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Bounds for products of singular values of a matrix

R. PELUSO – G. PIAZZA

Riassunto: Assegnata una matrice complessa quadrata di ordine n con valori
singolari σ1(A) ≥ σ2(A) ≥ · · · ≥ σn(A) > 0, in questo articolo sono presentati limiti
inferiori e superiori per

Q
i∈I

σi(A), I ⊂ {1, 2, . . . , n}. In particolare sono migliorati
alcuni noti limiti inferiori per il più piccolo valore singolare di A.

Abstract: Given an order n complex matrix with singular values σ1(A)≥ σ2(A)≥
· · · ≥ σn(A) > 0, in this paper some lower and upper bounds for

Q
i∈I

σi(A), I ⊂
{1, 2, . . . , n}, are shown. In particular some note lower bounds for the smallest singular
value of A are improved.

1 – Introduction

Let A be a square complex matrix of order n, n ≥ 3, and let σ1(A) ≥
σ2(A) ≥ · · · ≥ σn(A) > 0 be the singular values of A. In this paper we

show some lower and upper bounds for the product of k singular values

of A, k < n, involving only the determinant of A and the 2−norms of the

rows of A, that we denote by ri, i = 1, . . . , n. Since the singular values of

A are the same of PA, where P is a permutation matrix in the following

we suppose r1 ≥ r2 ≥ · · · ≥ rn > 0, without loss of generality.
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The simplest inequalities are

(1) σ1(A)σ2(A) . . .σk(A) ≤ Pk

µ
n

k

∂k
2

kY

i=1

ri, Pk ≤ 1

and

(2) σn−k+1(A)σn−k(A) . . .σn(A) ≥ Qk

µ
n − k

n

∂n−k
2 |detA|

n−kY

i=1

ri

, Qk ≥ 1.

Paying attention to the rows of A inequality (1) can be modified in the

following way

σ1(A)σ2(A) . . .σk(A) ≤ Rk

µ
n

k

∂k
2

kY

i=1

ri

µ
k +

Pn
i=k+1 ti

n

∂k
2

, Rk ≤ 1

where

ti =

µ
ri

rk

∂2

, i = k + 1, . . . , n.

While inequality (2) becomes

(3)

σn−k+1(A)σn−k(A) . . .σn(A) ≥

≥ Tk

µ
n − k

n

∂n−k
2 |detA|
µ

n − k +
Pn

i=n−k+1 ti

n

∂n−k
2 n−kY

i=1

ri

,

with Tk ≥ 1 and where

ti =

µ
ri

rn−k

∂2

, i = n − k + 1, . . . , n.

The constants Pk, Qk, Rk and Tk depend on matrix A and an arbitrary

parameter √, 0 ≤ √ ≤ 1. If √ = 0 then Pk = Qk = Rk = Tk = 1. For

k = 1 and √ = 0 (hence Q1 = 1), inequality (2) becomes

σn(A) ≥
µ

n − 1

n

∂n−1
2 |detA|

n−1Y

i=1

ri

,
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that is the some lower bound for the smallest singular values given in

[2] (considering only the rows of A). This bound is improved in [4]. We

prefer to rewrite the bound given in [4], referring only to rows of A, as

σn(A) ≥
µ

n − 1

n − 1 + t

∂n−1
2
µ

1 +
1

2
G

∂ |detA|
n−1Y

i=1

ri

, t = tn,

where

G =
|detA|2

r2
n−1

√
n−1Y

i=1

r2
i

!µ
n − 1 + t

n − 1

∂n
.

The bound is better than bound (3) with k = 1 and √ = 0. Moreover

with an opportune choise for √, inequality (3) gives, for k = 1:

σn(A) ≥
µ

n − 1

n − 1 + t

∂n−1
2




1 − G

1 − n

n − 1
G




n−1
2

|detA|
n−1Y

i=1

ri

,

that improves the bound given in [4].

Moreover in this paper the following bound is proved

σn(A) ≥ min

µ
rn−2

∞
, rn

∂q
1 −

√
1 − S2

where

S =
|detA|

nY

i=1

ri

≤ 1.

and

∞ =

q
1 +

√
1 − S2.

Since 1 ≤ ∞ ≤
√

2, it is improved also another bound given in [4], which

can be written

σn(A) ≥ min

µ
rn−2√

2
, rn

∂q
1 −

√
1 − S2.
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The paper is organized as follows. In sections 2, 3, 4 and 5 starting

from the arithmetic-geometric mean inequality bounds for the product

of k among n positive numbers σi, i = 1, . . . , n, are derived. These

bounds involve
Pn

i=1 σi and
Qn

i=1 σi. In section 6 these results are applied

to obtain bounnds for the product of k singular values of a matrix A

involving the determinant and the Frobenius norm of A. Starting from

these bounds and taking a nonsingular arbitrary matrix X new bounds

are obtained rewriting the previous for matrix X−1A and using classical

inequalities for the singular values of the product of two matrices. In

section 7 for some particular choices for matrix X the results written

previously are obtained. Finally in section 8 the bounds founds in this

paper are compared with those given in [2] and [4].

Throughout the paper we use the following notations:

Π :=
nY

i=1

σi σ2 :=
nX

i=1

σ2
i

I ⊂ {1, 2, . . . , n}, I 6= ∅, I 6= {1, 2, . . . , n};
I the complementary set of I;

p(I) :=
Y

i∈I

σi s2(I) :=
X

i∈I

σ2
i

kAkF the Frobenius norm of A.

When it is not essential to specify the set, we also write p = p(I), s = s(I)

p = p(I) and s = s(I).

2 – The Main Lemma

Lemma 2.1. For p := p(I), s := s(I), card(I) := k, the following

inequalities hold:

p2 ≥ Π2

"
σ2 − k(p2)1/k

n − k

#n−k(4)

s2 ≥ k(Π2)1/k

∑
σ2 − s2

n − k

∏n−k
k

,(5)
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and the equality occurs if and only if σ1 = σ2 = · · · = σn.

Proof. From arithmetic-geometric mean inequality, we have

(6) Π2 ≤
µ
σ2

n

∂n

; p2 ≤
µ

s2

k

∂k

; p2 ≤
√

s2

n − k

!n−k

;

with equality if and only if σ1 = σ2 = · · · = σn. Furthermore, since

(7) pp = Π,

using the third inequality in (6), we have

p2 ≥ Π2

"
s2

n − k

#n−k =
Π2

∑
σ2 − s2

n − k

∏n−k .

Now (4) follows from the second inequality in (6). Analogously, (5) is a

consequence of s2 + s2 = σ2, and of the second inequality in (6).

Corollary 2.1. Put

qk =
n − k

k

°
Π2
¢ 1

n−k

and

gk(x) = x
n
k − σ2

k
x + qk, k = 1, . . . , n − 1

we have

i) the inequality in Lemma 2.1 is equivalent to

gk(x) ≤ 0, x > 0

with x = (p2)1/(n−k);

ii) the inequality in Lemma 2.1 is equivalent to

gk(x) ≤ 0, x > 0

with x = (s2/k)k/(n−k).
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3 – On the function gk(x)

Let gk(x) be the function defined in Corollary 2.1. Evidently g00
k(x) >

0 for x > 0, and

(8) bx =

µ
σ2

n

∂ k
n−k

is the unique point such that

gk(bx) = min
x≥0

gk(x).

Also from the first inequality in (6):

(9) gk(bx) =
n − k

k

"
(Π2)

1
n−k −

µ
σ2

n

∂ n
n−k
#
≤ 0.

Furthermore, gk(0) = qk > 0 and limx→+1 gk(x) = +1. Hence gk(x)

admits only two zeros r0k, r
00
k , with r0k ≤ r00k . Consequently, from Corol-

lary 2.1, the following bounds for p and s are established:

(r0k)
n−k ≤ p2 ≤ (r00k)n−k(10)

k(r0k)
n−k

k ≤ s2 ≤ k(r00k)
n−k

k .(11)

Lemma 3.1. The following equalities hold

(12) (r0k)
n−k(r00n−k)

k = Π2

(13) k(r0k)
n−k

k + (n − k)(r00n−k)
k

n−k = σ2.

Proof. A simple calculus reveals that

gn−k(x) =
x

n
n−k

qk

gk

√
(Π2)

1
n−k

x
k

n−k

!
,

from which (12) follows evaluating gn−k(x) in r00n−k. Now (13) is a conse-

quence of (12) and gk(r
0
k) = 0.
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Remark. Exchanging the role of k and n − k in (12) we have

(14)

µ
r00k
r0k

∂n−k

=

√
r00n−k

r0n−k

!k

.

Now assuming

σ1 ≥ σ2 ≥ · · · ≥ σn > 0

from (10) and (11) it follows

(15) (r0k)
n−k ≤

k−1Y

j=0

σ2
n−j ≤

kY

j=1

σ2
j ≤ (r00k)n−k

and

(16) k(r0k)
n−k

k ≤
k−1X

j=0

σ2
n−j ≤

kX

j=1

σ2
j ≤ k(r00k)

n−k
k .

Remark. For k = 1 and k = n − 1 (15) furnish, respectively

σ2
1

σ2
n

≤
µ

r001
r01

∂n−1

and
σ2

1

σ2
n

≤ r00n−1

r0n−1

.

Equation (14) shows that these are the same bound.

4 – Lower and upper bounds for the zeros of gk(x)

Let

x0 = t
(Π2)

1
n−k

σ2
, t ≥ 0.

Evaluating g0
k(x) in x = x0, we have

g0
k(x0) =

σ2

k




t
n−k

k

n
n−k

k


 Π2

≥
σ2

n

¥n




1
k

− 1


 .



514 R. PELUSO – G. PIAZZA [8]

Therefore

g0
k(x0) ≤ 0 for t ≥ 0, t ≤ n,

and

g0
k(x0) = 0 if and only if σ1 = · · · = σn, and t = n.

Putting

(17) ρ =
Π2

≥
σ2

n

¥n ≤ 1, and √ =
t

n
, 0 ≤ √ ≤ 1.

it is

g0(x0) < 0, if (ρ,√) 6= (1, 1).

Supposing σi 6= σj, for any i 6= j, it is ρ < 1. In the following we shall

assume that ρ < 1. Then the following theorem holds.

Theorem 4.1. If ρ < 1, for every √, 0 ≤ √ ≤ 1, it is

(18) (n − k)
(Π2)

1
n−k

σ2
Ck(√, ρ) ≤ r0k ≤ r00k ≤

∑
σ2

kCn−k(√, ρ)

∏ k
n−k

.

where

(19) Ck(√, ρ) =
1 − √ n

k ρ
1
k

1 − √ n−k
k ρ

1
k

, 0 ≤ √ ≤ 1, 0 ≤ ρ < 1

Proof. Since

0 = gk(r
0
k) = gk(x0) + g0

k(x0)(r
0
k − x0) + g00

k(ξ)
(r0k − x0)

2

2
,

ξ ∈ (x0, r
0
k) or ξ ∈ (r0k, x0).

and g00
k(x) > 0, for x > 0, it follows

x0 −
gk(x0)

g0
k(x0)

≤ r0k.



[9] Bounds for products of singular values of a matrix 515

Thus, computing gk(x0), it follows

(n − k)
(Π2)

1
n−k

σ2
Ck(√, ρ) ≤ r0k

and, as a consequence of (12) we have

r00k ≤
∑

σ2

kCn−k(√, ρ)

∏ k
n−k

.

5 – On the function Ck(√, ρ)

For the function

Ck(√, ρ) =
1 − √ n

k ρ
1
k

1 − √ n−k
k ρ

1
k

, 0 ≤ √ ≤ 1, 0 ≤ ρ < 1

we have:

a) Ck(√, ρ) ≥ 1, and Ck(√, ρ) = 1 if and only if √ = 0 or √ = 1;

b) Ck(√, ρ) assumes the maximum value in √k(ρ), unique solution in

[0, 1] of the equation

(20) Ck(√, ρ) =
n

n − k
√

or equivalently

(21)
k

n − k
√

n
k ρ

1
k − n

n − k
√ + 1 = 0;

c) if √k = √k(ρ) is the solution of (21), then

lim
ρ→1

√k(ρ) = 1

and

lim
ρ→1

√0
k(ρ) = 1;

d) from (20) and c):

lim
ρ→1

Ck(√k, ρ) =
n

n − k
lim
ρ→1

√k(ρ) =
n

n − k
.
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Moreover we observe that, for n even and k = n/2, (21) reduces to

ρ
2
n√2 − 2√ + 1 = 0

from which

(22) √n/2(ρ) =
1 −

q
1 − ρ 2

n

ρ
2
n

.

Equation (22) can be considered as an approximation to √k(ρ), solution

of (21) for every k.

Moreover it is easy to verify that for every function √ = √(ρ), such

that

(23) lim
ρ→1

√(ρ) = 1, and lim
ρ→1

√0(ρ) = 1,

it is

lim
ρ→1

Ck(√(ρ), ρ) =
n

n − k
.

6 – Application to singular values

Let A be an order n nonsingular complex matrix with singular values

σmax(A) = σ1(A) ≥ σ2(A) ≥ · · · ≥ σn(A) = σmin(A).

In this case
Π = |detA| σ2 = kAk2

F

ρ =
|detA|2
µkAk2

F

n

∂n .

Evidently ρ = 1 if and only if A is proportional to a unitary matrix. Now,

from (15) and Theorem 4.1, we have, for an arbitrary function √ = √(ρ),

0 ≤ ρ ≤ 1,

(24)

∑
n − k

n
Ck(√, ρ)

∏n−k
2 |detA|
∑kAk2

F

n

∏n−k
2

≤ σn . . .σn−k+1 ≤ σ1σ2 . . .σk ≤

≤
∑

n

kCn−k(√, ρ)

∏k
2
∑kAk2

F

n

∏k
2

.
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We note that if √ is chosen to satisfy (23), then (24) is an equality when

A is proportional to a unitary matrix.

In [1] it is shown a bound for the condition number of a matrix A

involving the determinant and the Frobenius norm of A, as in inequality

(24). Finally, to improve the bounds in (24) we remark that if A and B

are two order n complex matrices (see [3], p. 193), then

kY

r=1

σir+jr−r(AB) ≤
kY

r=1

σir(A)
kY

r=1

σjr(B), k = 1, . . . , n.

In particular, if ir = jr = r, r = 1, . . . , k, then

kY

r=1

σr(AB) ≤
kY

r=1

σr(A)
kY

r=1

σr(B),

while, for jr = n − r + 1, ir = r, r = 1, . . . , k, we have

kY

r=1

σn−r+1(AB) ≤
kY

r=1

σr(A)
kY

r=1

σn−r+1(B).

From the previous inequality it follows, for every nonsingular matrix X:

kY

r=1

σr(A) =
kY

r=1

σr(XX−1A) ≤
kY

r=1

σr(X)
kY

r=1

σr(X
−1A),

and
kY

r=1

σn−r+1(X
−1A) ≤

kY

r=1

σr(X
−1)

kY

r=1

σn−r+1(A).

Therefore

(25) σ1(A) . . .σk(A) ≤
∑

n

kCn−k(√, ρ(X−1A))

∏k
2

kY

r=1

σr(X)

∑kX−1Ak2
F

n

∏k
2

,

and

(26)

∑
n − k

n
Ck(√, ρ(X−1A))

∏n−k
2 |detA|

|detX|Qn
r=n−k+1 σr(X)

∑kX−1Ak2
F

n

∏n−k
2

≤

≤ σn(A) . . .σn−k+1(A)

with 0 ≤ √ ≤ 1.
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7 – Some choices for the matrix X

For i = 1, . . . , n, let ri be the euclidean norm of the i-th row of A

and, with no loss of generality, we assume

rmax = r1 ≥ r2 ≥ · · · ≥ rn = rmin > 0.

Put

X = diag(r1, . . . , rn−k, . . . , rn−k| {z }
k+1 times

)

and

ti =

µ
ri

rn−k

∂2

, i = n − k + 1, . . . , n,

from (26) it follows

(27)

∑
n − k

n
Ck(√, ρ)

∏n−k
2 |detA|
∑
n − k +

Pn
i=n−k+1 ti

n

∏n−k
2 n−kY

i=1

ri

≤

≤ σn(A) . . .σn−k+1(A)

where:

ρ = ρ(X−1A) =
|detA|2

∑
n − k +

Pn
i=n−k+1 ti

n

∏n

r
2(k+1)
n−k

n−k−1Y

i=1

r2
i

.

Also, choosing

X = diag(r1, . . . , rk, . . . , rk| {z }
n−k+1 times

)

and putting

ti =

µ
ri

rk

∂2

, i = k + 1, . . . , n,

from (25) it follows

(28) σ1(A) . . .σk(A) ≤
∑

n

kCn−k(√, ρ(X−1A))

∏k
2

kY

i=1

ri

∑
k +

Pn
i=k+1 ti

n

∏k
2
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where

ρ(X−1A) =
|detA|2

∑
k +

Pn
i=k+1 ti

n

∏n

r
2(n−k+1)
k

k−1Y

i=1

r2
i

.

The bounds (27) and (28) can be vary sharp when ti << 1, also choosing

Ck = Cn−k = 1. Hence if

X = diag(r1, r2, . . . , rn)

we obtain

(29) σ1(A) . . .σk(A) ≤
∑

n

kCn−k(√, ρ(X−1A))

∏k
2

kY

i=1

ri

and

(30)

∑
n − k

n
Ck(√, ρ(X−1A))

∏n−k
2 |detA|

n−kY

i=1

ri

≤ σn(A) . . .σn−k+1(A)

where

ρ(X−1A) =
|detA|2

nY

i=1

r2
i

.

Remark. For k = 1 and C1(√, ρ) = 1, equation (30) gives the same

lower bound shown in [2] for σmin.

If √ = √(ρ) is chosen in order to satisfy (23), then relations (27),

(28), (29) and (30) become equalities when A is unitary.

Equations (23) are satisfied if √(ρ) is defined as in (22). After this

choise of the function √ = √(ρ), relations (29) and (30) become equalities,

when the rows of A are pairwise orthogonal.

In fact in this case σi(A) = ri, for i = 1, . . . , n, and ρ(X−1A) = 1.
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8 – An improvement for some known bounds

In [4] authors give the following lower bound for σmin(A):

µ
n − 1

n − 1 + t

∂n−1
2
µ

1 +
1

2
G

∂ |detA|
n−1Y

i=1

ri

≤ σmin(A),

where

G =
|detA|2

r2
n−1

√
n−1Y

i=1

r2
i

!µ
n − 1 + t

n − 1

∂n

and t = tn = r2
n/r2

n−1. Instead, for k = 1, (27) furnishes

∑
n − 1

n − 1 + t

∏n−1
2 £

C1(√, ρ(X−1A))
§n−1

2
|detA|
n−1Y

i=1

ri

≤ σmin(A)

where

ρ(X−1A) =

µ
n

n − 1

∂n

G.

Putting √ = (n − 1)/n

∑
C1

µ
n−1

n
, ρ(X−1A)

∂∏n−1
2

=




1 − G

1 − n

n − 1
G




n−1
2

>

>

µ
1 +

G

n − 1

∂n−1
2

> 1 +
1

2
G, for n ≥ 3.

Again in [4] the following further bound for σmin(A) is proved:

(31) min

µ
rn−2√

2
, rn

∂q
1 −

√
1 − S2 ≤ σmin(A)

where

S =
|detA|

nY

i=1

ri

≤ 1.
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Now we show that choosing

X = diag(r1, . . . , rn−2, ∞rn−1, ∞rn), ∞ ≥ 1

the bound (31) can be slightly improved.

In fact, since σn(X) = min{rn−2, ∞rn}, from (26):

∑
n − 1

n − 1 + b
C1(√, ρ(X−1A))

∏n−1
2

min

µ
rn−2

∞
, rn

∂
S

1

∞
≤ σmin(A)

where:

ρ(X−1A) =
S2

∞4

∑
n − 1 + b

n

∏n

and
b =

2

∞2
− 1.

Imposing that

(32)
S2

∞4
= b,

we have

C1 =

1 − √n b°
n−1+b

n

¢n

1 − √n−1 b°
n−1+b

n

¢n
.

From (21) it is easy to verify that C1 assumes the maximum value in

√ =
n − 1 + b

n

for which (see (20)):

C1 =
n − 1 + b

n − 1
.

Now, from (32)

∞2 = 1 +
√

1 − S2

and therefore 1 ≤ ∞ ≤
√

2.
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Finally

σmin(A) ≥ min

µ
rn−2

∞
, rn

∂
S

∞
= min

µ
rn−2

∞
, rn

∂q
1 −

√
1 − S2.

Remark. The bounds given in [2] and [4] involve also the column

of A. But the bounds exhibited for
Q

i∈I σi(A) and in particular for

σmin(A) and σmax(A) involving the rows of A can be rewritten involving

the columns of A. In fact it is enough to observe that σi(A) = σ1(A
∗),

for all i.
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