sigma_{r}(X)}\left[\frac{\left\|X^{-1} A\right\|_{F}^{2}}{n}\right]^{\frac{n-k}{2}}} \leq} \tag{26}\\
& \quad \leq \sigma_{n}(A) \ldots \sigma_{n-k+1}(A)
\end{align*}
$$

with $0 \leq \psi \leq 1$.

7 - Some choices for the matrix X

For $i=1, \ldots, n$, let r_{i} be the euclidean norm of the i-th row of A and, with no loss of generality, we assume

$$
r_{\max }=r_{1} \geq r_{2} \geq \cdots \geq r_{n}=r_{\min }>0
$$

Put

$$
X=\operatorname{diag}(r_{1}, \ldots, \underbrace{r_{n-k}, \ldots, r_{n-k}}_{k+1 \text { times }})
$$

and

$$
t_{i}=\left(\frac{r_{i}}{r_{n-k}}\right)^{2}, \quad i=n-k+1, \ldots, n
$$

from (26) it follows

$$
\begin{align*}
& {\left[\frac{n-k}{n} C_{k}(\psi, \rho)\right]^{\frac{n-k}{2}} \frac{|\operatorname{det} A|}{\left[\frac{n-k+\sum_{i=n-k+1}^{n} t_{i}}{n}\right]^{\frac{n-k}{2}} \prod_{i=1}^{n-k} r_{i}} \leq} \tag{27}\\
& \quad \leq \sigma_{n}(A) \ldots \sigma_{n-k+1}(A)
\end{align*}
$$

where:

$$
\rho=\rho\left(X^{-1} A\right)=\frac{|\operatorname{det} A|^{2}}{\left[\frac{n-k+\sum_{i=n-k+1}^{n} t_{i}}{n}\right]^{n} r_{n-k}^{2(k+1)} \prod_{i=1}^{n-k-1} r_{i}^{2}}
$$

Also, choosing

$$
X=\operatorname{diag}(r_{1}, \ldots, \underbrace{r_{k}, \ldots, r_{k}}_{n-k+1 \text { times }})
$$

and putting

$$
t_{i}=\left(\frac{r_{i}}{r_{k}}\right)^{2}, \quad i=k+1, \ldots, n
$$

from (25) it follows
(28) $\quad \sigma_{1}(A) \ldots \sigma_{k}(A) \leq\left[\frac{n}{k C_{n-k}\left(\psi, \rho\left(X^{-1} A\right)\right)}\right]^{\frac{k}{2}} \prod_{i=1}^{k} r_{i}\left[\frac{k+\sum_{i=k+1}^{n} t_{i}}{n}\right]^{\frac{k}{2}}$
where

$$
\rho\left(X^{-1} A\right)=\frac{|\operatorname{det} A|^{2}}{\left[\frac{k+\sum_{i=k+1}^{n} t_{i}}{n}\right]^{n} r_{k}^{2(n-k+1)} \prod_{i=1}^{k-1} r_{i}^{2}}
$$

The bounds (27) and (28) can be vary sharp when $t_{i} \ll 1$, also choosing $C_{k}=C_{n-k}=1$. Hence if

$$
X=\operatorname{diag}\left(r_{1}, r_{2}, \ldots, r_{n}\right)
$$

we obtain

$$
\begin{equation*}
\sigma_{1}(A) \ldots \sigma_{k}(A) \leq\left[\frac{n}{k C_{n-k}\left(\psi, \rho\left(X^{-1} A\right)\right)}\right]^{\frac{k}{2}} \prod_{i=1}^{k} r_{i} \tag{29}
\end{equation*}
$$

and

$$
\begin{equation*}
\left[\frac{n-k}{n} C_{k}\left(\psi, \rho\left(X^{-1} A\right)\right)\right]^{\frac{n-k}{2}} \frac{|\operatorname{det} A|}{\prod_{i=1}^{n-k} r_{i}} \leq \sigma_{n}(A) \ldots \sigma_{n-k+1}(A) \tag{30}
\end{equation*}
$$

where

$$
\rho\left(X^{-1} A\right)=\frac{|\operatorname{det} A|^{2}}{\prod_{i=1}^{n} r_{i}^{2}}
$$

Remark. For $k=1$ and $C_{1}(\psi, \rho)=1$, equation (30) gives the same lower bound shown in [2] for $\sigma_{\min }$.

If $\psi=\psi(\rho)$ is chosen in order to satisfy (23), then relations (27), (28), (29) and (30) become equalities when A is unitary.

Equations (23) are satisfied if $\psi(\rho)$ is defined as in (22). After this choise of the function $\psi=\psi(\rho)$, relations (29) and (30) become equalities, when the rows of A are pairwise orthogonal.

In fact in this case $\sigma_{i}(A)=r_{i}$, for $i=1, \ldots, n$, and $\rho\left(X^{-1} A\right)=1$.

8 - An improvement for some known bounds

In [4] authors give the following lower bound for $\sigma_{\min }(A)$:

$$
\left(\frac{n-1}{n-1+t}\right)^{\frac{n-1}{2}}\left(1+\frac{1}{2} G\right) \frac{|\operatorname{det} A|}{\prod_{i=1}^{n-1} r_{i}} \leq \sigma_{\min }(A)
$$

where

$$
G=\frac{|\operatorname{det} A|^{2}}{r_{n-1}^{2}\left(\prod_{i=1}^{n-1} r_{i}^{2}\right)\left(\frac{n-1+t}{n-1}\right)^{n}}
$$

and $t=t_{n}=r_{n}^{2} / r_{n-1}^{2}$. Instead, for $k=1$, (27) furnishes

$$
\left[\frac{n-1}{n-1+t}\right]^{\frac{n-1}{2}}\left[C_{1}\left(\psi, \rho\left(X^{-1} A\right)\right)\right]^{\frac{n-1}{2}} \frac{|\operatorname{det} A|}{\prod_{i=1}^{n-1} r_{i}} \leq \sigma_{\min }(A)
$$

where

$$
\rho\left(X^{-1} A\right)=\left(\frac{n}{n-1}\right)^{n} G .
$$

Putting $\psi=(n-1) / n$

$$
\begin{aligned}
{\left[C_{1}\left(\frac{n-1}{n}, \rho\left(X^{-1} A\right)\right)\right]^{\frac{n-1}{2}} } & =\left(\frac{1-G}{1-\frac{n}{n-1} G}\right)^{\frac{n-1}{2}}> \\
& >\left(1+\frac{G}{n-1}\right)^{\frac{n-1}{2}}>1+\frac{1}{2} G, \quad \text { for } n \geq 3
\end{aligned}
$$

Again in [4] the following further bound for $\sigma_{\min }(A)$ is proved:

$$
\begin{equation*}
\min \left(\frac{r_{n-2}}{\sqrt{2}}, r_{n}\right) \sqrt{1-\sqrt{1-S^{2}}} \leq \sigma_{\min }(A) \tag{31}
\end{equation*}
$$

where

$$
S=\frac{|\operatorname{det} A|}{\prod_{i=1}^{n} r_{i}} \leq 1
$$

Now we show that choosing

$$
X=\operatorname{diag}\left(r_{1}, \ldots, r_{n-2}, \gamma r_{n-1}, \gamma r_{n}\right), \quad \gamma \geq 1
$$

the bound (31) can be slightly improved.
In fact, since $\sigma_{n}(X)=\min \left\{r_{n-2}, \gamma r_{n}\right\}$, from (26):

$$
\left[\frac{n-1}{n-1+b} C_{1}\left(\psi, \rho\left(X^{-1} A\right)\right)\right]^{\frac{n-1}{2}} \min \left(\frac{r_{n-2}}{\gamma}, r_{n}\right) S \frac{1}{\gamma} \leq \sigma_{\min }(A)
$$

where:

$$
\rho\left(X^{-1} A\right)=\frac{S^{2}}{\gamma^{4}\left[\frac{n-1+b}{n}\right]^{n}}
$$

and

$$
b=\frac{2}{\gamma^{2}}-1
$$

Imposing that

$$
\begin{equation*}
\frac{S^{2}}{\gamma^{4}}=b \tag{32}
\end{equation*}
$$

we have

$$
C_{1}=\frac{1-\psi^{n} \frac{b}{\left(\frac{n-1+b}{n}\right)^{n}}}{1-\psi^{n-1} \frac{b}{\left(\frac{n-1+b}{n}\right)^{n}}}
$$

From (21) it is easy to verify that C_{1} assumes the maximum value in

$$
\psi=\frac{n-1+b}{n}
$$

for which (see (20)):

$$
C_{1}=\frac{n-1+b}{n-1}
$$

Now, from (32)

$$
\gamma^{2}=1+\sqrt{1-S^{2}}
$$

and therefore $1 \leq \gamma \leq \sqrt{2}$.

Finally

$$
\sigma_{\min }(A) \geq \min \left(\frac{r_{n-2}}{\gamma}, r_{n}\right) \frac{S}{\gamma}=\min \left(\frac{r_{n-2}}{\gamma}, r_{n}\right) \sqrt{1-\sqrt{1-S^{2}}} .
$$

Remark. The bounds given in [2] and [4] involve also the column of A. But the bounds exhibited for $\prod_{i \in I} \sigma_{i}(A)$ and in particular for $\sigma_{\min }(A)$ and $\sigma_{\max }(A)$ involving the rows of A can be rewritten involving the columns of A. In fact it is enough to observe that $\sigma_{i}(A)=\sigma_{1}\left(A^{*}\right)$, for all i.

REFERENCES

[1] H. W. Guggenheimer - A. S. Edelman - C. R. Johnson: A simple estimate of the condition number of a linear system, College Mathematics Journal, 26 (1995), 2-5.
[2] Y. P. Hong - C. T. Pan: A lower bound for the smallest singular value, Lin. Alg. and Appl., 172 (1992), 27-32.
[3] R. A. Horn - C. R. Johnson: Matrix Analysis, Cambridge University Press, 1985.
[4] Yu Yi-Sheng - Gu Dun-he: A note on a lower bound for the smallest singular value, Lin. Alg. and Appl., 253 (1997), 25-38.

Lavoro pervenuto alla redazione il 8 luglio 1999 ed accettato per la pubblicazione il 23 dicembre 1999. Bozze licenziate il 15 marzo 2000

Indirizzo DEGLI AUTORI:
R. Peluso - G. Piazza - Dipartimento di Matematica - Politecnico di Bari - Via E. Orabona 4-70125 Bari (Italy)

The work has been supported by the M.U.R.S.T., 40% project.

[^0]: Key Words and Phrases: Bounds for singular values
 A.M.S. Classification: 15A18

