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Interface dynamics and Stefan problem

from a microscopic conservative model

L. BERTINI – P. BUTTÀ – B. RÜDIGER

Riassunto: Si considera un sistema stocastico di spins accoppiato a un processo
di diffusione lineare. L’accoppiamento è tale che si ha campo localmente conservato.
Gli stati di equilibrio sono le corrispondenti misure di Gibbs canoniche. Viene dimo-
strato che, in un limite di scala diffusivo, il campo conservato converge alla soluzione
di un’equazione di diffusione non lineare. Per alcuni valori dei parametri il sistema esi-
bisce una transizione di fase: in tale caso l’equazione macroscopica degenera e diviene
la formulazione debole del problema di Stefan a due fasi.

Abstract: We consider a stochastic spin system coupled to a linear diffusion
process. The coupling is such that there is a locally conserved quantity. The equilibrium
states are the corresponding canonical Gibbs measures. We prove that, under a diffusive
scaling limit, the macroscopic density of the conserved quantity solves a non–linear
diffusion equation. For certain values of the parameters a phase transition occurs; in
this case the macroscopic equation degenerates and is the weak formulation of the two
phases Stefan problem.

0 – Introduction

Let us consider a pure material, say water, which can be in either

of two phases, say liquid and solid, and occupies a region ≠ ⊂ Rd. We

prepare an initial condition in which there is a sharp interface Γ0 ⊂ ≠
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between the two phases and ask for its evolution. The interface dynam-

ics is rather complicated and depends on the physical conditions of the

experiment. A simple mathematical model is given by the Stefan prob-

lem which is, with the appropriate initial and boundary condition, the

following free boundary problem

(0.1)





@tu(t, r) = ∇ ·
≥
∑(u)∇u(t, r)

¥
if r ∈ ≠ \ Γ(t)

` v(t) =
h
∑(u)

@u

@n

i
Γ(t)

u(t, r) = 0 if r ∈ Γ(t)

in which ∑(u) is the diffusion coefficient, ` > 0 the latent heat, v(t) the

normal velocity of Γ(t) and [ @u
@n

]Γ is the jump of the normal derivative of u

across Γ. The scalar field u(t, r) is interpreted as the temperature of the

material and we set the melting temperature equal to 0; therefore u(t, r) <

0 in the solid phase and u(t, r) > 0 in the liquid phase. Accordingly Γ(t)

is the phase boundary at time t.

The aim of this paper is the derivation of the Stefan problem from

a microscopic model of phase field type. We shall deal with the weak

formulation of (0.1) for which there is an existence and uniqueness result,

see e.g. [7]. As a matter fact the existence result will also follow from the

derivation. Any classical solution of (0.1) is also a weak solution, but the

reverse is, in general, false: the interface may develop singularities after

a finite time and/or the set {r : u(t, r) = 0} may be of positive Lebesgue

measure (mushy region), see [7] and references therein. We stress that we

prove convergence to the weak formulation of the Stefan problem for all

times. On the other hand, for simplicity, we restrict ourselves to periodic

boundary condition, i.e. ≠ is the d–dimensional torus Sd.

Generally speaking, phase field models describe the kinetics of phase

transitions when the presence of latent heat is taken into account. This

effect is usually negligible for metallic alloys which conduct heat well,

but may be relevant for other types of materials. These models are usu-

ally formulated in term of a system of (non-linear) P.D.E. which, in the

simplest case, takes the following form

@tm(t, r) = ∆m(t, r) − V 0(m(t, r)) + φ(t, r)(0.2)

@t(m(t, r) + aφ(t, r)) = c∆φ(t, r)(0.3)
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where t ≥ 0, r ∈ ≠ ⊂ Rd, ∆ is the Laplacian, a, c > 0 and V (m)

a symmetric double well potential; a typical example is the function

V (m) = (m2 − 1)2. Eq. (0.2) is a Ginzburg-Landau equation for the

order parameter m (i.e. m ∼ −1 (resp. m ∼ 1) in the solid (resp. liquid)

phase) with an external field φ(t, r) which is interpreted as the tempera-

ture. Eq. (0.3) describes the relaxation of the locally conserved quantity

m(t, r) + aφ(t, r). We refer to [8] for a general overview on phase field

equations and their derivation from thermodynamic considerations.

A most interesting question is the analysis of the singular limits of

the phase field equations. According to the limiting procedure different

interface motions can be obtained; among them there are the Hele-Shaw

model and the Stefan problem. As the Allen-Cahn equation can be viewed

as a limit of the phase field equation also the motion by curvature can be

included in the possible singular limits. This class of problems has been

recently widely studied in the literature, see [2] and references therein.

The phase field equations are to be considered as a phenomenological

(mesoscopic) description of the physical system in which a coarse graining

procedure has been taken in order to replace the microscopic variables

with the order parameter m. It seems therefore quite natural to look for

a derivation of the interface dynamics directly from a microscopic model

without passing through the mesoscopic level of the phase field equations.

In the case of the motion by curvature this program has been successfully

completed starting from a stochastic Ising model with Kac potential [3].

With the above motivation, in this paper we introduce a simple mi-

croscopic and stochastic model of phase field type. The space structure is

discretized and instead of the continuous order parameter m(t, r) we have

a spin variable σ = {σ(x), x ∈ Λ ⊂ Zd} where σ(x) = ±1. The external

field is described by a continuous charge φ(x) attached to each x ∈ Λ.

The microscopic evolution is defined by a Glauber dynamics (stochastic

Ising model) for the spin variable σ coupled to a systems of linear diffu-

sions for the charge φ. The dynamics is constructed in such a way there

is a locally conserved quantity. This will be realized by compensating the

spin flip σ(x) 7→ −σ(x) (representing a change of phase at the site x) by

adding to the field φ(x) the fraction ∏σ(x). Of course this is a rather

crude model for the actual transition in real materials, however it could

catch some of its essential features.

Since there is a conserved quantity, the relaxation to equilibrium is
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not exponentially fast, as it happens in the usual Glauber dynamics (away

from the phase transition region). Our main result is the hydrodynamic

limit (reduced description) for the model above described. We scale space

and time diffusively and look for a limiting equation describing the evo-

lution of the conserved quantity. We find a non-linear diffusion equation;

its diffusion coefficient is obtained from the thermodynamic of the model.

This result is proven in the whole range of the parameters, including the

phase transition region. When phase transition occurs the limiting equa-

tion is however degenerate, i.e. the diffusion coefficient vanishes. In this

case the equation is to be interpreted in the weak sense and it is precisely

the weak formulation of the Stefan problem (0.1).

This result covers the case when a macroscopic interface is associated

(see eq. (1.15) below for a formal definition) to the initial distribution of

the microscopic process. According to the Lifshitz theory, the phase

segregation phenomena in which a macroscopic droplet is nucleated from

the microscopic dynamics take place instead on a longer time scale and

therefore are not observed in the hydrodynamic limit, see [11]. We finally

remark that, by introducing a Kac (long range) potential and considering

the Lebowitz-Penrose limit, a non-local version of the mesoscopic phase

field eqs. (0.2)-(0.3) can be derived from this microscopic model [9].

From a technical point of view, the hydrodynamic limit is proven by

applying the entropy techniques introduced in [6] and developed in [10]

to cover the case when the invariant measure is not a product measure.

The structure of the paper is as follows. In the next Section we define

precisely the model and state the hydrodynamic limit. In Section 2 we

prove an ergodic theorem for the canonical Gibbs state; it is then used,

in Section 3, to prove the “one and two blocks estimates”. Finally, in

Section 4, we obtain a large deviation result in equilibrium and conclude

the proof of the hydrodynamic limit.

1 – Notation and results

For any positive integer N , let SN be the periodic lattice {j : j =

0, 1, ...,N} with 0 and N identified. We denote by Sd
N the product of d

copies of SN . The microscopic state space is

(1.1) XN
.
= {−1, 1}Sd

N × RSd
N
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The elements of XN are denoted by ξ = (σ,φ), where for any x ∈ Sd
N ,

σ(x) ∈ {−1, 1} is a spin variable and φ(x) ∈ R a continuous charge. The

energy of the configuration ξ ∈ XN is given by

(1.2) HN(ξ) = Hs
N(σ) + Hc

N(φ)

where ξ = (σ,φ) and

(1.3) Hs
N(σ)

.
= −1

2

X

x,y∈Sd
N

|x−y|=1

σ(x)σ(y), Hc
N(φ)

.
=
X

x∈Sd
N

φ(x)2

For any x ∈ Sd
N we define a local operator, the “compensated spin flip”,

δx : XN ← XN by

(1.4) δx(σ,φ)(y)
.
=

(
(−σ(x),φ(x) + ∏σ(x)) if y = x

(σ(y),φ(y)) otherwise

where ∏ > 0 is a given parameter. The corresponding variation of the

energy is

(1.5) δxHN(ξ)
.
= HN(δxξ)−HN(ξ) =

X

y:|y−x|=1

σ(x)σ(y)+2∏σ(x)φ(x)+∏2

The microscopic dynamics is constructed by means of two elementary

processes. The former involves only the φ component of ξ and it is given

by a linear Ginzburg-Landau process. More precisely, given β > 0, we

consider the diffusion whose generator is

(1.6)

L(0) =
1

2

X

x,y∈Sd
N

|x−y|=1

≥ @

@φ(x)
− @

@φ(y)

¥2

+

−
X

x,y∈Sd
N

|x−y|=1

β(φ(x) − φ(y))
≥ @

@φ(x)
− @

@φ(y)

¥

The latter is a jump Markov process which involves both the spins σ and

the charges φ. Let

(1.7) cβ(x, ξ)
.
=

1

2
exp

h
− β

2
δxH(ξ)

i
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Then let L(1) be the Markov generator which acts on continuous and

compactly supported functions on XN as

(1.8) L(1)f(ξ)
.
=
X

x∈Sd
N

cβ(x, ξ)[f(δxξ) − f(ξ)]

Note that, on the space of functions which depend only on the spin vari-

ables, L(1) reduces to the generator of a Glauber dynamics with an ex-

ternal field ∏φ(x). But in our case the external field is itself a dynamical

variable.

The dynamics is then defined by the Markov process on XN with

generator

(1.9) LN
.
= N2(L(0) + L(1))

in which we speed up the dynamics by a factor N2; this realizes the

above mentioned diffusive scaling. We remark that for N fixed we are

in a bounded volume and therefore the existence of the Markov process

generated by (1.9) is trivial.

The generator LN is reversible with respect to the Gibbs measure ∫N

defined by

(1.10) ∫N(dξ)
.
=

1

ZN

exp[−βHs
N(σ)]ρN(dφ)

where ZN is the normalizing constant and ρN(dφ) is the Gaussian measure

given by

(1.11) ρN(dφ)
.
=
≥β
π

¥Nd/2

exp[−βHc
N(φ)]dφ

in which dφ is the Lebesgue measure on RSd
N .

For any Λ ⊆ Sd
N , let

(1.12) ω(Λ)
.
=
X

x∈Λ
ω(x), ω(x)

.
= σ(x) + 2∏−1φ(x)

It is easy to check that ω is a locally conserved quantity. In particu-

lar the dynamics preserves the total charge ω(Sd
N). Our main result is



[7] Interface dynamics and Stefan problem etc. 553

the derivation of the hydrodynamic equation for the macroscopic charge

density.

We consider the Markov process ξt with an initial distribution given

by a probability density f0
N with respect to the reference measure ∫N .

The marginal of the process at time t has then a density f t
N with respect

to ∫N which is obtained by solving the forward equation

(1.13)
@f t

N

@t
= LNf t

N , f t
N

ØØØ
t=0

= f0
N

To each ω
.
= {ω(x), x ∈ Sd

N}, ω(x) as in (1.12), we associate the empirical

measure

(1.14) µN =
1

Nd

X

x∈Sd
N

ω(x)δx/N

which is a random signed measure on the d-dimensional torus Sd (i.e.

the product of d copies of the interval [0, 1] with 0 and 1 identified). We

say that a function q0(θ) is the asymptotic macroscopic charge density

associated to µN if, for every smooth function J on Sd,

(1.15) lim
N→1

1

Nd

X

x∈Sd
N

J(x/N)ω(x) =

Z
dθ J(θ)q0(θ)

where the limit is in probability and dθ is the Lebesgue measure on Sd.

We shall assume that the initial density f0
N satisfies the entropy

bound

(1.16)
1

Nd

Z
∫N(dξ) f0

N(ξ) log f0
N(ξ) ≤ C

for some C > 0 uniformly in N . Furthermore, we require convergence

at time 0 by assuming that for some continuous function q0(θ) and every

δ > 0,

(1.17) lim
N→1

Z

E0
N,δ

∫N(dξ) f0
N(ξ) = 0
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where

(1.18) E0
N,δ

.
=
n
ξ :

ØØØ 1

Nd

X

x∈Sd
N

J(x/N)ω(x) −
Z

dθ J(θ)q0(θ)
ØØØ ≥ δ

o

Under the conditions (1.16) and (1.17) we shall prove that in the

limit N → 1 the locally conserved quantity has a deterministic behaviour

which is ruled by the solution of a nonlinear diffusion equation with initial

condition q0. In order to write the macroscopic equation we need to

introduce the thermodynamic functions. The pressure is given by

(1.19) p(β,α)
.
= lim

N→1

1

βNd
log

Z
∫N(dξ) exp

h
βα

X

x∈Sd
N

ω(x)
i

and we define h as the convex conjugate of p, that is

(1.20) h(β, q)
.
= sup

α
{αq − p(β,α)}

We can now state precisely our main result.

Theorem 1.1. Let the initial density f0
N satisfies (1.16) and (1.17).

Then for any t ≥ 0, every smooth function J and each δ > 0,

(1.21) lim
N→1

Z

Et
N,δ

∫N(dξ) f t
N(ξ) = 0

where

(1.22) Et
N,δ

.
=
n
ξ :

ØØØ 1

Nd

X

x∈Sd
N

J(x/N)ω(x) −
Z

dθ J(θ)q(t, θ)
ØØØ ≥ δ

o

and q(t, θ) is the (unique) weak solution of the nonlinear diffusion equa-

tion

(1.23)





@q

@t
(t, θ) = 2β∆θF

°
q(t, θ)

¢

q(0, θ) = q0(θ)

where

(1.24) F (q)
.
=

2

∏2

@h

@q
(β, q)



[9] Interface dynamics and Stefan problem etc. 555

By standard results in Statistical Mechanics (see the next Section),

F (q) is a continuous and non decreasing function of q. Furthermore,

if d ≥ 2, there exists a βc ∈ (0,1), the inverse critical temperature

and, for β > βc, mβ > 0, the spontaneous magnetization, such that

F (q) is constant for q ∈ [−mβ,mβ], strictly increasing and smooth for

|q| > mβ. In this case the eq. (1.23) degenerates and is the appropriate

weak formulation of the Stefan problem (0.1), which is most naturally

formulated for the internal energy q and not for the temperature u =

2βF (q), see [7, I.3]. The coefficients `, ∑ in (0.1) are thus obtained from

the microscopic interaction.

2 – Canonical gibbs measures and ergodic theorem

In this section we prove an ergodic theorem for the canonical Gibbs

measures. Let us first recall some standard facts about Gibbs measures

in the context of our model.

The (infinite volume) configuration space is X
.
= {−1, 1}Zd × RZd

;

its elements are denoted by ξ = (σ,φ), where σ ∈ {−1, 1}Zd
is a spin

configuration and φ ∈ RZd
a continuous charge. X is naturally endowed

with the product topology which makes it a Polish space. We denote by

τx, x ∈ Zd, the shift operator on X, that is τxξ(y)
.
= ξ(y + x) for any

ξ ∈ X and y ∈ Zd. We also denote by M(X) the space of probability

measures on X and by Mτ (X) the space of shift invariant probability

measures on X. Both M(X) and Mτ (X) are endowed with the topology

of weak convergence.

For any finite subset Λ ⊂ Zd (we shall write Λ ⊂⊂ Zd to indicate Λ is

finite) we define XΛ
.
= {−1, 1}Λ×RΛ and we denote by ξΛ = (σΛ,φΛ) the

restriction of ξ = (σ,φ) to Λ, that is ξΛ ∈ XΛ and ξΛ(x) = ξ(x) for any

x ∈ Λ. The energy of the configuration ξΛ in the presence of a constant

external field α is given by

(2.1) HΛ,α(ξΛ) = Hs
Λ(σΛ) + Hc

Λ(φΛ) − α
X

x∈Λ
ω(x)

where ω(x) = σ(x) + 2∏−1φ(x) (see (1.12)) and

(2.2) Hs
Λ(σΛ)

.
= −1

2

X

x,y∈Λ
|x−y|=1

σ(x)σ(y), Hc
Λ(φΛ)

.
=
X

x∈Λ
φ(x)2
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while its energy inclusive of the interaction with a given boundary con-

dition ξ̄ = (σ̄, φ̄) ∈ X is

(2.3) HΛ,α(ξΛ|ξ̄) .
= HΛ,α(ξΛ) −

X

x∈Λ,y∈Λc

|x−y|=1

σ(x)σ̄(y)

We remark that the energy HΛ,α(ξΛ|ξ̄) depends only on the spin compo-

nent σ̄ of the boundary condition ξ̄. Note moreover that

(2.4) HΛ,α(ξΛ|ξ̄) = Hs
Λ,α(σΛ|σ̄) + Hc

Λ,α(φΛ)

where

(2.5) Hc
Λ,α(φΛ)

.
= Hc

Λ(φΛ) − α
X

x∈Λ
2∏−1φ(x)

in which Hs
Λ,α(σΛ|σ̄) is the Hamiltonian of the Ising Model in the pres-

ence of an external magnetic field α and with boundary condition σ̄ (an

expression analogous to (2.4) clearly holds also for the Hamiltonian (2.1)

with free boundary conditions).

Given an inverse temperature β > 0, the grand canonical finite vol-

ume Gibbs measure ∫Λ,β,α associated to the interaction (2.1) is defined

by

(2.6) ∫Λ,β,α(dξΛ)
.
=

1

ZΛ(β,α)
exp[−βHs

Λ,α(σΛ)]ρΛ,β,α(dφΛ)

where ZΛ(β,α) is the normalization factor and ρΛ,β,α is given by

(2.7) ρΛ,β,α(dφΛ)
.
=
≥β
π

¥|Λ|/2

exp[−βHc
Λ,α(φΛ)]dφΛ

We define analogously, for any boundary condition ξ̄ ∈ X,

(2.8) ∫Λ,β,α(dξΛ|ξ̄) .
=

1

ZΛ,ξ̄(β,α)
exp[−βHs

Λ,α(σΛ|σ̄)]ρΛ,β,α(dφΛ)

We also consider the finite volume canonical Gibbs measures ∫q
Λ,β and

∫q

Λ,β,ξ̄
which are obtained by conditioning the grand canonical ones ∫Λ,β,0
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and ∫Λ,β,0(·|ξ̄) respectively, with respect to mΛ(ω) = q, having defined,

for any function f on Zd,

(2.9) mΛ(f)
.
=

1

|Λ|
X

x∈Λ
f(x)

We finally introduce the family of shift invariant infinite volume

Gibbs states. For any α ∈ R, they are defined by

G(α)
.
= {µ ∈ Mτ (X) : µ(·|ξΛc = ξ̄Λc) = ∫Λ,β,α(·|ξ̄) ∀Λ ⊂⊂ Zd ξ̄ µ-a.s. }

while the canonical Gibbs states are defined by

Gc .
= {µ ∈ Mτ (X) : µ(·|ξΛc = ξ̄Λc ; mΛ(ω) =

= mΛ(ω̄) = q) = ∫q

Λ,β,ξ̄
∀Λ ⊂⊂ Zd ξ̄, q µ-a.s. }

The connection with the thermodynamics is done by means of the parti-

tion function. We define the pressure of the system as

(2.10) p(β,α)
.
= lim
Λ%Zd

1

β|Λ| log ZΛ,ξ̄(β,α)

where Λ tends to Zd in the sense of van Hove. The limit is uniform

in ξ̄ and define a convex function of α and β−1. It coincides with the

analogous limit obtained by replacing ZΛ,ξ̄(β,α) with ZΛ(β,α) and also

with the definition (1.19). By an explicit computation we get

(2.11) ZΛ,ξ̄(β,α) = Zs
Λ,σ̄(β,α) exp[β|Λ|°α∏−1

¢2
]

where Zs
Λ,σ̄(β,α) is the partition function for the Ising Model. Therefore

(2.12) p(β,α) = p0(β,α) +
≥α
∏

¥2

with p0(β,α) the pressure of the Ising Model with external magnetic field

α and inverse temperature β.

It is well known that the pressure p0(β,α) of the Ising Model is a

convex and continuous function of α for any β > 0. Moreover it is
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differentiable except that in the transition region {(β, 0) : β > βc}, where

βc is the inverse critical temperature. Finally,

(2.13) lim
α→0±

@p0

@α
= ±mβ, mβ ≥ 0

where mβ > 0 if and only if β > βc (spontaneous magnetization).

Let h(β, q) be the convex conjugate of the pressure as defined in (1.20).

From what stated before and by standard properties on the Legendre

transform we easily get that h(β, q) is a convex and differentiable function

of q for any β > 0. Moreover, its derivative with respect to q is a non

decreasing function of q, strictly increasing for β < βc. More precisely,

with mβ as in (2.13),

(2.14)
@h

@q
(β, q) = 0 if and only if q ∈ [−mβ,mβ]

Now we can state the main result of this Section.

Theorem 2.1. Let

(2.15) Λn
.
= {x ∈ Zd : 0 ≤ xj ≤ n, x = {xj : j = 1, ..., d}}

Then, for any compact set K ⊂ R,

(2.16) lim
n→1

sup
q∈K

sup
ξ̄∈X

Z
∫q

Λn,β,ξ̄
(dξΛ)

ØØØ2∏−1mΛn(φ) − 2

∏2

@h

@q
(β, q)

ØØØ = 0

We prove first that, uniformly in ξ̄ ∈ X and q ∈ K,

(2.17) lim
n→1

∫q

Λn,β,ξ̄

≥ ØØØ2∏−1mΛn(φ) − 2

∏2

@h

@q
(β, q)

ØØØ > δ
¥

= 0, ∀ δ > 0

and then that the sequence {2∏−1mΛn(φ)}n≥1 is uniformly integrable with

respect to the measures ∫q

Λn,β,ξ̄
.

First of all, by an explicit computation, for any Λ ⊂⊂ Zd,

(2.18)

Z
ρΛ,β,0(dφΛ) δ

°
2∏−1mΛ(φ) + mΛ(σ) − q

¢
=

=
∏|Λ|
2

s
β

π
exp

h
− β|Λ|∏

2

4
(q − mΛ(σ))

2
i
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so that

(2.19)

∫q

Λ,β,ξ̄
(dξΛ) = ZΛ,β,σ̄(q)

−1×

× exp
h
− βHs

Λ,0(σΛ|σ̄) − β|Λ|∏
2

4
(q − mΛ(σ))

2
i
ρ

q−mΛ(σ)
Λ,β (dφΛ)

where ZΛ,β,σ̄(q) is the normalization constant and ρy
Λ,β denotes the con-

ditional distribution of φΛ on the hyperplane 2∏−1mΛ(φ) = y, y ∈ R.

Clearly, for any Borel set A ⊆ R,

(2.20) ∫q

Λ,β,ξ̄
(2∏−1mΛ(φ) ∈ A) = ∫q

Λ,β,ξ̄
(q − mΛ(σ) ∈ A)

and, from (2.19), for any Borel set Γ ⊆ R,

(2.21)

∫q

Λ,β,ξ̄
(mΛ(σ) ∈ Γ) =

= ZΛ,β,σ̄(q)
−1
X

{σΛ}
mΛ(σ)∈Γ

exp
h
−βHs

Λ,0(σΛ|σ̄)−β|Λ|∏
2

4
(q − mΛ(σ))

2
i

Let h0(β,m) be the convex conjugate of the pressure p0(β,α) and

(2.22) G(β, q)
.
= inf

|m|≤1

n∏2

4
(q − m)2 + h0(β,m)

o

In order to prove (2.17) we need the following lemmata.

Lemma 2.2. Let h(β, q) as in (1.20) and G(β, q) as in (2.22). Then

(2.23) h(β, q) = G(β, q)

Proof. We prove separately the two inequalities h(β, q) ≤ G(β, q)

and h(β, q) ≥ G(β, q). From (2.12) and the definition of h0(β,m), for any

α, q ∈ R and m ∈ [−1, 1],

(2.24)

αq − p(β,α) ≤ αq − αm + h0(β,m) −
≥α
∏

¥2

≤

≤ ∏2

4
(q − m)2 + h0(β,m) −

≥∏
2
(q − m) − α

∏

¥2

≤

≤ ∏2

4
(q − m)2 + h0(β,m)
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From (2.24) it follows immediately that h(β, q) ≤ G(β, q). On the other

hand, from the definition of h0(β,m), for any ≤ > 0 there is m̄ ∈ [−1, 1]

such that

p0(β,α) ≤ αm̄ − h0(β, m̄) + ≤

Then, by reasoning as in (2.24), for any α, q ∈ R,

(2.25) αq − p(β,α) ≥ ∏2

4
(q − m̄)2 + h0(β, m̄) −

≥∏
2
(q − m̄) − α

∏

¥2

− ≤

By choosing ᾱ = ∏2(q − m̄)/2, (2.25) becomes

(2.26) ᾱq − p(β, ᾱ) ≥ ∏2

4
(q − m̄)2 + h0(β, m̄) − ≤

From (2.26) we get h(β, q) ≥ G(β, q) − ≤ for any ≤ > 0, that is h(β, q) ≥
G(β, q).

Lemma 2.3. Let

(2.27) P q
n,β,σ̄(dm)

.
= ∫q

Λn,β,ξ̄
(mΛn(σ) ∈ dm)

Then {(P q
n,β,σ̄,β|Λn|); n ∈ N} has the large deviation property with rate

function

(2.28) Iβ,q(m)
.
=
∏2

4
(q − m)2 + h0(β,m) − h(β, q)

Proof. From (2.21) and definition (2.27) we have

(2.29)
P q

n,β,σ̄(dm) =
≥ Z

Qn,β,σ̄(dm0) exp
h
− β|Λn|∏

2

4
(q − m0)2

i¥−1

×

× exp
h
− β|Λn|∏

2

4
(q − m)2

i
Qn,β,σ̄(dm)

where Qn,β,σ̄ is the probability distribution of mΛn(σ) with respect to

the grand canonical Gibbs measure of the Ising model in the volume

Λn, inverse temperature β, with 0 external magnetic field and boundary

condition σ̄.
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It is known, see [5], that {(Qn,β,σ̄,β|Λn|); n ∈ N} has a large deviation

property with rate function

(2.30) Is
β(m)

.
= h0(β,m) + p0(β, 0)

By (2.29) and (2.30), from Theorem 2.7.2 of [5] we get that {(P q
n,β,σ̄,

β|Λn|); n ∈ N} has a large deviation property with rate function

(2.31) Iβ,q(m) = Is
β(m) +

∏2

4
(q − m)2 − inf

|w|≤1

n
Is
β(w) +

∏2

4
(q − w)2

o

From Lemma 2.2 and the definition (2.30) the Lemma follows.

Lemma 2.4. Let Iβ,q(m) be as in (2.28). Then, for any β > 0 and

q ∈ R, Iβ,q(m) = 0 if and only if

(2.32) q − m =
2

∏2

@h

@q
(β, q)

Proof. From standard results on the Ising Model, it is known that,

for any β > 0, h0(β,m) is a convex and continuous function for m ∈
[−1, 1] and differentiable for m ∈ (−1, 1). Moreover

(2.33)
@h0

@m
(β,m) = 0 ∀m ∈ [−mβ,mβ], lim

m→±1

@h0

@m
(β,m) = ±1

where mβ was introduced in (2.13). From (2.33) we get that, for any

β > 0 and q ∈ R, Iβ,q(m) achieves its minimum value in the (unique)

solution m̄ = m̄(β, q) of the equation

(2.34) q − m̄ =
2

∏2

@h0

@m
(β, m̄)

It is easy to see that, for any β > 0, m̄(β, q) is a non decreasing function

of q, differentiable for |q| 6= mβ and such that

(2.35) m̄(β, q) = q ∀ q ∈ [−mβ,mβ]
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From Lemma 2.2 and the definition (2.28) we have

(2.36) h(β, q) =
∏2

4
(q − m̄(β, q))2 + h0(β, m̄(β, q))

We first prove that m̄ solves (2.32). For |q| ≤ mβ it is obvious because

of (2.14) and (2.35). For |q| > mβ we compute

(2.37)
@h

@q
(β, q) =

h∏2

2
(m̄−q)+

@h0

@m
(β, m̄)

i@m̄
@q

+
∏2

2
(q−m̄) =

∏2

2
(q−m̄)

where, in the second equality, we have used (2.34).

Conversely, let m be such that (2.32) holds. Using (2.14) and (2.37)

we have

(2.38) m = q − 2

∏2

@h

@q
=

(
q if |q| ≤ mβ

m̄ if |q| > mβ

Then, from (2.35), m = m̄ for any q ∈ R and β > 0.

We next conclude the proof of the ergodic theorem.

Proof of Theorem 2.1. Since for any δ > 0,

(2.39)

∫q

Λn,β,ξ̄

≥ ØØØ2∏−1mΛn(φ) − 2

∏2

@h

@q
(β, q)

ØØØ > δ
¥

=

= P q
n,β,σ̄

≥ ØØØmΛ(σ) −
h
q − 2

∏2

@h

@q
(β, q)

iØØØ > δ
¥

the property (2.17) follows immediately from Lemmata 2.3 and 2.4. Note

in fact the uniformity in ξ̄ ∈ X, q ∈ K follows from the uniformity of the

limit in (2.10) w.r.t. ξ̄ ∈ X and α in compacts.

We are left with the proof of the uniform integrability of the se-

quence {2∏−1mΛn(φ)}n≥1 with respect to the measures ∫q

Λn,β,ξ̄
. This fol-

lows by (2.39) noticing that mΛ(σ) is uniformly bounded and the family

{P q
n,β,σ̄(dm)} is tight. The Theorem is thus proven.
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3 – Local gibbs states.

In this Section we consider a distribution density f t
N with respect

to ∫N (see Section 1 for the notation) which solves the forward eq. (1.13)

with an initial datum f0
N satisfying the entropy bound (1.16). We shall

prove that, for N large and any t > 0, the measure f t
Nd∫N behaves

as a “local Gibbs state”. Roughly speaking, a local Gibbs state is any

measure µ on XN such that

(3.1) µ(dξ) ∼ exp
h X

x∈Sd
N

α(x)ω(x)
i
∫N(dξ)

where α(x) = ᾱ(x/N) with ᾱ a smooth function on the d-dimensional

torus. In this case we say that µ corresponds to the macroscopic charge

density q(θ) = @αp(β, ᾱ(θ)).

For large N , the measure f t
Nd∫N locally looks as a grand canoni-

cal Gibbs state with an external field α = @qh(β, q) where q equals the

average of the conserved quantity ω in a “macroscopically small” but “mi-

croscopically large” subset of Sd
N . We state this rigorously in the next

theorem, which is the main result of this Section.

Theorem 3.1. Let f t
N be solution of (1.13) with an initial con-

dition f0
N for which (1.16) holds. For any x ∈ Sd

N and n ≤ N let

Λn(x) = x + Λn with Λn as in (2.15). Finally, for any ≤, k > 0, n ≤ N

and t ≥ 0, define

(3.2)
A≤,k

n,N(t)
.
=

1

Nd

X

x∈Sd
N

Z t

0

ds

Z
∫N(dξ) f s

N(ξ)
ØØ2∏−1mΛn(x)(φ)+

− √k ◦ F
°
mΛN≤

(ω)
¢ØØ

where F is defined in (1.24) and

(3.3) √k(r)
.
=

(
r if |r| ≤ k

sign(r)k if |r| > k

Then, for any t ≥ 0,

(3.4) lim
k→1

lim sup
≤→0

lim sup
n→1

lim sup
N→1

A≤,k
n,N(t) = 0



564 L. BERTINI – P. BUTTÀ – B. RÜDIGER [18]

We fix t > 0 and define (by omitting the explicit dependence on t)

(3.5) fN(ξ)
.
=

1

Nd

X

x∈Sd
N

1

t

Z t

0

ds f s
N(τxξ)

where, for any x ∈ Sd
N , τx is the shift operator of XN .

Let PN be the measure fNd∫N . Clearly PN is a shift invariant mea-

sure on XN and

A≤,k
n,N(t) = tEPN |2∏−1mΛn(φ) − √k ◦ F (mΛN≤

(ω))|

where Eµ denotes the expectation with respect to the measure µ.

Then (3.4) can be rewritten as

(3.6) lim
k→1

lim sup
≤→0

lim sup
n→1

lim sup
N→1

EPN |2∏−1mΛn(φ)−√k◦F (mΛN≤
(ω))| = 0.

We split the proof of (3.6) into several steps.

Theorem 3.2. The 1-block estimate.

For any δ > 0,

(3.7) lim
n→1

lim sup
N→1

PN(|2∏−1mΛn(φ) − F (mΛn(ω))| > δ
¥

= 0 .

The proof of this Theorem is based on a characterization of the limit

points of the sequence {PN}, which will be deduce from the entropy

bounds. We first need some preliminaries.

We denote by M(XN) the space of probability measures on XN and

by Mτ (XN) the space of the shift invariant ones. For any µ ∈ M(XN)

which has a density f with respect to ∫N we define the entropy functional

(3.8) HN(µ)
.
=

Z
∫N(dξ) f(ξ) log f(ξ)

The following variational characterization of HN is well known, see e.g. [4],

(3.9) HN(µ)= sup
nZ

µ(dξ)U(ξ)− log

Z
∫N(dξ) exp[U(ξ)] : U ∈ Cb(XN)

o
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where Cb(XN) denotes the set of continuous and bounded functions on

XN . Note that (3.9) implies that HN is positive. Let

(3.10)
σN(µ)

.
= − 1

N2

d

dt

ØØØ
t=0

HN(µeLN t) =

= − 1

N2

Z
∫N(dξ) [LNf(ξ)] log f(ξ)

(in the last equality we used the fact that f is a probability density). By

an explicit computation one easily gets

(3.11)

σN(µ) =
1

2

Z
∫N(dξ)

X

x,y∈Sd
N

|x−y|=1

1

f(ξ)

≥ @f

@φ(x)
− @f

@φ(y)

¥2

(ξ)+

−
Z
∫N(dξ)

X

x∈Sd
N

cβ(x, ξ)
£
f(δxξ) − f(ξ)

§
log f(ξ)

Notice that, by symmetry,

(3.12)

−
Z
∫N(dξ)

X

x∈Sd
N

cβ(x, ξ)
£
f(δxξ) − f(ξ)

§
log f(ξ) =

=
1

2

Z
∫N(dξ)

X

x∈Sd
N

cβ(x, ξ)
£
f(δxξ) − f(ξ)

§£
log f(δxξ) − log f(ξ)

§

Using the basic inequality

(3.13) 2(
√

u −√
v)2 ≤ (u − v)(log u − log v) ∀u, v ≥ 0

we have the estimate

(3.14) σN(µ) ≥ DN

°p
f
¢

where

(3.15)

DN(f)
.
=

1

2

Z
∫N(dξ)

X

x,y∈Sd
N

|x−y|=1

≥ @f

@φ(x)
− @f

@φ(y)

¥2

(ξ)+

+

Z
∫N(dξ)

X

x∈Sd
N

cβ(x, ξ)[f(δxξ) − f(ξ)]2
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is the Dirichlet form associated to the generator LN in (1.9).

Then we have the following result.

Lemma 3.3. Let fN be as in (3.5) and C be the constant that

appears in (1.16). Then, for any t ≥ 0,

(3.16)
1

Nd

Z
∫N(dξ) fN(ξ) log fN(ξ) ≤ C

and

(3.17)
1

Nd
DN

°p
fN

¢ ≤ C

N2t

Proof. Let µt
N

.
= f t

Nd∫N . From definition (3.10) we get

(3.18) HN(µ0
N) = HN(µt

N) + N2

Z t

0

dsσN(µs
N)

Since both HN and σN are positive, from (1.16) and (3.18), for any t ≥ 0,

(3.19) HN(µt
N) ≤ CNd,

Z t

0

dsσN(µs
N) ≤ CNd−2

Finally, since HN and σN are convex and shift invariant functionals, the

Lemma follows from the definitions (3.5), (3.8) and the bounds (3.14),

(3.19).

Now we can study the sequence {PN}.

Lemma 3.4. Let Πn be the projection on XΛn. For any n ∈ N the

sequence {Πn(PN)} of probabilities on XΛn is tight. Let also

F .
=
©
µ ∈ Mτ (X) : Πn(µ) is a w-limit point of {Πn(PN)} ∀n ∈ N

™

Then

(3.20) sup
µ∈F

sup
n∈N

Eµ 1

|Λn|
X

x∈Λn

|φ(x)|∞ < 1 ∀ ∞ ∈ [0, 2)

and

(3.21) F ⊆ Gc
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Proof. We recall the “basic entropy estimate”: if µ, ∫ are two prob-

ability measures such that µ ø ∫, for any g ∈ L1(d∫),

(3.22)

Z
dµ g ≤ log

Z
d∫ exp[g] +

Z
dµ log

dµ

d∫

so that

(3.23)

EPN 1

|Λn|
X

x∈Λn

|φ(x)|∞ = EPN 1

Nd

X

x∈SN
d

|φ(x)|∞ ≤

≤ 1

Nd
log

Z
∫N(dξ) exp

h X

x∈SN
d

|φ(x)|∞
i
+

+
1

Nd

Z
∫N(dξ) fN(ξ) log fN(ξ)

From (3.16), (3.23) and the definition (1.10) of the reference measure ∫N ,

there is a constant C∞ so that, for any n ≤ N ,

(3.24) EPN 1

|Λn|
X

x∈Λn

|φ(x)|∞ ≤ C∞ < 1 ∀ ∞ ∈ [0, 2)

This proves both the tightness of the family {Πn(PN)}N≥n and the esti-

mate (3.20).

We are left with the proof of (3.21). Consider the generators

L(0)
x,y =

1

2

≥ @

@φ(x)
− @

@φ(y)

¥2

− β°φ(x) − φ(y)
¢≥ @

@φ(x)
− @

@φ(y)

¥

L(1)
x = cβ(x, ξ)[δx − 1]

and define, for any Λ ⊂⊂ Zd

L
(0)
Λ

.
=

X

x,y∈Λ
|x−y|=1

L(0)
x,y, L

(1)
Λ

.
=
X

x∈Λ
L(1)

x

We introduce also the following forms

I
(i)
Λ (µ) = sup

nZ
dµ

−L
(i)
Λ u

u
: u ∈ D(L

(i)
Λ ), u ≥ 1

o
, i = 0, 1
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defined for any µ ∈ M(XV ) for some V such that Λ ⊂ V (if i = 1 we

require also that dist(Λ, @V ) ≥ 1). D(L
(i)
Λ ) is the domain of the Feller

generator L
(i)
Λ . When µ ∈ M(XV ), the supremum is over D(L

(i)
Λ |V ) ⊂

Cb(XV ). We refer to [4] for general properties of these forms. Clearly

(3.25) I
(0)
Λ (µ) =

X

x,y∈Λ
|x−y|=1

I(0)
x,y(µ), I

(1)
Λ (µ) =

X

x∈Λ
I(1)

x (µ)

where I(0)
x,y and I(1)

x are defined analogously. It can be proven that

(3.26) I(0)
x,y(P

N) ≤ D(0)
x,y

°p
fN

¢
, I(1)

x (PN) ≤ D(1)
x

°p
fN

¢

where

(3.27)
D(0)

x,y(f)
.
=

Z
∫N(dξ)

≥ @f

@φ(x)
− @f

@φ(y)

¥2

(ξ), D(1)
x (f)

.
=

.
=

Z
∫N(dξ) cβ(x, ξ)[f(δxξ) − f(ξ)]2

(see [4, Chapter 4] for general relations between the previous Dirich-

let forms and the forms on measures defined above). From the defini-

tions (3.15) and (3.27), the estimates (3.17) and (3.26), since PN is shift

invariant, we have, for any x, y ∈ Sd
N , |x − y| = 1,

(3.28) I(0)
x,y(P

N) ≤ C

N2td
, I(1)

x (PN) ≤ C

N2t

Notice that

I(0)
x,y(P

N) ≥ I(0)
x,y(Πn(PN)) ∀x, y ∈ Λn, |x − y| = 1(3.29)

I(1)
x (PN) ≥ I(1)

x (Πn(PN)) ∀x ∈ Λn−1(3.30)

Using the lower semicontinuity of the functionals I
(i)
Λ , from (3.28), (3.29)

and (3.30), for any µ ∈ F ,

I
(0)
Λ (Πn(µ)) = 0 ∀n ∈ N : Λ ⊆ Λn, ∀Λ ⊂⊂ Zd(3.31)

I
(1)
Λ (Πn(µ)) = 0 ∀n ∈ N : Λ ⊆ Λn−1, ∀Λ ⊂⊂ Zd(3.32)
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We conclude the proof of (3.21) by showing that any measure µ ∈ Mτ (X)

satisfying (3.31) and (3.32) belongs to Gc.

From (3.31), (3.32) and the definition of I
(i)
Λ we have

(3.33)

Z
dµ

L
(i)
Λ u

u
≥ 0, i = 0, 1

for any cylindrical function u ≥ 1 which belongs to the domain of L
(i)
Λ .

Among these we can choose u = exp[sv] where s ≥ 0 and v ∈ C1
0,loc(X),

the class of cylinder functions, which are smooth and with compact sup-

port in their variables. By varying s we get, from (3.33),

(3.34)

Z
dµL

(i)
Λ v = 0 ∀ v ∈ C1

0,loc(X), i = 0, 1

If we choose v(ξ) = f(ξΛ)g(ξ), with f ∈ C1
0 (XΛ) and g a cylinder function

depending only on ξΛc , then L
(i)
Λ v = gL

(i)
Λ f so that

(3.35)

Z
µ(dξ̄) g(ξ̄)

Z
µq

Λ,ξ̄
(dξΛ)L

(i)
Λ f(ξΛ) = 0, i = 0, 1

where

µq

Λ,ξ̄

.
= µ(·|ξΛc = ξ̄Λc , mΛ(ω) = mΛ(ω̄) = q)

Varying g, from (3.35) we get

(3.36)

Z
µq

Λ,ξ̄
(dξΛ)L

(i)
Λ f(ξΛ) = 0 ∀ f ∈ C1

0 (XΛ), i = 0, 1

for almost all ξ̄ with respect to µ (note that in (3.36) we can add any

constant to f). We rewrite (3.36) as

(3.37)
X

{σΛ}
µq

Λ,ξ̄
(σΛ)

Z
µq

Λ,ξ̄
(dφΛ|σΛ)L(i)

Λ f(ξΛ) = 0, i = 0, 1

where µq

Λ,ξ̄
(σΛ) denotes the marginal distribution of the spin component

of ξΛ.

We consider (3.37) with i = 0 for the class of functions f(ξΛ) of

the form 1σΛf1(φΛ), with 1σΛ the characteristic function of the spin

configuration σΛ and f1 ∈ C1
0 (RΛ). For such functions we have

(3.38)

Z
µq

Λ,ξ̄
(dξΛ)L

(0)
Λ f(ξΛ) = µq

Λ,ξ̄
(σΛ)

Z
µq

Λ,ξ̄
(dφΛ|σΛ)L(0)

Λ f1(φΛ) = 0
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Since the L
(0)
Λ is elliptic on the hyperplanes 2∏−1mΛ(φ) = q − mΛ(σ)

from (3.38) we get that, for almost all ξ̄,

(3.39) µq

Λ,ξ̄
(dφΛ|σΛ)=ρq−mΛ(σ)

Λ,β (dφΛ) ∀σΛ ∈ {−1, 1}Λ : µq

Λ,ξ̄
(σΛ) > 0

where ρ
q−mΛ(σ)
Λ,β was defined just after (2.19).

Now we consider (3.37) with i = 1 for the class of functions f which

depends only on the spin component of ξΛ. Using (3.39) and the definition

of L
(0)
Λ we get

(3.40)
X

{σΛ}
µq

Λ,ξ̄
(σΛ)

X

x∈Λ
ĉβ(x,σΛ)[f(σx

Λ) − f(σΛ)] = 0

where σx
Λ is the spin configuration obtained from σΛ by flipping the spin

at x, while

ĉβ(x,σΛ) =

Z
ρ

q−mΛ(σ)
Λ,β (dφΛ) cβ(x, ξΛ)

From definition (1.7) and an explicit computation it is not difficult to

verify that

(3.41) ĉβ(x,σΛ) ∝ exp
h
− β

2

≥
H

(q)
Λ (σx

Λ|σ̄) − H
(q)
Λ (σΛ|σ̄)

¥i

where (see (2.4))

(3.42) H
(q)
Λ (σΛ|σ̄) .

= Hs
Λ,0(σΛ|σ̄) + |Λ|∏

2

4
(q − mΛ(σ))

2

Since the state space {−1, 1}Λ is finite, from (3.40), (3.41) and (3.42) it

follows immediately that

(3.43) µq

Λ,ξ̄
(σΛ) ∝ exp

h
− βHs

Λ,0(σΛ|σ̄) − β|Λ|∏
2

4
(q − mΛ(σ))

2
i

Comparing (3.39) and (3.43) with (2.19) we finally get, for almost all ξ̄

with respect to µ,

µq

Λ,ξ̄
(dξΛ) = ∫q

Λ,β,ξ̄
(dξΛ) ∀Λ ⊂⊂ Zd

and thus µ ∈ Gc.
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Proof of Theorem 3.2. From the tightness of the families {Πn

(PN)} and the definition of F we have

(3.44)

lim sup
N→1

PN
≥ØØ2∏−1mΛn(φ) − F

°
mΛn(ω)

¢ØØ > δ
¥
≤

≤ sup
µ∈F

µ
≥ØØ2∏−1mΛn(φ) − F

°
mΛn(ω)

¢ØØ > δ
¥

∀n ∈ N

and, by using (3.21),

(3.45)
µ(
ØØ2∏−1mΛn(φ) − F (mΛn(ω))| > δ) =

=

Z
µ(dξ̄) ∫q

Λ,β,ξ̄
(|2∏−1mΛn(φ) − F (q)| > δ)|q=mΛn (ω̄)

Now we observe that, for any µ ∈ F , n ∈ N and p > 0,

µ(|mΛn(ω̄)| > p) ≤ µ
≥ØØmΛn(φ̄)

ØØ > ∏

2
(p − 1)

¥
≤

≤ 2

∏(p − 1)
Eµ|mΛn(φ̄)| ≤ 2

∏(p − 1)
Eµ 1

|Λn|
X

x∈Λn

|φ̄(x)|

Then, by (3.20) for ∞ = 1,

(3.46) lim sup
p→1

lim sup
n→1

sup
µ∈F

µ
≥ØØmΛn(ω̄)

ØØ > p
¥

= 0

From (3.44), (3.45) and (3.46) we have

(3.47)

lim
n→1

lim sup
N→1

PN(|2∏−1mΛn(φ) − F (mΛn(ω))| > δ) ≤

≤ lim sup
p→1

lim sup
n→1

sup
µ∈F

Z

|mΛn (ω̄)|≤p

µ(dξ̄) ∫q

Λ,β,ξ̄
(|2∏−1mΛn(φ)−

− F (q)| > δ)|q=mΛn (ω̄)

Recalling the definition (1.24) of F , by Chebyshev’s inequality, Theo-

rem 2.1 and (3.47) we finally get (3.7). The theorem is proven.
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Theorem 3.5. The two blocks estimate.

Let T≤,n,N = {x ∈ Sd
N : Λn(x) ⊆ ΛN≤, Λn+1 ∩ Λn+1(x) = ∅}. Then,

for any δ > 0,

(3.48) lim
≤→0

lim sup
n→1

lim sup
N→1

sup
x∈T≤,n,N

PN(|F (mΛn(ω))−F (mΛn(x)(ω))|>δ)=0.

Proof. For any x ∈ T≤,n,N let Πn,x be the projection on XΛn×XΛn(x).

Fix a point x0 such that Λn+1 ∩ Λn+1(x0) = ∅. By changing variables

we can view any projection Πn,x(P
N) as a probability on XΛn ×XΛn(x0).

Call FN
≤,n the collection of such probabilities associated to {Πn,x(P

N); x ∈
T≤,n,N}. By arguing as in (3.23) we have an estimate like (3.24) with Λn

replaced by Λn ∪ Λn(x). From this we get the tightness of the family of

probabilities {FN
≤,n; N ∈ N}. We denote by F≤,n the set of all its limit

points. Let µ≤,n ∈ F≤,n. By using (3.28) and reasoning as in the proof

of (3.34) we get

(3.49)

Z
dµ≤,n L

(i)
Λn

v =

Z
dµ≤,n L

(i)
Λn(x0)v = 0

∀ v ∈ C1
0 (XΛn × XΛn(x0)), i = 0, 1

Then, by arguing as in the proof of (3.21), we get

(3.50)
µ≤,n(dξΛn , dξΛn(x0)) =

=

Z
∞≤,n(dq1, dq2, dξ̄) ∫

q1
Λn,β,ξ̄

(dξΛn)∫q2
Λn(x0),β,ξ̄

(dξΛn(x0))

for some probability measure ∞≤,n on R2 × X.

Consider now the diffusion generator L
(0)
0,x and the associated forms

I
(0)
0,x and D

(0)
0,x. Let C be the constant that appears in (1.16). From the

proof of Lemma 3.2 in [6] we have,

(3.51) sup
x∈T≤,n,N

D
(0)
0,x(
p

fN) ≤ C≤2d

4t

and, by (3.26) and the analogous of (3.29),

(3.52) I
(0)
0,x(Πn,x(P

N)) ≤ I
(0)
0,x(PN) ≤ D

(0)
0,x(
p

fN) ∀x ∈ Sd
N
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Recalling the definition of FN
≤,n, from (3.51), (3.52) and the lower semi-

continuity of I(0)
n,x (and of I(0)

n,x0
), for any limit point µ≤,n,

(3.53) I
(0)
0,x0

(µ≤,n) ≤ C≤2d

4t

From (3.53) and the definition of I(0)
n,x0

it follows that

(3.54)

Z
dµ≤,n

L
(0)
0,x0

u

u
≥ −C≤2d

4t
∀u ∈ D°L(0)

0,x0

¢
, u ≥ 1

From the definition of L
(0)
0,x0

, we can choose

u(ξΛn , ξΛn(x0)) = exp[|Λn|v(mΛn(ω),mΛn(x0)(ω))], v ∈ C2
0(R2), v ≥ 0

Using the representation (3.50) and the explicit form (2.19) of the canon-

ical Gibbs measures, from the definition of L
(0)
0,x0

it is easy to verify

that (3.54) gives

Z
∞≤,n(dq1, dq2, dξ̄)∫

q1
Λn,β,ξ̄

(dξΛn)∫q2
Λn(x0),β,ξ̄

(dξΛn(x0))
n 1

|Λn|
≥ @
@q1

− @

@q2

¥2

v+

(3.55) +
≥ @v
@q1

− @v

@q2

¥2

− 2β(mΛn(φ) − mΛn(x0)(φ))
≥ @v
@q1

− @v

@q2

¥o
≥

≥ −C≤2d

2t
∀ v ∈ C2

0(R2), v ≥ 0

By the estimate like (3.24) with Λn replaced by Λn∪Λn(x), since |ω(x0)| ≤
1 + 2∏−1|φ(x0)|, for any x0 ∈ Zd,

(3.56) sup
n∈N

Z
∞≤,n(dq1, dq2, dξ̄) (|q1| + |q2|) < 1

so that the family of measures {∞≤,n; n ∈ N} is tight. We let n → 1
in (3.55) and, since v has compact support, we can use Theorem 2.1.

Then, recalling the definition (1.24), we get

(3.57)

Z
∞≤(dq1, dq2)

n≥ @v
@q1

− @v

@q2

¥2

− β∏°F (q1) − F (q2)
¢≥ @v
@q1

− @v

@q2

¥o
≥

≥ −C≤2d

2t
∀ v ∈ C2

0(R2), v ≥ 0
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where ∞≤ is any limit point of {∞≤,n; n ∈ N}. By density arguments the

inequality (3.57) extends to any positive v ∈ C1
0(R2). Then we can choose

vτ (q1, q2) =
β∏

2
[h(β, q1) + h(β, q2) − 2 inf

q
h(β, q)]χτ (q1, q2)

where χτ is a mollification of the characteristic function of the set [0, τ ]×
[0, τ ]. Putting v = vτ in (3.57) and letting τ → 1 we have

(3.58)

Z
∞≤(dq1, dq2) (F (q1) − F (q2))

2 ≤ 2C≤2d

β2∏2t

From the definition of ∞≤ and the Chebyshev’s inequality,

(3.59)

lim sup
n→1

lim sup
N→1

sup
x∈T≤,n,N

PN(|F (mΛn(ω)) − F (mΛn(x)(ω))| > δ) ≤

≤ 1

δ2

Z
∞≤(dq1, dq2) (F (q1) − F (q2))

2

Then, letting ≤→ 0 in (3.59) and using (3.58), we get (3.48).

From Theorem 3.5, Corollary 3.6 below follows. We state it without

proof, since it is exactly the same as in [10, Thm. 3.6].

Corollary 3.6. For any δ > 0,

(3.60) lim
≤→0

lim sup
n→1

lim sup
N→1

PN(|F (mΛn(ω)) − F (mΛN≤
(ω))| > δ) = 0

Proof of Theorem 3.1. From Theorem 3.2, Corollary 3.6 and the

definition 3.3, we get, for any k > 0 and δ > 0,

(3.61) lim
≤→0

lim sup
n→1

lim sup
N→1

PN(|√k◦2∏−1mΛn(ω)−√k◦F (mΛN≤
(ω))|>δ)=0

Since √k is a bounded function from (3.61) we get also

(3.62) lim
≤→0

lim sup
n→1

lim sup
N→1

EPN |√k ◦ 2∏−1mΛn(ω)−√k ◦F (mΛN≤
(ω))| = 0

To prove (3.6) and then Theorem 3.1 we only need the uniform integra-

bility of {2∏−1mΛn(φ)} with respect to PN . But this comes from the

estimate (3.24) for ∞ ∈ (1, 2).
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4 – Hydrodynamic limit

In this Section we prove a large deviation result for the empirical mea-

sure of the conserved quantity in equilibrium and complete the proof of

the hydrodynamic scaling limit. Since the arguments are rather standard

we will just sketch the proofs and refer to [6,10] for the details.

Let ω
.
= {ω(x) = σ(x) + 2∏−1φ(x), x ∈ Sd

N} and denote by µN
.
=

N−d
P

x∈Sd
N
ω(x)δx/N the empirical measure associated to it (recall (1.12)

and (1.14)). As ω is random, µN is a random element in Ms(S
d), the

space of signed measure on the d-dimensional torus Sd. We consider

Ms(S
d) equipped with the weak* topology as the dual of C(Sd), the

continuous function on Sd and denote the duality paring by h·, ·i. We

first state an upper bound large deviation property in equilibrium.

Theorem 4.1. Let QN be the distribution of µN when ω is dis-

tributed according to the equilibrium measure ∫N(dξ) defined in (1.10).

The family {QN} has the upper bound large deviation property with the

rate function

(4.1) K(∞) =

(
β
R
dθ h

≥
β, d∞

dθ

¥
if ∞ ø dθ

+1 otherwise

here dθ is the Lebesgue measure on Sd and h(β, q) is defined in (1.20).

We remark the statement in the above Theorem means that for every

closed subset G ⊂ Ms(S
d)

(4.2) lim sup
N→1

1

Nd
log QN{G} ≤ − inf

∞∈G
K(∞)

This equilibrium result has the following consequence when the distribu-

tion of ω satisfies the entropy bound with respect to ∫N . The proof of

the implication is given in [6, Lemma 6.3].

Corollary 4.2. Let eQN be the distribution of µN when ω is

distributed according to a probability measure fN∫N(dξ). Assume fN sat-

isfies the entropy bound (1.16). Then any weak limit Q of { eQN} satisfies

Q{∞ : ∞ ø dθ} = 1 and

(4.3) β EQ
≥ Z

dθ h
≥
β,

d∞

dθ

¥¥
≤ C
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where C is the constant in (1.16).

Lemma 4.3. For any continuous function J on Sd

(4.4) lim
N→1

1

Nd
log E∫N (exp{NdhµN , Ji})=β

Z
dθp(β,β−1J(θ))

.
=™(J)

where p(β,α) has been defined in (1.19).

Sketch of the proof. Recalling the definition (1.10) of ∫N and

(2.11), (2.12), it is enough to show

(4.5)

lim
N→1

1

Nd

h
log

X

σ∈{−1,1}Sd
N

e
−βHs

N (σ)+
P

x∈Sd
N

σ(x)J(x/N)
− log ZN

i
=

= β

Z
dθ p0(β,β−1J(θ))

In order to prove (4.5) it is enough to partition Sd
N into smaller cubes

in which J(x/N) is almost constant and then use the definition of the

pressure p0. The details are as in [10, Thm. 4.3] and we omit them.

Proof of Theorem 4.1. Let us first prove that the family QN is

exponentially tight, i.e. for each L > 0 there exists a compact set CL with

the property that

(4.6) lim
L→1

lim sup
N→1

1

Nd
log QN{Cc

L} = −1

where Cc denotes the complementar of C. We take CL
.
= {∞ : k∞k ≤ L}

in which k∞k is the total variation of ∞. It is a compact subset of Ms(S
d)

and

(4.7) QN{Cc
L} = ∫N

n 1

Nd

X

x∈Sd
N

|ω(x)| > L
o
≤ e−LNd

E∫N

≥
e

P
x∈Sd

N
|ω(x)|¥

so that (4.6) follows.

From the exponential tightness, Lemma 4.3 and [4, Thm. 2.2.4] it

follows QN satisfies the upper bound large deviation principle with rate

function

(4.48) K 0(∞)
.
= sup

J
{∞(J) −™(J)}
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The proof that K 0 = K is given in [10, Lemma 4.4]. It is based on

the fact that we can, by applying Luzin’s Theorem, extend the supremum

in (4.8) to all J which are bounded and measurable. Since h(β, q) is a

convex and differentiable function of q, it is then not too difficult to prove

the inequalities K(∞) ≤ K 0(∞) and K 0(∞) ≤ K(∞).

We finally show how Corollary 4.2 and Theorem 3.1 imply our main

result.

Proof of Theorem 1.1.

Step 1. Tightness. We start the microscopic process ξt from a distri-

bution f0
Nd∫N where f0

N satisfies the entropy bound (1.16). To the process

ξt it is associated a probability ePN on the Skorohod space D(R+;XN).

We shall denote by PN the distribution of the empirical measure µN un-

der ePN . Therefore PN is a probability on D(R+;Ms(S
d)). We want to

show the tightness of the family {PN}.
The tightness follows from the following two estimates. For each

T > 0

(4.9) lim
L→1

lim sup
N→1

PN

≥
sup
t≤T

kµN(t)k > L
¥

= 0

and, for each ε > 0 and any smooth function J on Sd

(4.10) lim
δ↓0

lim sup
N→1

PN

≥
sup

t,s∈[0,T ]
|t−s|≤δ

|hµN(t), Ji − hµN(s), Ji| > ε
¥

= 0

We also note the above estimates also imply any limit point of {PN} is

supported by C(R+;Ms(S
d)), see [1, Thm. 15.5].

The bound (4.9) is proven in [6, Lemma 6.1] by using the entropy

bound and an estimate from the Dirichlet form. The proof of (4.10)

requires a martingale computation. We have that

(4.11)

MN
t (J)

.
= hµN(t), Ji − hµN(0), Ji −

Z t

0

ds LNhµN(s), Ji =

=hµN(t), Ji−hµN(0), Ji− 4β

∏

Z t

0

ds
1

Nd

X

x∈Sd
N

∆NJ(x/N)φs(x)
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where

(4.12) ∆NJ(x/N)
.
= N2

X

y∈Sd
N

:|y−x|=1

[J(y/N) − J(x/N)]

is a ePN martingale with bracket

(4.13)

hMN(J)it =

Z t

0

ds[LN(hµN(s), Ji)2−2hµN(s), JiLNhµN(s), Ji]=

= t
2N2

∏2N2d

X

x,y∈Sd
N

|x−y|=1

[J(y/N) − J(x/N)]2

Formula (4.10) follows then by using the basic entropy estimate (3.22)

to control the drift term, see [6, Lemma 6.2], and Doob’s inequality to

control the martingale part.

Step 2. Identification of the limit. Let P be any limit point of {PN}.
Since the entropy in non increasing we have

(4.14)
1

Nd

Z
∫N(dξ) f t

N(ξ) log f t
N(ξ) ≤ C

where f t
N is the density of the marginal at time t of PN . We can therefore

apply Corollary 4.2 and obtain that, for any t ≥ 0, µ(t) = q(t, θ)dθ P-a.s.

for some density q(t, θ). Furthermore

(4.15) β

Z
dθ h

≥
β, q(t, θ)

¥
≤ C

We want to show that for each t > 0 and any smooth J

(4.16)

Z
dθq(t, θ)J(θ)−

Z
dθ, q0(θ)J(θ) =

= 2β

Z t

0

ds

Z
dθF (q(s, θ))∆J(θ) P − a.s.

where q0 is defined in (1.18).
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Let us introduce

(4.17)

V ε,k
N (t)

.
= hµN(t), Ji − hµN(0), Ji+

− 2β

Z t

0

ds
1

Nd

X

x∈Sd
N

∆NJ(x/N)√k ◦ F
°
mΛN≤

(ω)
¢

where √k has been defined in (3.3). By the martingale computation in

the previous Step (see (4.11)), we have that

(4.18)
V ε,k

N (t) = 2β

Z t

0

ds
1

Nd

X

x∈Sd
N

∆NJ(x/N)[2∏−1φs(x)+

− √k ◦ F (mΛN≤
(ω) )] + MN

t (J)

Since J is smooth and the bracket of MN
t (J) is easily controlled

(see (4.13)), from Theorem 3.1 we get

(4.19) lim
k→1

lim sup
ε→0

lim sup
N→1

EPN |V ε,k
N (t)| = 0

Let now

(4.20)

V k(t)
.
=

Z
dθ q(t, θ)J(θ) −

Z
dθ q0(θ)J(θ)+

− 2β

Z t

0

ds

Z
dθ ∆J(θ)√k ◦ F (q(s, θ))

From (4.19) and (1.17) we deduce that, for some subsequence PN weakly

convergent to P, (we know it exists by tightness, Step 1)

(4.21)

lim
k→1

EP |V k(t)| ≤ lim
k→1

lim sup
ε→0

lim sup
N→1

EPN

≥
|V ε,k

N (t)|+

+
ØØØ
Z

dθq0(θ)J(θ) − hµN(0), Ji
ØØØ
¥

= 0

In order to take also the limit k → 1 inside the expectation on the l.h.s.

of the above inequality, we need the following estimate, which also follows

from the basic entropy inequality, see [10, Lemma 2.21]. There exists a

constant C1 such that |F (β, q)| ≤ C1 + h(β, q). By using the bound (4.3)

we can then justify also this last step and conclude the proof of (4.16).
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Step 3. Uniqueness of the limit. By (4.16), in order to conclude the

proof of Theorem 1.1, we only need the uniqueness of weak solutions to

the non-linear diffusion eq. (1.23). Let us state the appropriate result [10,

Thm. 5.2].

Proposition 4.4. There exists a unique weak solution of the

eq. (1.24) in the class of functions satisfying (4.15) and

(4.22)

Z T

0

dt

Z
dθ
h
∇F (q(t, θ))

i2
≤ C 0(T ) < 1

for any T > 0.

We already verified (4.15) holds P-a.s. for any limit point P of {PN}.
The proof that the same holds for (4.22) follows, see [6, Lemma 6.6], from

the estimate (3.58).
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