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Observability and controllability

of Maxwell’s equations

C. PIGNOTTI

Riassunto: Si considera un sistema di equazioni di Maxwell in un dominio li-
mitato ≠ ⊂ IR3 con frontiera regolare e si provano alcuni risultati di osservabilità e
controllabilità interna e al bordo. Le diseguaglianze di osservabilità sono ottenute con
la tecnica dei moltiplicatori e i risultati di controllabilità con il metodo HUM introdotto
da J. L. Lions.

Abstract: We consider a system of Maxwell’s equations in a bounded domain
≠ ⊂ IR3, with smooth boundary Γ. We prove some results of boundary and internal
observability and controllability. The observability inequalities are obtained by using
multiplier techniques and the controllability results by the Hilbert Uniqueness Method
of J. L. Lions.

1 – Introduction

Let ≠ be an open bounded domain in IR3 having boundary Γ of

class C1. In this paper we study, under suitable boundary conditions,

the boundary and internal observability and controllability of Maxwell’s

equations:

(1.1) D0 − curl(µB) = 0 in ≠× (0,+1)
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A.M.S. Classification: 78A25 – 93B05 – 93B07
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B0 + curl(∏D) = 0 in ≠× (0,+1)(1.2)

divD = divB = 0 in ≠× (0,+1)(1.3)

D(0) = D0 and B(0) = B0 in ≠(1.4)

where D, B are three-dimensional vector-valued functions of t, x =

(x1, x2, x3); µ = µ(x), ∏ = ∏(x) are scalar functions in C1(≠) bounded

below by a positive constant and verifying suitable hypotheses; D0, B0

are the initial data in a suitable space.

If Γ is perfectly conducting, then the solution satisfies the boundary

conditions

(1.5) ∫ × D = 0 and ∫ · B = 0 on Γ× (0,+1) ,

where ∫ denotes the outward unit normal vector to Γ.

We define the energy of the solutions by the formula

(1.6) E(t) :=
1

2

Z

≠

(∏|D(t)|2 + µ|B(t)|2)dx .

Let us introduce the Hilbert space

(1.7) H0 = {(ϕ,√) ∈ (L2(≠))6 : divϕ = div√ = 0, ∫ · √|Γ = 0} ,

equipped with the scalar product

h(ϕ1,√1), (ϕ2,√2)i0 =

Z

≠

(∏ϕ1ϕ2 + µ√1√2)dx , (ϕ1,√1), (ϕ2,√2) ∈ H0 .

Then, for every initial data (D0, B0) ∈ H0, the problem (1.1)-(1.4), (1.5)

has a unique weak solution

(D,B) ∈ C(IR,H0)

whose energy is conserved. Hence we write simply E instead of E(t) in

this case. Moreover, if (D0, B0) belongs to

(1.8) H1 = { (ϕ,√) ∈ (H1(≠))6 ∩ H0 : ∫ × ϕ|Γ = 0 } ,

then we have a strong solution

(D,B) ∈ C1(IR,H0) ∩ C(IR,H1) ,
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satisfying the inequality

(1.9) k(D,B)kL1(IR,H1) ≤ ck(D0, B0)kH1

for some constant c > 0. We refer to [2] or to [3] for a proof.

We recall that ≠ is star-shaped with respect to the origin if

(1.10) x · ∫(x) ≥ 0 for all x ∈ Γ .

First we study the boundary observability and controllability of (1.1)-

(1.4) under the assumption that ≠ is star-shaped with respect to the

origin.

The exact boundary controllability of Maxwell’s equations has been

studied by Russell [17] for a circular cylindrical region, by Kime [5] for

a spherical region, by Lagnese [11] and Kapitonov [4] for more general

regions. Russell and Kime have solved the problem by the moment prob-

lem method. Lagnese [11] studied the exact boundary controllability

by using the Hilbert Uniqueness Method introduced by J. L. Lions [12],

while Kapitonov solved the problem using the energy decay of the solution

of a system with Leontovich’s boundary condition. Some other results of

exact boundary controllability for Maxwell’s equations have been proved

by Komornik [7] (see also [6], [8] and [9]) and, using a different approach,

by Nalin [15] and Phung [16]. In these papers the functions ∏, µ are

assumed to be constant, while here we consider ∏, µ variable in the space,

that is, we consider Maxwell’s equations in a heterogeneus medium. We

use the multiplier method to prove the observability inequality general-

izing analogous inequality in Komornik [7]. We follow Lagnese [11] to

prove the exact boundary controllability by using the Hilbert Uniqueness

Method.

Next we study the internal observability and controllability of Maxwell’s

equations.

We define the set

(1.11) Nε(V ) =
[

x∈V

{y ∈ IR3 : |y − x| < ε}

for any V ⊂ IR3 and for any positive number ε > 0.
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Following K. Liu [13] we assume that there exist domains ≠j ⊂ ≠

with Lipschitz boundary Γj, j = 1, . . . , N such that

(1.12) ≠i ∩ ≠j = ∅, 1 ≤ i < j ≤ N ,

and we consider the set

(1.13) Gε = ≠ ∩ Nε

≥≥
≠ \

N[

j=1

≠j

¥
∪ Γ
¥

.

In particular, if N = 1 and ≠1 = ≠, then Gε is the neighborhood Nε(Γ)

of the boundary Γ of ≠ .

We prove an observability inequality by using the piecewise multiplier

method introduced by Liu and Yamamoto [14] to study the exact inter-

nal controllability of wave equations and, always following Lagnese [11],

we prove the exact controllability when the control acts on Gε. Our the-

orems generalize earlier results of Qi Zhou [19] and Xu Zhang [18], by

considering ∏, µ variable in ≠ while they have assumed ∏ ≡ µ ≡ 1. The

approach of Zhou is based on Liu’s “frequency domain method” [13],

and does not give an explicit estimate of the time T necessary for the

controllability.

Finally, we give another result of observability and controllability in

the spaces introduced by Ladyzhenskaya and Solonnikov [10] and

used in [11] by Lagnese. In the last section we consider Maxwell’s equa-

tions in a homogeneous medium, that is, we assume that ∏, µ are constant.

Further, we assume that the domain ≠ is star-shaped.

Due to the finite speed of propagation, the boundary and internal

controllability for the system of Maxwell’s equations is possible only if

the time T is large enough. In this paper we give explicit estimates of the

time T required to have osservability and controllability. These estimates

are optimal when the functions ∏ and µ are constant.

2 – Boundary observability and controllability

In this section we obtain a result of boundary observability and con-

trollability under suitable hypotheses on ∏, µ. Let us denote

(2.1) m(x) ≡ x, x ∈ ≠,
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and set

(2.2) R = sup
x∈≠

|x| .

We prove the following theorem.

Theorem 2.1. Assume (1.10) and consider ∏, µ ∈ C1(≠) satisfying

the following hypotheses:

∏(x), µ(x) > 0, ∀x ∈ ≠(2.3)

L = inf
≠

q
∏(x)µ(x) > 0 ,(2.4)

µ − m · ∇µ ≥ c0µ, ∀x ∈ ≠(2.5)

∏− m · ∇∏ ≥ c0∏, ∀x ∈ ≠(2.6)

where L and c0 are strictly positive constants. Set

(2.7) T0 =
2R

Lc0

,

then for every time T > T0 and for every pair (D0, B0) ∈ H1 the solution

of (1.1)-(1.4), (1.5) satisfies the inequality

(2.8)

Z T

0

Z

Γ

|B|2dΓdt ≥ cE ,

where c is a positive constant independent on the initial data.

Remark 2.1. If ∏ and µ are constant then, choosing c0 = 1, the time

T0 is optimal, that is we cannot have observability inequality if T < T0

according to the finite speed propagation. In the case of ∏ ≡ µ ≡ 1 the

observability inequality holds for every T > 2R.

Remark 2.2. The hypotheses (2.5) and (2.6) are satisfied for ex-

ample if the functions ∏, µ, verify the conditions x · ∇µ(x) ≤ 0 and

x ·∇∏(x) ≤ 0 in ≠. In particular this occurs if ∏ = ∏(|x|) and µ = µ(|x|)
are radially decreasing.

To prove Theorem 2.1 we need a preliminary lemma.
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Lemma 2.2. Assume that (D0, B0) ∈ H1, q ∈ (C1(≠))3 and let

T > 0. Then the solution of (1.1)-(1.4), (1.5) satisfies the identity

(2.9)

∑
2

Z

≠

(D×B) · qdx

∏T

0

=

Z T

0

Z

Γ

(∏|D|2 − µ|B|2)(q · ∫)dΓ dt+

+

Z T

0

Z

≠

{(div q)(∏|D|2 + µ|B|2)+

− 2
3X

i,k=1

qi,k(∏DiDk + µBiBk)}dx dt+

+

Z T

0

Z

≠

{−(q · ∇∏)|D|2 − (q · ∇µ)|B|2}dx dt ,

where Di, Bi, qi, for i = 1, 2, 3 are the scalar components of D,B, q, and

qi,k = @qi
@xk

for i, k = 1, 2, 3.

Proof of Lemma 2.2. The identity (2.9) is obtained by the multi-

plier method (see [8], [12]) and generalizes the analogous formula in [6],

[7]. Writing for brevity Di,k = @Di
@xk

, Bi,k = @Bi
@xk

for i, k = 1, 2, 3 ∏,k = @∏
@xk

and µ,k = @µ
@xk

for k = 1, 2, 3, we have

D0
1 = µ,2B3 − µ,3B2 + µB3,2 − µB2,3 in ≠× (0,+1) ,(2.10)

D0
2 = µ,3B1 − µ,1B3 + µB1,3 − µB3,1 in ≠× (0,+1) ,(2.11)

D0
3 = µ,1B2 − µ,2B1 + µB2,1 − µB1,2 in ≠× (0,+1) ,(2.12)

B0
1 = ∏,3D2 − ∏,2D3 + ∏D2,3 − ∏D3,2 in ≠× (0,+1) ,(2.13)

B0
2 = ∏,1D3 − ∏,3D1 + ∏D3,1 − ∏D1,3 in ≠× (0,+1) ,(2.14)

B0
3 = ∏,2D1 − ∏,1D2 + ∏D1,2 − ∏D2,1 in ≠× (0,+1) .(2.15)

Therefore

2(D1B2q3)
0 = 2(∏,1D3 − ∏,3D1)D1q3 + 2(µ,2B3 − µ,3B2)B2q3+

+ 2(∏D3,1 − ∏D1,3)D1q3 + 2(µB3,2 − µB2,3)B2q3 =

= 2q3(∏,1D3D1 − ∏,3D
2
1) + 2q3(µ,2B3B2 − µ,3B

2
2)+

+ 2q3∏D3,1D1 − q3∏(D
2
1)3 + 2q3µB3,2B2 − q3µ(B2

2)3 ,
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and analogously

2(D2B1q3)
0 = 2(∏,3D2 − ∏,2D3)D2q3 + 2(µ,3B1 − µ,1B3)B1q3+

+ 2(∏D2,3 − ∏D3,2)D2q3 + 2(µB1,3 − µB3,1)B1q3 =

= −2q3(∏,2D3D2 − ∏,3D
2
2) − 2q3(µ,1B3B1 − µ,3B

2
1)+

− 2q3∏D3,2D2 + q3∏(D
2
2)3 − 2q3µB3,1B1 + q3µ(B2

1)3 .

If we integrate by parts their difference in ≠×(0, T ), denoting by ∫1, ∫2, ∫3
the scalar components of ∫, we obtain

2

Z T

0

Z

≠

((D1B2q3)
0 − (D2B1q3)

0)dx dt =

=

Z T

0

Z

Γ

(2q3µB3B2∫2 − q3µB2
2∫3 + 2q3∏D1D3∫1 − q3∏D

2
1∫3+

− q3µB2
1∫3 + 2q3µB1B3∫1 − q3∏D

2
2∫3 + 2q3∏D2D3q3∫2)dΓ dt+

+

Z T

0

Z

≠

(−2q3µB3B2,2 − 2q3,2µB2B3 + q3,3µB2
2+

− 2q3∏D1,1D3 − 2q3,1∏D1D3 + q3,3∏D
2
1+

+ q3,3µB2
1 − 2q3µB3B1,1 − 2q3,1µB1B3+

+ q3,3∏D
2
2 − 2q3∏D2,2D3 − 2q3,2∏D2D3)dx dt+

+

Z T

0

Z

≠

(−q3µ,3B
2
2 − q3∏,3D

2
1 − q3µ,3B

2
1 − q3∏,3D

2
2)dx dt ,

which may be rewritten as follows:

2
hZ

≠

(D1B2q3 − D2B1q3)dx
iT
0

=

Z T

0

Z

Γ

{−q3∫3(µB2
1 + µB2

2 + ∏D2
1 + ∏D2

2)+

+ 2q3∫2(µB2B3 + ∏D2D3) + 2q3∫1(µB1B3 + ∏D1D3)}dΓ dt+

+

Z T

0

Z

≠

{q3,3(µB2
1 + µB2

2 + ∏D2
1 + ∏D2

2)+

− 2q3B3(µB1,1 + µB2,2) − 2q3D3(∏D1,1 + ∏D2,2)+

− 2q3,2(∏D2D3 + µB2B3) − 2q3,1(∏D1D3 + µB1B3)}dx dt+

+

Z T

0

Z

≠

{−q3µ,3(B
2
1 + B2

2) − q3∏,3(D
2
1 + D2

2)}dx dt .
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We observe that
Z

≠

−2q3µB3(B1,1 + B2,2)dx =

Z

≠

2q3µB3B3,3dx =

Z

≠

q3µ(B2
3)3dx =

=

Z

Γ

q3µB2
3∫3dΓ−

Z

≠

q3,3µB2
3dx −

Z

≠

q3µ,3B
2
3dx

and analogously

Z

≠

−2q3∏D3(D1,1+D2,2)dx=

Z

≠

2q3∏D3D3,3dx =

Z

≠

q3∏(D
2
3)3dx =

=

Z

Γ

q3∏D
2
3∫3dΓ−

Z

≠

q3,3∏D
2
3dx −

Z

≠

q3∏,3D
2
3dx .

Therefore

h
2

Z

≠

(D1B2q3 − D2B1q3)dx
iT
0

=

=

Z T

0

Z

Γ

{−q3∫3(µB2
1 + µB2

2 − µB2
3 + ∏D2

1 + ∏D2
2 − ∏D2

3)+

+ 2q3∫2(µB2B3 + ∏D2D3) + 2q3∫1(µB1B3 + ∏D1D3)}dΓ dt+

+

Z T

0

Z

≠

{q3,3(µB2
1 + µB2

2 − µB2
3 + ∏D2

1 + ∏D2
2 − ∏D2

3)+

− 2q3,2(∏D2D3 + µB2B3) − 2q3,1(∏D1D3 + µB1B3)}dx dt+

+

Z T

0

Z

≠

(−q3µ,3|B|2 − q3∏,3|D|2)dx dt .

By permutation of the indices 1, 2, 3 we obtain two analogous identities,

and summing the three identities we obtain

(2.16)

h
2

Z

≠

(D × B) · q
iT
0

=

Z T

0

Z

Γ

{−(∏|D|2 + µ|B|2)(q · ∫)+
+ 2µ(q · B)(∫ · B) + 2∏(q · D)(∫ · D)}dΓ dt+

+

Z T

0

Z

≠

{(div q)(∏|D|2 + µ|B|2)+

− 2
3X

i,k=1

(∏DiDk + µBiBk)}dx dt+

+

Z T

0

Z

≠

{−(q · ∇∏)|D|2 − (q · ∇µ)|B|2}dx dt .
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Now we can use the boundary condition (1.5) to obtain the for-

mula (2.9).

Remark 2.3. We observe that the formula (2.16) is independent on

the boundary condition (1.5) and on the initial condition (1.4).

Proof of Theorem 2.1. If in (2.9) we assume q(x) ≡ m(x), then

we obtain

(2.17)
c0

Z T

0

Z

≠

(µ|B|2 + ∏|D|2)dx dt ≤

≤
Z T

0

Z

Γ

(m · ∫)(µ|B|2 − ∏|D|2)dΓ dt −
h
2

Z

≠

(D × B) · mdx
iT
0

.

We observe that

(2.18)

∑
2

Z

≠

(D × B) · mdx

∏T

0

≤ 2R

L

Z

≠

(∏|D|2 + µ|B|2)dx =
4R

L
E ,

hence

2c0TE − 4R

L
E ≤

Z T

0

Z

Γ

(m · ∫)(µ|B|2 − ∏|D|2)dΓ dt .

Using the condition (1.10) and recalling definition (2.7) we have

(2.19)

Z T

0

Z

Γ

µ|B|2dΓdt ≥ cE

for every T > T0 and therefore (2.8) follows because µ has a positive

infimum.

Now, applying the HUM of J.L. Lions (see [12]) we deduce from

Theorem 2.1 an exact controllability result concerning the system

D0 − curl(µB) = B0 + curl(∏D) = 0 in ≠× (0,+1)(2.20)

divD = divB = 0 in ≠× (0,+1)(2.21)

∫ × B = J on Γ× (0,+1)(2.22)

D(0) = D0 and B(0) = B0 in ≠ .(2.23)

Let (ϕ0,√0) ∈ H1 and let (ϕ,√) be the solution of (1.1)-(1.4), (1.5). From

(1.9) and the standard trace theorem

H1(≠) ↪→ L2(Γ)
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it follows that

(2.24)
≥ Z T

0

Z

Γ

µ∏|√|2dΓ dt
¥ 1

2 ≤ ck(ϕ0,√0)kH1
.

From the previous theorem we have that

(2.25) k(ϕ0,√0)kF1
=
≥ Z T

0

Z

Γ

µ∏|√|2dΓ dt
¥ 1

2

is a norm on H1. Let F1 be the completion of H1 with respect to this

norm and let F 0
1 be its dual space with respect to the scalar product

h·, ·i0 . We prove the following result.

Theorem 2.3. Assume (1.10) and let T0,∏, µ be as in Theorem 2.1.

Then for every time T > T0 and for every pair (B0,−D0) ∈ F 0
1 there

exists a function J ∈ L2(0, T ;L2(Γ)3), such that

J · ∫ = 0 a. e. on Γ× (0, T )

and the solution of (2.20)-(2.23) with initial data (D0, B0) satisfies

(2.26) D(T ) = 0 and B(T ) = 0 in ≠ .

Proof of Theorem 2.3. Let T > T0 be a fixed time. Let (ϕ0,√0) ∈
F1 and let (ϕ,√) be the solution of the system

ϕ0 − curl(∏√) = √0 + curl(µϕ) = 0 in ≠× (0, T ) ,(2.27)

divϕ = div√ = 0 in ≠× (0, T ) ,(2.28)

∫ × ϕ = 0 and ∫ · √ = 0 on Γ× (0, T ) ,(2.29)

ϕ(0) = ϕ0 and √(0) = √0 in ≠ .(2.30)

Since ∏ and µ verify the same properties, it is clear that the result stated

for system (1.1)-(1.4), (1.5) also applies to problem (2.27)-(2.30).
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Now we proceed formally. Everything will be justified in Remark 2.4

below. Consider the problem

D0 − curl(µB) = B0 + curl(∏D) = 0 in ≠× (0, T ) ,(2.31)

divD = divB = 0 in ≠× (0, T ) ,(2.32)

∫ × B = √|Γ×(0,T ) on Γ× (0, T ) ,(2.33)

D(T ) = B(T ) = 0 in ≠ .(2.34)

We will see below that system (2.31)-(2.34) has a unique solution in a

weak sense. Let us consider the expression

(2.35)

Z T

0

Z

≠

{∏(D0 − curl(µB))√ − µ(B0 + curl(∏D))ϕ}dx dt = 0 .

After integrations by parts from (2.35) we obtain

(2.36)
−
Z

≠

∏D(0)√(0)dx +

Z

≠

µB(0)ϕ(0)dx −
Z T

0

×

×
Z

Γ

{(µB × ∏√) · ∫ + (∏D × µϕ) · ∫}dΓdt = 0

where we used (2.31). From (2.36) and boundary conditions (2.29), (2.33)

we obtain

−
Z

≠

∏D(0)√(0)dx +

Z

≠

µB(0)ϕ(0)dx =

Z T

0

Z

Γ

µ∏|√|2dΓdt ,

that we rewrite as

(2.37) h(B(0),−D(0)), (ϕ0,√0)iF 0
1
,F1

=

Z T

0

Z

Γ

µ∏|√|2dΓ dt .

Introducing the linear operator Λ : (ϕ0,√0) → (B(0),−D(0)), (2.37)

becomes

(2.38) hΛ(ϕ0,√0), (ϕ0,√0)iF 0
1
,F1

=

Z T

0

Z

Γ

µ∏|√|2dΓ dt .
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Then from (2.38), using (2.8), it follows that Λ : F1 → F 0
1 is an isomor-

phism. Consequently for every pair (B0,−D0) in F 0
1 if we choose

(ϕ0,√0) = Λ−1
°
B0,−D0

¢
,

then the unique solution of (2.20)-(2.23) with initial data (D0, B0) satis-

fies (2.26). This completes the Proof of Theorem 2.3.

Remark 2.4. We need to explain the sense in which (2.31)-(2.34)

and (2.20)-(2.23) are to be understood using the transposition method.

We proceed as Lagnese in [11]. Let us consider the problem (2.20)-(2.23)

with J ∈ L2((0, T );L2(Γ)3) and initial data such that (B0,−D0) ∈ H0
1.

Let (ϕ0,√0) ∈ H1 and let (ϕ,√) be the solution of (2.27)-(2.30). Let

t > 0 be fixed. Consider the expression

Z t

0

Z

≠

{∏(D0 − curl(µB))√ − µ(B0 + curl(∏D))ϕ}dx dt = 0 .

Integrating by parts we obtain

(2.39)

Z

≠

∏D(t)√(t)dx −
Z

≠

µB(t)ϕ(t)dx =

Z

≠

∏D0√0dx+

−
Z

≠

µB0ϕ0dx +

Z t

0

Z

Γ

µ∏J√dΓds .

Formula (2.39) is the definition of the solution of the system (2.20)-(2.23).

In fact,

(2.40)

ØØØh(B0,−D0), (ϕ0,√0)iH0
1
,H1

−
Z t

0

µ∏J√ dΓds
ØØØ ≤

≤ k(B0,−D0)kH0
1
k(ϕ0,√0)kH1

+

+ ckJkL2((0,T );L2(Γ)3)k√kL2((0,T );L2(Γ)3) ≤
≤ k(B0,−D0)kH0

1
k(ϕ0,√0)kH1

+

+ c0kJkL2((0,T );L2(Γ)3)k(ϕ0,√0)kH1
,

for some constants c , c0 > 0. Since the map (ϕ0,√0) → (ϕ(t),√(t)) is

an isomorphism from H1 to H1 it follows from (2.40) that there exists

a unique pair (B,−D) ∈ C([0, T ];H0
1) that satisfies (2.39). This pair
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is, by definition, the solution of (2.20)-(2.23). Now let T > T0 and let

(B0,−D0) ∈ F 0
1. From (2.39) with t = T we obtain

|h(B(T ),−D(T )), (ϕ(T ),√(T ))iF 0
1
,F1

| ≤
≤
h
k(B0,−D0)kF 0

1
+ kJkL2((0,T );L2(Γ)3)

i
k(ϕ0,√0)kF1

.

From the definition of F1 we have that (ϕ0,√0) ∈ F1 if and only if

(ϕ(T ),√(T )) ∈ F1, further the map (ϕ0,√0) → (ϕ(T ),√(T )) is an isom-

etry. For the problem (2.31)-(2.34) it follows that there exists a unique

solution (B,−D) ∈ C([0, T ];F 0
1).

3 – Internal observability and controllability (I)

In this section we prove a result of internal observability and control-

lability. Let ε > 0 and let Gε be as in (1.13). We denote by Rj the radius

of the smallest ball that contains ≠j and by xj
0 its center, that is,

(3.1) Rj = sup
x∈≠j

|x − xj
0| ,

for j = 1, . . . , N, and we set

mj(x) = x − xj
0 ,(3.2)

R = sup
1≤j≤N

Rj .(3.3)

We have the following result.

Theorem 3.1. Let Gε be as above. Consider ∏, µ ∈ C1(≠) satisfy-

ing hypotheses (2.3), (2.4) and

µ − mj · ∇µ ≥ c0µ, ∀x ∈ ≠j, 1 ≤ j ≤ N,(3.4)

∏− mj · ∇∏ ≥ c0∏, ∀x ∈ ≠j, 1 ≤ j ≤ N,(3.5)

for some positive constant c0. Set

(3.6) Tε =
2R − 2ε

c0L
,
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then for every T > Tε and for every pair (D0, B0) ∈ H1 the solution of

(1.1)-(1.4), (1.5) satisfies the inequalities

(3.7) c1E ≤
Z T

0

Z

Gε

(|D(t)|2 + |B(t)|2)dxdt ≤ c2E

where c1, c2, are suitable positive constants independent on the initial data.

Remark 3.1. If we consider N = 1 and ≠1 = ≠ and the functions

∏, µ verifying hypotheses (2.3) − (2.6) then Gε is an ε-neighborhood of

the boundary Γ of ≠.

Remark 3.2. In the case of previous Remark if ∏ and µ are constant

then, choosing c0 = 1, the time Tε is optimal, that is we cannot have

observability inequality if T < Tε due to the finite speed propagation.

In particular if ∏ ≡ µ ≡ 1 the observability inequality holds for every

T > (2R − 2ε).

Proof of Theorem 3.1. As in [14], let ε0, ε1 be positive constants

such that ε1 < ε0 < ε, and define the sets

(3.8) G0 = ≠ ∩ Nε0

≥≥
≠ \

N[

j=1

≠j

¥
∪ Γ
¥

and

(3.9) G1 = ≠ ∩ Nε1

≥≥
≠ \

N[

j=1

≠j

¥
∪ Γ
¥

.

For every 1 ≤ j ≤ N we can choose a function φj such that

φj ∈ C1
0 (IR3), 0 ≤ φj ≤ 1 ,(3.10)

φj ≡ 1 in ≠j \ G0 ,(3.11)

φj ≡ 0 in ≠j ∩ G1 .(3.12)

For every 1 ≤ j ≤ N we can apply the formula (2.9) in ≠j with q(x) :=
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φj(x)mj(x), where mj is defined by (3.2), and we obtain

(3.13)

h
2

Z

≠j

(D × B)(φjmj)dx
iT
0

=

=

Z T

0

Z

≠j

{(∏|D|2 + µ|B|2) div(φjmj)+

− 2
3X

i,k=1

@(φjmj
i )

@xk

(∏DiDk + µBiBk)}dx dt+

+

Z T

0

Z

≠j

{−(φjmj · ∇∏)|D|2 − (φjmj · ∇µ)|B|2}dx dt

∀ j = 1, . . . , N ,

that is

(3.14)

h
2

Z

≠j

(D × B)(φjmj)dx
iT
0

=

=

Z T

0

Z

≠j\G0

(∏|D|2 + µ|B|2)dx dt+

+

Z T

0

Z

≠j\G0

{−(mj · ∇∏)|D|2 − (mj · ∇µ)|B|2}dx dt+

+

Z T

0

Z

≠j∩(G0\G1)

{(∏|D|2 + µ|B|2) div(φjmj)+

− 2
3X

i,k=1

@(φjmj
i )

@xk

(∏DiDk + µBiBk)}dx dt+

+

Z T

0

Z

≠j∩(G0\G1)

{−(φjmj · ∇∏)|D|2 − (φjmj · ∇µ)|B|2}dx dt .

Therefore using the conditions (3.4), (3.5) from (3.14) we have

(3.15)

c0

Z T

0

Z

≠j\G0

(∏|D|2 + µ|B|2)dx dt −
h
2

Z

≠j

(D × B)(φjmj)dx
iT
0
≤

≤ c̃j

Z T

0

Z

≠j∩(G0\G1)

(|D|2 + |B|2)dx dt

where c̃j is a suitable constant.
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Setting

(3.16) c̃ = max
1≤j≤N

c̃j

we obtain

(3.17)

NX

j=1

c0

Z T

0

Z

≠j\G0

(∏|D|2 + µ|B|2)dx dt+

−
NX

j=1

"
2

Z

≠j

(D × B)(φjmj)dx

#T

0

≤

≤ c̃
NX

j=1

Z T

0

Z

≠j∩(G0\G1)

(|D|2 + |B|2)dx dt .

Next we observe that

ØØØ
NX

j=1

h
2

Z

≠j

(D × B)(φjmj)dx
iT
0

ØØØ ≤

≤
X

t=0,T

NX

j=1

2

L

Z

≠j

√
∏|D|√µ|B|(Rj − ε1)dx ≤

≤
X

t=0,T

R − ε1
L

Z

≠j

(∏|D|2 + µ|B|2)dx ≤ 2E 2R − 2ε1
L

.

Therefore we deduce from (3.17) the inequality

c0

Z T

0

Z

≠\G0

(∏|D|2+µ|B|2)dx dt−2E 2R − 2ε1
L

≤ c̃

Z T

0

Z

≠∩G0

(|D|2+|B|2)dx dt .

Adding

c0

Z T

0

Z

≠∩G0

(∏|D|2 + µ|B|2)dx dt

and using the condition (3.15) we obtain

(3.18) 2E
≥
c0T − 2R − 2ε1

L

¥
≤ c∗

Z T

0

Z

Gε

(|D|2 + |B|2)dx dt ,

for some suitable positive constant c∗.
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Since the inequality (3.18) holds for every ε1 < ε, the first inequality

in (3.7) follows for every T > (2R − 2ε)/c0L. The second inequality

in (3.7) obviously holds and the proof of Theorem 3.1 is completed.

Applying HUM again, Theorem 3.1 leads to an exact controllability

result concerning

D0 − curl(µB) = χQεh in ≠× (0,+1)(3.19)

B0 + curl(∏D) = χQεk in ≠× (0,+1)(3.20)

divD = divB = 0 in ≠× (0,+1)(3.21)

∫ × D = 0 on Γ× (0,+1)(3.22)

D(0) = D0 and B(0) = B0 in ≠(3.23)

where, for fixed T ,

(3.24) Qε = Gε × (0, T )

and χQε is the characteristic function of the set Qε.

Let (ϕ0,√0) ∈ H1 and let (ϕ,√) be the solution of (1.1)-(1.4)-(1.5).

From the previous theorem it follows that

(3.25) k(ϕ0,√0)kG1
=
≥ Z T

0

Z

Gε

(µ|ϕ(t)|2 + ∏|√(t)|2)dx dt
¥ 1

2

is a norm on H1. Let G1 be the completion of H1 with respect to this

norm and let G0
1 be its dual space with respect to the scalar product h·, ·i0 .

We have

Theorem 3.2. Let Gε be as above and let Tε,∏, µ be as in Theo-

rem 3.1. Then for every time T > Tε and for every pair (B0,−D0) ∈ G0
1

there exist two functions h, k ∈ L2(0, T ;L2(Gε)
3) such that the solution

of (3.19)-(3.23) with initial data (D0, B0) satisfies the final condition

(3.26) D(T ) = 0, B(T ) = 0 in ≠ .
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Proof of Theorem 3.2. Let T > Tε be a fixed time. As in § 2, we

apply the Hilbert Uniqueness Method of Lions. Let (ϕ0,√0) ∈ G1 and let

(ϕ,√) the solution of the system

ϕ0 − curl(∏√) = √0 + curl(µϕ) = 0 in ≠× (0, T ),(3.27)

divϕ = div√ = 0 in ≠× (0, T ),(3.28)

∫ × √ = 0 and ∫ · ϕ = 0 on Γ× (0, T ) ,(3.29)

ϕ(0) = ϕ0 and √(0) = √0 in ≠ .(3.30)

We consider the following problem:

D0 − curl(µB) = χQε√ in ≠× (0, T ) ,(3.31)

B0 + curl(∏D) = −χQεϕ in ≠× (0, T ) ,(3.32)

divD = divB = 0 in ≠× (0, T ) ,(3.33)

∫ × D = 0 on Γ× (0, T ) ,(3.34)

D(T ) = B(T ) = 0 in ≠ .(3.35)

Proceeding formally (we will precise everything in Remark 3.3), we have

(3.36)

Z T

0

Z

≠

{∏(D0 − curl(µB))√ − µ(B0 + curl(∏D))ϕ}dx dt =

=

Z T

0

Z

Gε

(µ|ϕ|2 + ∏|√|2)dx dt .

Hence, after integrations by parts

−
Z

≠

∏D(0)√(0)dx +

Z

≠

µB(0)ϕ(0)dx =

Z T

0

Z

Gε

(µ|ϕ|2 + ∏|√|2)dx dt .

Therefore, as in the proof of Theorem 2.3 from hypotheses on ∏, µ and

from the observability inequality in (3.7) we have that for every (B0,−D0)

∈ G0
1 we can choose (ϕ0,√0) ∈ G1 such that the solution of (3.19)-(3.23)

with initial data (D0, B0) verifies (3.26).

Remark 3.3. Analogously to the previous section, the solutions

of (3.31)-(3.35) and (3.19)-(3.23) are understood by using the transposi-

tion method. Consider the problem (3.19)-(3.23) with h, k ∈ L2((0, T );
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L2(Gε)
3) and initial data (B0,−D0) ∈ H0

1. Let (ϕ0,√0) ∈ H1 and let

(ϕ,√) the solution of (3.27)-(3.30). Let t > 0 be fixed. We can define the

solution of (3.19)-(3.23) by the formula

(3.37)

Z

≠

∏D(t)√(t)dx −
Z

≠

µB(t)ϕ(t)dx =

=

Z

≠

∏D(0)√(0)dx −
Z

≠

µB(0)ϕ(0)dx +

Z t

0

Z

Gε

(µ|ϕ|2 + ∏|√|2)dx dt .

As in Remark 2.4 we can see that there exists a unique pair (B,−D) ∈
C([0, T ];H0

1) that satisfies (3.37) and this pair is, by definition, the solu-

tion of the problem (3.19)-(3.23). Moreover if T > Tε the system (3.31)-

(3.35) has a unique solution (B,−D) ∈ C([0, T ];G0
1).

4 – Internal observability and controllability (II)

Let us now assume that ∏, µ are positive constants and that ≠ is star-

shaped with respect to the origin, that is, (1.10) holds. Let us introduce

the function spaces

J∗
τ (≠), J∗

∫ (≠), J(≠), Ĵ(≠),

as in Ladyzhenskaya and Solonnikov [10] (see also Lagnese [11]).

We define

(4.1) J(≠) = closure of {ξ/ξ ∈ (C1(≠))3,div ξ = 0} in (L2(≠))3 ,

(4.2) Ĵ(≠) = closure of {ξ/ξ ∈ (C1
0 (≠))3,div ξ = 0} in (L2(≠))3 ,

and

Jk(≠) = J(≠) ∩ (Hk(≠))3,(4.3)

Jk
τ (≠) = {ξ/ξ ∈ Jk(≠), ∫ × ξ = 0 on Γ} ,(4.4)

Jk
∫ (≠) = {ξ/ξ ∈ Jk(≠), ∫ · ξ = 0 on Γ} ,(4.5)
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with the topology inherited from (Hk(≠))3. Further, we introduce

J∗
τ (≠) = {ξ/ξ ∈ J2

τ (≠), ∫ · curl ξ = 0 on Γ} ,(4.6)

J∗
∫ (≠) = {ξ/ξ ∈ J2

∫ (≠), ∫ × curl ξ = 0 on Γ} ,(4.7)

with the topology in each space inherited from (H2(≠))3. The spaces

above are known to have the following properties (see [10], [11]):

(4.8) J∗
τ (≠) ⊂ J1

τ (≠) ⊂ J(≠), J∗
∫ (≠) ⊂ J1

∫ (≠) ⊂ Ĵ(≠) ,

with each space dense and continuously imbedded in the one that follows

it. Further, we can renorm J1
τ (≠) and J1

∫ (≠) by setting

(4.9) kξkJ1
τ (≠) = k curl ξk, kξkJ1

∫ (≠) = k curl ξk ,

which is equivalent to the (H1(≠))3 norm on these spaces.

Theorem 4.1. Assume (1.10), let ∏, µ be constant and let Gε =

Nε(Γ). Set

(4.10) Tε =
2R − 2ε

L
,

with R defined as in (2.2). Then for every T > Tε and for every pair

(D0, B0) ∈ J∗
τ (≠) × J∗

∫ (≠) the solution of (1.1)-(1.4), (1.5) satisfies the

inequality

(4.11)

Z T

0

Z

Gε

(| curlD(t)|2 + | curlB(t)|2)dxdt ≥ cE ,

for some positive constant c, independent on the initial data.

Proof of Theorem 4.1. We consider the system (1.1)-(1.4), (1.5)

with (D,B) ∈ J∗
τ (≠) × J∗

∫ (≠).

Set

(4.12) D̃ = curlD, B̃ = curlB ,
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then we have

D̃0 − µ curl B̃ = 0 in ≠× (0, T ) ,(4.13)

B̃0 + ∏ curl D̃ = 0 in ≠× (0, T ) ,(4.14)

and obviously

(4.15) div D̃ = 0, div B̃ = 0 in ≠× (0, T ) .

Further, if (D,B) ∈ J∗
τ (≠) × J∗

∫ (≠), then for (D̃, B̃) defined as in (4.12)

we have

(4.16) ∫ × B̃ = 0 and ∫ · D̃ = 0 on Γ .

Since (D̃, B̃) verifies a conservative system, we can apply the results ob-

tained by the multiplier method in § 3 and we have for T > (2R− 2ε)/L

(4.17) c1Ẽ ≤
Z T

0

Z

Gε

(|D̃|2 + |B̃|2)dxdt ≤ c2Ẽ
where

(4.18) Ẽ ≡ Ẽ(t) =

Z

≠

(∏|D̃|2+µ|B̃|2)dx =

Z

≠

(∏| curlD|2+µ| curlB|2)dx .

Then from (4.9) and (4.18) it follows that

(4.19)

Z T

0

Z

Gε

(| curlD|2 + | curlB|2)dx dt ≥ cE

for some constant c, that is the observability inequality.

Theorem 4.1 implies the following controllability theorem concerning

the system

D0 − curl(µB) = χQεw in ≠× (0,+1)(4.20)

B0 + curl(∏D) = 0 in ≠× (0,+1)(4.21)

divD = divB = 0 in ≠× (0,+1)(4.22)

∫ × D = 0 on Γ× (0,+1)(4.23)

D(0) = D0 and B(0) = B0 in ≠(4.24)

where Qε is given by (3.24).
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Theorem 4.2. Under the assumptions of Theorem 4.1, for every

time T > Tε and for every pair (D0, B0) ∈ J(≠) × Ĵ(≠) there exists

a function w ∈ L2((0, T );J(≠)) such that the solution of (4.20)-(4.24)

satisfies

(4.25) D(T ) = B(T ) = 0 .

Proof. Let us consider the system

ϕ0 − ∏ curl√ = √0 + µ curlϕ = 0 in ≠× (0, T ) ,(4.26)

divϕ = div√ = 0 in ≠× (0, T ) ,(4.27)

∫ × √ = 0, ∫ · ϕ on Γ× (0, T ) ,(4.28)

ϕ(0) = ϕ0,√(0) = √0 in ≠ ,(4.29)

where (ϕ0,√0) ∈ J(≠) × Ĵ(≠), and the problem

D0 − µ curlB = χQ

≥
curl curl√ − d

dt
√0
¥

in ≠× (0, T ) ,(4.30)

B0 + ∏ curlD = 0 in ≠× (0, T ) ,(4.31)

divD = divB = 0 in ≠× (0, T ) ,(4.32)

∫ × D = 0 on Γ× (0, T ) ,(4.33)

D(T ) = B(T ) = 0 in ≠ ,(4.34)

where d
dt

denotes the derivative in the duality. As in the proof of Theo-

rem 2.3 and Theorem 3.2, we obtain that we can choose suitable (ϕ0,√0)

such that the solution of (4.30)-(4.33) wich initial data (D0, B0) ∈ J∗
τ (≠)×

J∗
∫ (≠) satisfies the final condition (4.34).

Remark 4.1. As in the previous sections the solutions of (4.20)-

(4.24) and (4.30)-(4.34) are understood by using the transposition method.
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Paris Sér I Math., 318 (1994), 535-540.

[7] V. Komornik: Boundary stabilization, observation and control of Maxwell’s equa-
tions, Panamer. Math. J., 4 (1994), 47-61.

[8] V. Komornik: Exact Controllability and Stabilization. The Multiplier Method ,
Masson–John Wiley, Collection RMA, Vol. 36, Paris, 1994.

[9] V. Komornik: Rapid boundary stabilization of Maxwell’s equations, Équations
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