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Generalized Fredholm theory in semisimple algebras

D. MÄNNLE – C. SCHMOEGER

Riassunto: Sia A una algebra complessa semisemplice con identità e 6= 0. Sia
Φg(A) la sottoclasse formata dagli elementi x ∈ A che verificano la seguente condizione:

∃ y ∈ A : tale che xyx = x , e inoltre e − xy − yx è un elemento di Fredholm.

Ogni elemento di Fredholm appartiene a Φg(A). Si studia la classe Φg(A) i cui elementi
sono detti elementi di Fredholm generalizzati.

Abstract: Let A be a semisimple complex algebra with identity e 6= 0. We write
Φg(A) for the following class of elements of A.

Φg(A) = {x ∈ A : ∃ y ∈ A such that xyx = x and e − xy − yx is Fredholm }.

Each Fredholm element of A belongs to Φg(A). Elements in Φg(A) we call generalized
Fredholm elements. In this paper we investigate the class Φg(A).

1 – Introduction

In this paper we always assume that A is a complex algebra with

identity e 6= 0. If X is a complex Banach space, then it is well known

that L(X) = {T : X → X : T is linear and bounded} is a semisimple

Banach algebra.

In [1] S. R. Caradus has introduced the class of generalized Fred-

holm operators. T ∈ L(X) is called a generalized Fredholm operator, if
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584 D. MÄNNLE – C. SCHMOEGER [2]

there is some S ∈ L(X) with TST = T and I − TS − ST is a Fredholm

operator. This class of operators is studied in [15], [16] and [17].

If A is semisimple, generalized Fredholm elements in A are introduced

in [10] as follows: x ∈ A is called a generalized Fredholm element if there

is some y ∈ A such that xyx = x and e− xy − yx is a Fredholm element

in A. Some of the results in [15] and [16] are generalized in [10].

The present paper is an improvement and a continuation of [10].

Furthermore we generalize some of the results in [17].

In Section 2 of this paper we collect some results concerning relatively

regular elements in algebras. Section 3 contains a summary of Fredholm

theory in semisimple algebras. In section 4 we investigate generalized

invertible elements. This concept will be useful in the next sections,

where we present the main results of this paper.

In Section 5 we study algebraic properties of generalized Fredholm

elements. Section 6 contains a characterization of Riesz elements in com-

plex semisimple Banach algebras and a result concerning the stability

of generalized Fredholm elements under holomorphic functional calculus.

Section 7 contains various results on ascent and descent and a “punctured

neighbourhood theorem” for generalized Fredholm elements.

2 – Relatively regular elements

An element x ∈ A is called relatively regular, if xyx = x for some

y ∈ A. In this case y is called a pseudo-inverse of x.

Proposition 2.1. For x ∈ A the following assertions are equiva-

lent:

(1) x is relatively regular.

(2) There is y ∈ A with xyx = x and yxy = y.

(3) There is p = p2 ∈ A with xA = pA.

(4) There is q = q2 ∈ A with Ax = Aq.

Proof. (1) ⇒ (2): Suppose that xy0x = x. Put y = y0xy0. Then it

is easy to see that xyx = x and yxy = y.



[3] Generalized Fredholm theory in semisimple algebras 585

(2) ⇒ (1): Clear.

(1) ⇒ (3): Take y ∈ A with xyx = x and put p = xy. Then

xA = xyxA ⊆ pA = xyA ⊆ xA.

(3) ⇒ (1): We have p = xa for some a ∈ A and x = px, thus

x = px = (xa)x = xax.

Similar arguments as above show that (1) and (4) are equivalent.

Proposition 2.2. Suppose that x, u ∈ A, xux − x is relatively

regular and that r is a pseudo-inverse of xux − x. Then x is relatively

regular and

y = u − r + uxr + rxu − uxrxu

is a pseudo-inverse of x.

Proof. From (xux− x)r(xux− x) = xux− x, we get

x = xux− xuxrxux + xuxrx + xrxux− xrx =

= x(u − uxrxu + uxr + rxu − r)x = xyx .

For x ∈ A we define

R(x) = {a ∈ A : xa = 0} and L(x) = {a ∈ A : ax = 0} .

The proof of the next proposition is easy and left to the reader.

Proposition 2.3. Suppose that x ∈ A is relatively regular and y is

a pseudo-inverse of x. Then xy, yx, e − xy and e − yx are idempotent

and
xyA = xA, Ayx = Ax,

R(x) = (e − yx)A, L(x) = A(e − xy) .

A proof for the following result can be found in [6, p. 15].

Proposition 2.4. If x ∈ A is relatively regular, xyx = x and

yxy = y, then we have for z ∈ A:

z is a pseudo-inverse of x if and only if there is some u ∈ A with

z = y + u − yxuxy .
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3 – Fredholm theory in semisimple algebras

Throughout this section we assume that A is semisimple. This means

that rad(A) = {0}, where rad(A) denotes the radical of A. For the con-

venience of the reader we shall summarize some concepts of the Fredholm

theory in algebras. See [2]-[4], [11]-[14], [18]-[20] for details.

We call an element e0 ∈ A minimal idempotent, if e0Ae0 is a division

algebra and e2
0 = e0. Min(A) denotes the set of all minimal idempotents

of A.

Proposition 3.1. (1) Suppose that R ⊆ A[L ⊆ A] is a right

[left] ideal in A. Then R[L] is a minimal right [left] ideal if and only if

R = e0A [L = Ae0] for some e0 ∈ Min(A).

(2) If Min(A) 6= ∅, then the sum of all minimal right ideals equals

the sum of all minimal left ideals.

Proof. (1) [4, B.A. 3.1], (2) [5, Prop. 30.10.].

The socle of A, soc(A), is defined to be the sum of all minimal right

ideals if Min(A) 6= ∅. If Min(A) = ∅, then we set soc(A) = {0}. Propo-

sition 3.1 shows that

(3.2) soc (A) is an ideal of A,

and

(3.3) Min(A) ⊆ soc(A).

From now on we always assume in this section that soc(A) 6= {0}.
Suppose that J ⊆ A is a right [left] ideal of A. J has finite order

if J can be written as the sum of a finite number of minimal right [left]

ideals of A. The order Θ(J ) of J is defined to be the smallest number

of minimal right [left] ideals which have sum J . We define Θ({0}) = 0

and Θ(J ) = 1, if J does not have finite order.

Proposition 3.4. Suppose that J and K are right [left] ideals of

A and n ∈ IN.

(1) Θ(J ) < 1 ⇔ J ⊆ soc(A).
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(2) Θ(J ) = n, if and only if there are e1, . . . , en ∈ Min(A) such that

eiej = 0 for i 6= j and

J = (e1 + . . . en)A = e1A ⊕ · · · ⊕ enA
[J = A(e1 + · · · + en) = Ae1 ⊕ · · · ⊕ Aen] .

(3) If Θ(K) < 1, J ⊆ K and J 6= K then Θ(K) < Θ(J ).

(4) Θ(xA) = Θ(Ax) for each x ∈ A.

(5) soc(A) = {x ∈ A : Θ(xA) < 1}.

Proof. (1) Clear. (2) and (3): [2, §2]. (4) and (5): [9].

Definitions.

(1) For x ∈ A we define the nullity of x by

nul(x) = Θ(R(x))

and the defect of x by

def(x) = Θ(L(x)) .

(2) The group of the invertible elements of A is denoted by A−1.

(3) The quotient algebra A/soc(A) is denoted by bA. For x ∈ A we write
bx = x+soc(A) for the coset of x in bA.

(4) The set of Fredholm elements of A is given by

Φ(A) = {x ∈ A : bx ∈ bA−1} .

The next proposition contains some useful characterisations of Fred-

holm elements.

Proposition 3.5. For x ∈ A the following assertions are equiva-

lent:

(1) x ∈ Φ(A).

(2) There are p, q ∈ soc(A) such that p = p2, q = q2 and

Ax = A(e − p), xA = (e − q)A .
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(3) x is relatively regular and R(x), L(x) ⊆ soc(A).

(4) x is relatively regular and nul(x), def(x) < 1.

(5) x is relatively regular and for each pseudo-inverse y of x we have
bxby = be = bybx.

(6) x is relatively regular and there is a pseudo-inverse y of x such

that bxby = be = bybx.

Proof. (1) ⇔ (2) [4, F.1.10].

(2) ⇒ (3): It is easy to see that R(x) = pA and L(x) = qA. Thus

R(x), L(x) ⊆ soc(A).

(3) ⇔ (4) ⇔ (5): Suppose that y is a pseudo-inverse of x. Proposi-

tion 2.3 gives

R(x) = (e − yx)A and L(x) = A(e − xy) .

Therefore we get from Proposition 3.4 (1):

R(x), L(x) ⊆ soc(A) ⇔ Θ(R(x)),Θ(L(x)) < 1 ⇔
⇔ nul(x),def(x) < 1 ⇔ e − yx, e − xy ∈ soc(A) .

(5) ⇒ (6): Clear.

(6) ⇒ (1): From bxby = be = bybx we get bx ∈ bA−1, thus x ∈ Φ(A).

The index of x ∈ Φ(A) is defined by

ind(x) = nul(x) − def(x) .

A proof of the next result can be found in [19, Theorem 4.5 and

Theorem 4.6].

Theorem 3.6. If x, y ∈ Φ(A) and s ∈ soc(A) then

(1) xy ∈ Φ(A) and ind(xy) = ind(x)+ ind(y);

(2) x + s ∈ Φ(A) and ind(x + s) = ind(x);

(3) If A is a Banach algebra then there are δ > 0 and α, β ∈ IN0 such

that

(i) x + u ∈ Φ(A), ind(x + u) = ind(x), nul(x + u) ≤ nul(x) and

def(x + u) ≤ def(x) for all u ∈ A with kuk < δ.

(ii) nul(∏e − x) = α ≤ nul(x) and def(∏e − x) = β ≤ def(x) for

∏ ∈ C with 0 < |∏| < δ.
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The ideal of inessential elements of A is given by

I(A) =
\

{P : P is a primitive ideal of A with soc(A) ⊆ P} .

We write eA for the quotient algebra A/I(A) and ex for the coset

x + I(A) of x ∈ A.

Proposition 3.7.

(1) soc(A) ⊆ I(A).

(2) x ∈ Φ(A) ⇔ ex ∈ eA−1.

(3) If A is a Banach algebra, then I(A) is closed.

Proof. (1) Clear. (2) [4, F.3.2]. (3) Each primitive ideal of a Banach

algebra is closed.

Proposition 3.8. Let s ∈ soc(A). Then s is relatively regular and

there is b ∈ soc(A) such that

sbs = s and bsb = b .

Proof. From Proposition 3.4 we get e1, . . . , en ∈ Min(A) with eiej =

δijei and

sA = (e1 + · · · + en)A = e1A ⊕ · · · ⊕ enA .

Put p = e1 + · · · + en. Then sA = pA and p2 = p. Proposition 2.1

shows that s is relatively regular, hence there is a ∈ A with sas = s. Put

b = asa. Then sbs = s and bsb = b.

Now we are ready to introduce the class of generalized Fredholm

elements. First we give some examples.

Examples 3.9. (1) Let s ∈ soc(A). By Proposition 3.8 there is b ∈
soc(A) such that sbs = s. Hence

(e − sb − bs) + soc(A) = be ∈ bA−1

thus

e − sb − bs ∈ Φ(A) .
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(2) Let x ∈ Φ(A). Proposition 3.5 gives bxby = be = bybx for each pseudo-

inverse y of x. Thus

(e − xy − yx) + soc(A) = −be ∈ bA−1

hence

e − xy − yx ∈ Φ(A) .

(3) If x ∈ A−1 and y = x−1, then xyx = x and

e − xy − yx = −e ∈ A−1 ⊆ Φ(A) .

(4) Let x ∈ A with A = xA ⊕ R(x) or A = Ax ⊕ L(x). Theorem 3.3

in [15] shows that there exists y ∈ A such that xyx = x and xy = yx.

Therefore e − xy − yx = e − 2xy and (e − 2xy)2 = e − 4xy + 4xyxy = e.

Thus

e − xy − yx ∈ A−1 ⊆ Φ(A) .

(5) Let x ∈ A with x2 = x. Put y = x. Then xyx = x and e− xy − yx =

e − 2x. From (e − 2x)2 = e we get

e − xy − yx ∈ A−1 ⊆ Φ(A) .

In each of the above examples the elements x ∈ A has the following

property: there is a pseudo-inverse y of x such that e− xy − yx ∈ Φ(A).

Therefore we call an element x ∈ A a generalized Fredholm element if

x is relatively regular and there is a pseudo-inverse y of x with e−xy−yx ∈
Φ(A). By Φg(A) we denote the set of all generalized Fredholm elements

of A.

Before we state our first results concerning the class Φg(A) we need

the following lemma.

Lemma 3.10. Suppose that x, u ∈ A.

(1) If xux− x ∈ A−1 then x ∈ A−1.

(2) If xux− x ∈ Φ(A) then x ∈ Φ(A).
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Proof. (1) Put v = (xux−x)−1, x1 = v(xu−e) and x2 = (ux−e)v.

Then x1x = v(xu − e)x = v(xux − x) = e and xx2 = x(ux − e)v =

(xux− x)v = e.

(2) Since bxbubx − bx ∈ bA−1, it follows from (1) that bx ∈ bA−1, thus

x ∈ Φ(A).

Theorem 3.11.

(1) soc(A) ⊆ Φg(A).

(2) Φ(A) ⊆ Φg(A).

(3) If x ∈ Φ(A) and if y is a pseudo-inverse of x, then e−xy− yx ∈
Φ(A) and ind(e − xy − yx) = 0.

(4) If A is a Banach algebra and x ∈ Φg(A), then there is δ > 0 such

that

∏e − x ∈ Φg(A) for all ∏ ∈ C with |∏| < δ

and

∏e − x ∈ Φ(A) for all ∏ ∈ C with 0 < |∏| < δ .

Proof. (1) follows from Example 3.9 (1).

(2) follows from Example 3.9 (2).

(3) From Example 3.9 (2) we get s ∈ soc(A) such that e−xy−yx = −e+s.

Use Theorem 3.6 (2) to derive

ind(e − xy − yx) = ind(−e + s) = ind(−e) = 0 .

(4) Take y ∈ A such that xyx = x and v = e − xy − yx ∈ Φ(A). For

∏ ∈ C put

w(∏) = (∏e − x)(y + ∏2e)(∏e − x) + (∏e − x) .

An easy computation gives

w(∏) = ∏(∏(∏e − x)2 + ∏y + v) .

Since Φ(A) is open (Theorem 3.6 (3)), there is ∞ > 0 such that v + u ∈
Φ(A) for all u ∈ A with kuk < ∞. There is δ > 0 such that

k∏(∏e − x)2 + ∏yk < ∞ for all ∏ ∈ C with |∏| < δ .
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Thus 1
∏
w(∏) ∈ Φ(A) for 0 < |∏| < δ. This gives w(∏) ∈ Φ(A) for

0 < |∏| < δ. From Lemma 3.10 we get ∏e − x ∈ Φ(A) if 0 < |∏| < δ.

Theorem 3.12. For x ∈ A the following assertions are equivalent:

(1) x ∈ Φg(A).

(2) There is y ∈ A such that bxbybx = bx and be − bxby − bybx ∈ bA−1.

Proof. (1) ⇒ (2) Clear.

(2) ⇐ (1): Since xyx − x ∈ soc(A), xyx − x is relatively regular

(Proposition 3.8). Proposition 2.2 shows that x is relatively regular and

that

y0 = y − r + yxr + rxy − yxrxy

is a pseudo-inverse of x, where r is a pseudo-inverse of xyx−x. Then we

get
bxby0 = bxby − bxbr + bxbybx|{z}

=bx
br + bxbrbxby − bxbybx|{z}

=bx
brbxby =

= bxby .

A similar argument shows that by0bx = bybx. We summarize: xy0x = x

and
be − bxby0 − by0bx = be − bxby − bybx ∈ bA−1 .

Thus x ∈ Φg(A).

Let B be a complex algebra with identity e 6= 0. In view of The-

orem 3.12 it seems to be useful to consider elements t ∈ B with the

following property:

(3.13)
t is relatively regular and for some pseudo-inverse s of t

the element e − ts − st belongs to B−1.

Therefore we define

Bg = {t ∈ B : t has the property (3.13)} .

Elements in Bg can be called generalized invertible, since B−1 ⊆ Bg. Ob-

serve that 0 ∈ Bg, thus B−1 is a proper subset of Bg. With these notations

we have

x ∈ Φ(A) ⇔ bx ∈ bA−1
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and, by Theorem 3.12,

(3.14) x ∈ Φg(A) ⇔ bx ∈ bAg .

In the next section we shall investigate the class Bg.

4 – Properties of Bg

In this section B always denotes a complex algebra with identity e.

Let V be a vector space and T : V → V linear. For the definitions

of the ascent p(T ) and the descent q(T ) of T we refer the reader to [8,

§72].

Let t ∈ B and let the linear operators Lt, Rt : B → B be defined by

Lt(b) = tb and Rt(b) = bt (b ∈ B) .

Then we have Lt(B) = tB, Rt(B) = Bt, kernLt = R(t) and kernRt =

L(t) .

Put

pl(t) = p(Lt) , ql(t) = q(Lt)

pr(t) = p(Rt) , qr(t) = q(Rt) .

Proposition 4.1. Let t ∈ B.

(1) If pl(t) and ql(t) [pr(t) and qr(t)] are both finite, then they are

equal and for n = pl(t) [n = pr(t)] we have

B = R(tn) ⊕ tnB [B = L(tn) ⊕ Btn] .

(2) pr(t) ≤ ql(t), pl(t) ≤ qr(t).

Proof. (1) [8, §72].

(2) We only show that pr(t) ≤ ql(t). If n = ql(t) < 1 then tnB =

tn+1B. Take b ∈ B with tn = tn+1b. If c ∈ L(tn+1) then ctn = ctn+1b = 0,

thus c ∈ L(tn), therefore L(tn+1) ⊆ L(tn), thus pr(t) ≤ n.
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From [15, Theorem 3.3] we get the following characterization of ele-

ments of Bg.

Proposition 4.2. For t ∈ B the following assertions are equivalent.

(1) t ∈ Bg.

(2) pl(t) = ql(t) ≤ 1.

(3) pr(t) = qr(t) ≤ 1.

(4) There is u ∈ B with tut = t and tu = ut.

Corollary 4.3. Let A be a complex semisimple algebra with iden-

tity. Suppose that 0 < p = pl(x) = ql(x) < 1. Then xp ∈ Φg(A).

Proof. Since pl(x
p) = ql(x

p) ≤ 1, it follows from Proposition 4.2,

that xpuxp = xp and xpu = uxp for some u ∈ A. Then we get e − xpu −
uxp = e − 2uxp and (e − 2uxp)2 = e. Thus

e − xpu − uxp ∈ A−1 ⊆ Φ(A) .

Proposition 4.4. Suppose that t, u, t1, t2 ∈ B.

(1) If t1, t2 ∈ Bg, t1t2 = t1t2 then t1t2 ∈ Bg.

(2) If t ∈ Bg and n ∈ IN then tn ∈ Bg.

(3) If t ∈ Bg then there is a unique s ∈ B with

tst = t, sts = s and ts = st .

Furthermore we have s ∈ Bg and if ta = at for some a ∈ B, then sa = as.

(4) If t, u ∈ Bg and tu = ut = 0, then t + u ∈ Bg.

(5) e − t1t2 ∈ Bg ⇐⇒ e − t2t1 ∈ Bg.
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Proof. (1) follows from Proposition 3.4 in [15] and 4.2.

(2) follows from (1).

(3) Proposition 3.9 in [15] shows that there is a unique s ∈ B such

that tst = t, sts = s and ts = st. From Proposition 4.2 (4) we get s ∈ Bg.

If ta = at, then

sta = sat = satst = sat2s = st2as = tas ,

thus s2ta = tas2 and therefore

sa = stsa = s2ta = tas2 = ats2 = as .

(4) From (3) we get s, v ∈ B such that tst = t, sts = s, ts = st,

uvu = u, vuv = v and uv = vu. Then

(t + u)(s + v) = ts + tv + us + uv = ts + tvuv + usts + uv =

= ts + tuv2 + uts2 + uv = ts + uv .

A similar computation gives (s+v)(t+u) = st+vu. Thus (t+u)(s+

v) = (s + v)(t + u). From Proposition 4.2 we get t + u ∈ Bg since

(t + u)(s + v)(t + u) = (ts + uv)(t + u) = tst + tsu + uvt + uvu =

= t + stu + vut + u = t + u .

(5) We only have to show that e− t1t2 ∈ Bg implies e− t2t1 ∈ Bg. By

Proposition 4.2 (4) there is a pseudo-inverse s of e− t1t2 which commutes

with e− t1t2. Put r = e + t2st1. A simple computation shows that r is a

pseudo-inverse of e − t2t1 which commutes with e − t2t1.

Notations. Let B be a Banach algebra and t ∈ B. By σ(t) and

r(t) we denote the spectrum and the spectral radius of t, respectively. If

D ⊆ C is open, σ(t) ⊆ D and f : D → C holomorphic, then f(t) is

defined by the well-known operational calculus.

Proposition 4.5. Suppose that B is a Banach algebra and t ∈ Bg.

(1) t is quasinilpotent if and only if t = 0.
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(2) If t 6= 0 and if s is the unique pseudo-inverse of t with the prop-

erties in part (3) of Proposition 4.4, then

(i) s is not quasinilpotent;

(ii) σ(s)\{0} = {∏ ∈ C\{0} : 1
∏
∈ σ(t)} ;

(iii) t ∈ B−1 or 0 is a pole of order 1 of (∏e − t)−1;

(iv) dist(0, σ(t)\{0}) = r(s)−1.

(3) Suppose that 0 ∈ σ(t), D ⊆ C is a region, σ(t) ⊆ D, f : D → C

holomorphic, injective and f(0) = 0. Then f(t) ∈ Bg.

Proof. [16, Propositions 2.6, 2.7 and 2.13].

Proposition 4.6. Let ∏1, . . . , ∏m pairwise distinct complex num-

bers. If t ∈ B and
mY

j=1

(t − ∏je) = 0 ,

then t − ∏e ∈ Bg for each ∏ ∈ C.

Proof. [16, Proposition 2.4].

5 – Algebraic properties of Φg(A)

As in Section 3 we denote by A a complex semisimple algebra with

identity. Furthermore we assume {0} 6= soc(A).

Theorem 5.1. Φg(A) + soc(A) ⊆ Φg(A).

Proof. Let x ∈ Φg(A) and s ∈ soc(A). Then \x + s = bx + bs = bx.

By (3.14), bx ∈ bAg, thus \x + s ∈ bAg, hence x + s ∈ Φg(A).

Remark. From Proposition 3 (2) we know that

Φ(A) + I(A) ⊆ Φ(A) .

In Section 6 of this paper we shall see that in general

Φg(A) + I(A) 6⊆ Φg(A) .
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Theorem 5.2. (1) If x1, x2 ∈ Φg(A) and x1x2 − x2x1 ∈ soc(A),

then x1x2 ∈ Φg(A).

(2) If x ∈ Φg(A) and n ∈ IN, then xn ∈ Φg(A).

Proof. (1) By (3.14), bx1, bx2 ∈ bAg. Since bx1bx2 = bx2bx1, we get from

Proposition 4.4 (1), that dx1x2 = bx1bx2 ∈ bAg. By (3.14), x1x2 ∈ Φg(A).

(2) follows from (1).

Remarks. (1) In [15, 1.7 (d)] it is shown by an example, that if

x1, x2 ∈ Φg(A) it does not follow that x1x2 ∈ Φg(A).

(2) In [15, 1.7 (b)] it is shown by an example, that if xn ∈ Φg(A) for

some n ∈ IN it does not follow that x ∈ Φg(A).

Theorem 5.3. For x1, x2 ∈ A we have:

e − x1x2 ∈ Φg(A) ⇐⇒ e − x2x1 ∈ Φg(A) .

Proof. Proposition 4.4 (5) and (3.14) give

e − x1x2 ∈ Φg(A) ⇐⇒ be − bx1bx2 ∈ bAg ⇐⇒
⇐⇒ e − x2x1 ∈ Φg(A) .

Theorem 5.4. For x ∈ A the following assertions are equivalent:

(1) x ∈ Φg(A);

(2) there is y ∈ A such that xyx = x and bxby = bybx.

Proof. (1) ⇒ (2): From bx ∈ bAg it follows that there exists some

u ∈ A with bxbubx = bx and bxbu = bubx (Proposition 4.2 (4)). Then we have

xux−x ∈ soc(A). Proposition 3.8 shows that xux−x is relatively regular.

Let r be a pseudo-inverse of xux− x. Then

y = u − r + uxr + rxu − uxrxu

is a pseudo-inverse of x (Proposition 2.2). Then it is easy to see that
bxby = bxbu = bubx = bybx.

(2) ⇒ (1) Proposition 4.2 (4) gives bx ∈ bAg, thus x ∈ Φg(A).
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Theorem 5.5. For x ∈ Φg(A) the following assertions are equiva-

lent:

(1) x ∈ Φ(A);

(2) nul(x) < 1;

(3) def(x) < 1.

Proof. It is clear that (1) implies (2) and (3).

(2) ⇒ (1): Take a pseudo-inverse y of x with bybx = bxby (Theorem 5.4).

Since

nul(x) = Θ(R(x)) = Θ((e − yx)A) < 1 ,

we get from Proposition 3.4 (5), that e−yx ∈ soc(A), hence be = bybx = bxby,

thus bx ∈ bA−1.

A similar proof shows that (3) implies (1).

Theorem 5.6. Suppose that x, u ∈ Φg(A) and that xu, ux ∈ soc(A).

Then x + u ∈ Φg(A).

Proof. Since bx, bu ∈ bAg and bxbu = b0 = bubx, Proposition 4.4 (4) gives
\x + u = bx + bu ∈ bAg, thus x + u ∈ Φg(A).

6 – Topological properties of Φg(A)

In this section we assume that A is complex semisimple Banach al-

gebra with identity e 6= 0. From [4, R. 3.6] it follows that

A 6= I(A) ⇐⇒ dimA = 1 .

Hence, if dimA = 1, eA = A/I(A) is a complex Banach algebra with

identity ee 6= eo.
The first result in this section is an improvement of Theorem 3.11 (4).

Theorem 6.1. Suppose that x ∈ Φg(A), z ∈ Φ(A) and xz − zx ∈
soc(A). Then there is δ > 0 such that

x − ∏z ∈ Φ(A) for 0 < |∏| < δ .
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Proof. Take u ∈ A such that bzbu = bubz = be. From bxbz = bzbx we

get bx = bx(bubz) = bxbzbu = bzbxbu, thus bubx = bubzbxbu = bxbu, hence xu − ux ∈
soc(A). Since u ∈ Φ(A) ⊆ Φg(A), we derive from Theorem 5.2 (1)

that ux ∈ Φg(A). Theorem 3.11 (4) shows that there is δ > 0 such

that ux − ∏e ∈ Φ(A) for 0 < |∏| < δ. This implies, since z ∈ Φ(A),

that zux − ∏z = z(ux − ∏e) ∈ Φ(A) (0 < |∏| < δ). Then we have for

0 < |∏| < δ that

bx − ∏bz = bzbubx − ∏bz ∈ bA−1 ,

thus x − ∏z ∈ Φ(A).

Definition. Let x ∈ A. The set

σΦ(x) = {∏ ∈ C : ∏e − x /∈ Φ(A)}

is called the Fredholm spectrum of x. If σΦ(x) = {0}, then x is called a

Riesz element of A.

If dimA = 1, then by Proposition 3.7 (2)

σΦ(x) = σ(ex) ;

and (see Theorem 6.1)

dist(0, σΦ(x)\{0}) > 0 if x ∈ Φg(A) .

Suppose that x ∈ Φg(A), then there is y ∈ A such that

(6.2) xyx = x, yxy = y, and xy − yx ∈ soc(A).

In fact, by Theorem 5.4, xy0x = x and xy0 − y0x ∈ soc(A) for some

y0 ∈ A. Then y = y0xy0 satisfies (6.2).

Theorem 6.3. Suppose that dimA = 1, x ∈ Φg(A) and y is a

pseudo-inverse of x which satisfies (6.2).

(1) x is a Riesz element ⇐⇒ y is a Riesz element. In this case

σΦ(x) = {0} and dist(0, σΦ(x)\{0}) = 1.
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(2) If x is not a Riesz element, then

σΦ(y)\{0} =
n
∏ ∈ C\{0} :

1

∏
∈ σΦ(x)

o

and

dist(0, σΦ(x)\{0}) = r(ey)−1 .

Proof. (1) (6.2) and Proposition 4.2 (4) show that ex, ey ∈ eAg. There-

fore, by Proposition 4.5 (1) and (6.2)

x is Riesz ⇐⇒ r(ex) = 0 ⇐⇒ ex = e0 ⇐⇒ ey = e0 ⇐⇒
⇐⇒ r(ey) = 0 ⇐⇒ y is Riesz .

(2) From (1) we see that r(ex), r(ey) > 0. Proposition 4.5 (2) (ii) shows

that

σΦ(y)\{0} = σ(ey)\{0} =
n
∏ ∈ C\{0} :

1

∏
∈ σ(ex)

o
=

=
n
∏ ∈ C\{0} :

1

∏
∈ σΦ(x)

o
.

From Proposition 4.5 (2) (iv) we conclude that

dist(0, σΦ(x)\{0}) = dist(0, σ(ex)\{0}) = r(ey)−1 .

Theorem 6.4. Suppose that dimA = 1, x ∈ Φg(A), 0 ∈ σ(x),

D ⊆ C is a region, σ(x) ⊆ D, f : D → C is holomorphic and injective

and f(0) = 0. Then f(x) ∈ Φg(A).

Proof. It is clear that σ(ex) ⊆ σ(x).

Case 1. x ∈ Φ(A). Hence 0 /∈ σ(ex). Since f is injective and

f(0) = 0, we get

0 /∈ f(σ(ex)) = σ(f(ex)) = σ( gf(x)) = σΦ(f(x)) ,

thus f(x) ∈ Φ(A) ⊆ Φg(A).

Case 2. x /∈ Φ(A). Then 0 ∈ σ(ex). Let y be a pseudo-inverse of x

such that (6.2) holds. Since f 0 is injective, there is a holomorphic function
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g : f(D) → C such that g(f(∏)) = ∏. Without loss of generality we can

assume that f 0(0) = g0(0) = −1, thus there is h : f(D) → C holomorphic

such that

g(∏) = −∏+ ∏2h(∏) .

Put ϕ = h ◦ f . From

∏ = g(f(∏)) = −f(∏) + f(∏)2h(f(∏)) = f(∏)ϕ(∏)f(∏) − f(∏)

we derive

(6.5) x = f(x)ϕ(x)f(x) − f(x) .

Since x is relatively regular, (6.5) and Proposition 2.2 show that f(x)

is relatively regular and that

r = ϕ(x) − [ϕ(x)f(x) − e]y[ϕ(x)f(x) − e]

is a pseudo-inverse of f(x) (observe that f(x)ϕ(x) = ϕ(x)f(x)). From

exey = eyex we get ey gf(x) = gf(x)ey and ey]ϕ(x) = ]ϕ(x)ey, thus er gf(x) = gf(x)er.
Hence

(ee − er gf(x) − gf(x)er)2 = (ee − 2er gf(x))2 =

= ee − 4er gf(x) + 4er gf(x)er gf(x)| {z }
=gf(x)

= ee .

This shows that e − rf(x) − f(x)r ∈ Φ(A).

For our next results we denote by M the closure of a subset M ⊆ A.

Theorem 6.6. Let x ∈ A.

(1) If x is relatively regular then xAx is closed.

(2) x ∈ soc(A) ⇔ dimxAx < 1.

(3) If x is relatively regular then

x ∈ soc(A) ⇔ x ∈ soc(A) .
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Proof. (1) Let y be a pseudo-inverse of x. Then xA = xyA, Ax =

Ayx, xy and yx are idempotent. It follows that xA and Ax are closed,

thus xA ∩ Ax is closed. To complete the proof we show that

xAx = xA ∩ Ax .

The inclusion “⊆” is clear. Take z ∈ xA∩Ax, thus z ∈ xyA and z ∈ Ayx,

hence z = xyz and z = zyx. This gives z = xy(zyx) = x(yzy)x ∈ xAx.

(2) is shown in [1].

(3) We only have to show the implication “⇒”. There is a sequence

(xn) in soc(A) such that kxn − xk → 0 (n → 1). Thus there is ∞ ≥ 0

with kxnk ≤ ∞ for all n ∈ IN. Define the bounded linear operators

Fn, K : A → A by

Fna = xnaxn and Ka = xax (a ∈ A, n ∈ IN) .

For each a ∈ A we get

kKa − Fnak = k(x − xn)ax + xna(x − xn)k ≤
≤ kak(kxk + ∞)kx − xnk ,

hence kK − Fnk ≤ (kxk + ∞)kx − xnk.
This shows that (Fn) converges uniformly to K. From (2) we get

that each Fn is a finite-dimensional operator, hence K is compact. Since

x is relatively regular, K has closed range, by (1), hence K has a finite-

dimensional range. Now use (2) to get x ∈ soc(A).

Remark. From Proposition 3.7 (2) we know that

Φ(A) + I(A) ⊆ Φ(A) .

Now take x ∈ soc(A). Since 0 ∈ Φg(A), we have x ∈ Φg(A) + soc(A).

Theorem 6.6 (3) shows that

x ∈ Φg(A) ⇔ x ∈ soc(A) .

Thus, in general,

Φg(A) + soc(A) 6⊆ Φg(A) ,
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hence

Φg(A) + I(A) 6⊆ Φg(A) .

Theorem 6.7. Let dimA = 1 and let x ∈ Φg(A). The following

assertions are equivalent:

(1) x is a Riesz element of A.

(2) x ∈ I(A).

(3) x ∈ soc(A).

Proof. (1) ⇒ (2): If x is a Riesz element then ex is quasinilpotent.

As in the proof of Theorem 6.3 we have ex ∈ eAg. Proposition 4.5 (1)

shows then that ex = e0, hence x ∈ I(A).

(2) ⇒ (3): By Ǎ we denote the quotient algebra A/soc(A). Since

dimA = 1 (⇔ A 6= I(A)), Ǎ is a Banach algebra with identity ě 6= 0̌,

where ž = z +soc(A) denotes the coset of z in Ǎ. Take ∏ ∈ C\{0}. Then

∏ee− ex = ∏ee ∈ eA−1. From Proposition 3.7 (2) we get ∏e−x ∈ Φ(A), thus

∏be − bx ∈ bA−1, hence, for some z ∈ A,

z(∏e − x) − e, (∏e − x)z − e ∈ soc(A) ,

therefore ž(∏ě− x̌) = ě = (∏ě− x̌)ž. This gives ∏ě− x̌ ∈ Ǎ−1. Thus, since

∏ ∈ C\{0} was arbitrary, x̌ is quasinilpotent. Let y be a pseudo-inverse

of x such that (6.2) holds. Proposition 4.2 (4) shows that x̌ ∈ Ǎg. Now

use Proposition 4.5 (1) to derive x̌ = 0̌. Therefore x ∈ soc(A). Theorem

6.6 (3) gives x ∈ soc(A).

(3) ⇒ (1). For each ∏ ∈ C\{0} we have ∏e − x ∈ Φ(A) + soc(A) ⊆
Φ(A).

Let J be an ideal in A. J is called a Φ-ideal, if soc(A) ⊆ J ⊆ I(A).

It is clear that soc(A), soc(A) and I(A) are Φ-ideals and that

Φ(A) + J ⊆ Φ(A)

for each Φ-ideal J .

Corollary 6.8. Suppose that dimA = 1, J is a Φ-ideal and that

Φg(A) + J ⊆ Φg(A) .
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Then J = soc(A).

Proof. Take a ∈ J . Then a = 0 + a ∈ Φg(A) + J ⊆ Φg(A).

Since a ∈ I(A), ∏ee − ea = ∏ee, thus we have that ∏e − a ∈ Φ(A) for

∏ ∈ C\{0}. Therefore a is a Riesz element and a ∈ Φg(A). Theorem 6.7

gives a ∈ soc(A).

Theorem 6.9. Φg(A) ⊆ Φ(A).

Proof. Use Theorem 3.11 (4).

7 – Ascent and descent of elements in Φg(A)

In this section we assume that A is a complex semisimple Banach

algebra with identity e and that soc(A) 6= {0}.
For x ∈ A we define

∆l(x) = {α ∈ IN0 : R(x) ∩ xαA = R(x) ∩ xα+kA for all k ≥ 0}

and

∆r(x) = {β ∈ IN0 : L(x) ∩ Axβ = L(x) ∩ Axβ+k for all k ≥ 0} .

Proposition 7.1. If x ∈ A and n ∈ IN0, then

(1) pl(x) ≤ n ⇔ R(x) ∩ xnA = {0} ;

(2) ql(x) ≤ n ⇔ R(xn) + xA = A ;

(3) qr(x) ≤ n ⇔ L(xn) + Ax = A ;

(4) pr(x) ≤ n ⇔ L(x) ∩ Axn = {0};
(5) ∆l(x) = {α ∈ IN0 : R(xα)+xA = R(xα+k)+xA for all k ≥ 0};
(6) ∆r(x) = {β ∈ IN0 : L(xβ)+Ax = L(xβ+k)+Ax for all k ≥ 0} .
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Proof. We only show (1), (2) and (5). The proofs for (3), (4) and

(6) are similar.

(1) follows from [8, Satz 72.1].

(2) “⇒” By [8, Satz 72.2], there is a subspace U of A such that

A = U ⊕ xA and U ⊆ R(xn). Thus R(xn) + xA = A.

“⇐”: Take y ∈ xnA. Then y = xna for some a ∈ A. There are u, v

with a = u + v, u ∈ R(xn) and v ∈ xA. It follows that y = xn(u + v) =

xnv ∈ xn+1A. Hence ql(x) ≤ n.

(5) Denote by M the set on the right side in (5). Let α ∈ ∆l(x) and

take z ∈ R(xα+1) + xA, hence z = u + xv with u ∈ R(xα+1) and v ∈ A.

Then xαu ∈ R(x) ∩ xαA = R(x) ∩ xα+1A, thus xαu = xα+1w for some

w ∈ A, hence u − xw ∈ R(xα). It follows that z = u + xv = (u − xw) +

x(w+v) ∈ R(xα)+xA. We have shown that R(xα+1)+xA = R(xα)+xA.

By induction we see that α ∈ M .

Now let α ∈ M and take z ∈ R(x) ∩ xαA. Then there is y ∈ A
with z = xαy and xα+1y = 0. Thus y ∈ R(xα+1) ⊆ R(xα+1) + xA =

R(xα) + xA. Therefore y = y1 + y2 with y1 ∈ R(xα), y2 ∈ xA. Then

z = xα(y1 +y2) = xαy2 ∈ xα+1A, thus z ∈ R(x)∩xα+1A. We have shown

that R(x)∩xαA = R(x)∩xα+1A. By induction we see that α ∈ ∆l(x).

Proposition 7.2. Let x ∈ Φg(A). Then

(1) Θ(R(x) ∩ xA) < 1 ;

(2) Θ(L(x) ∩ Ax) < 1 ;

(3) ∆l(x) 6= ∅ and ∆r(x) 6= ∅ .

Proof. We only show that Θ(R(x)∩xA) < 1 and ∆l(x) 6= ∅. Take

a pseudo-inverse y of x such that v = e−xy−yx ∈ Φ(A). If z ∈ R(x)∩xA,

then z = (e− yx)z = xyz, hence vz = z − xyz − yxz = 0, thus z ∈ R(v).

Therefore R(x) ∩ xA ⊆ R(v). It follows from Proposition 3.4 (3) and

3.5 (4) that Θ(R(x) ∩ xA) ≤ Θ(R(v)) = nul(v) < 1. For n ∈ IN put

Θn = Θ(R(x)∩xnA). Since R(x)∩xn+1A ⊆ R(x)∩xnA we derive from

Proposition 3.4 (3) that

0 ≤ · · · ≤ Θn+1 ≤ Θn ≤ · · · ≤ Θ1 < 1 .
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Since Θn ∈ IN0 for n ∈ IN, there is some α ∈ IN such that Θα+k = Θα for

all k ≥ 0. Use Proposition 3.4 (3) to see that R(x)∩xαA = R(x)∩xα+kA
for all k ≥ 0. Hence α ∈ ∆l(x).

In view of Proposition 7.2 (3) we define for x ∈ Φg(A):

δl(x) = min∆l(x) and δr(x) = min∆r(x) .

Proposition 7.3. For x ∈ Φg(A) we have

(1) pl(x) = qr(x) and ql(x) = pr(x) .

(2) If α = δl(x) then

pl(x) < 1 ⇔ R(x) ∩ xαA = {0} .

In this case pl(x) = δl(x).

(3) If β = δr(x) then

ql(x) < 1 ⇔ L(xβ) + Ax = A .

In this case ql(x) = δr(x).

Proof. (1) Proposition 4.1 (2) gives pl(x) ≤ qr(x). Without loss of

generality we assume that n = pl(x) < 1. Since xn, xn+1 ∈ Φg(A), xn

and xn+1 are relatively regular. Thus Axn = Ap, Axn+1 = Aq for some

p = p2, q = q2 ∈ A. Then it follows that

(e − p)A = R(xn) = R(xn+1) = (e − q)A ,

thus e − q = (e − p)(e − q) = e − q − p + pq, hence p = pq. Then

Axn = Ap = Apq ⊆ Aq = Axn+1 ⊆ Axn. Hence qr(x) ≤ n = pl(x).

The proof for ql(x) = pr(x) is similar.

(2) “⇒”: Put p = pl(x). Proposition 7.1 (1) gives R(x)∩xpA = {0},
thus p ∈ ∆l(x) and α ≤ p.

“⇐” follows from Proposition 7.1 (1).

(3) Similar.
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For the rest of this section we always assume that A is a Banach algebra.

For our further investigation the following concepts will be useful.

For x ∈ A we define

al(x) = {µ ∈ C: there is a neighbourhood U of µ and a holomorphic

function f : U → A such that (∏e − x)f(∏) = 0 on U

and f(µ) 6= 0} .

ar(x) = {µ ∈ C: there is a neighbourhood U of µ and a holomorphic

function f : U → A such that f(∏)(∏e − x) = 0 on U

and f(µ) 6= 0} .

It is clear that al(x) and ar(x) are open subsets of C.

Proposition 7.4. Let x ∈ A.

(1) If ∏0 ∈ al(x) then pl(∏0e − x) = ql(∏0e − x) = 1 .

(2) If ∏0 ∈ ar(x) then pr(∏0e − x) = qr(∏0e − x) = 1 .

Proof. [13, Theorem 3.5].

Lemma 7.5. Let u ∈ Φ(A).

(1) pl(u) = 0 ⇔ nul(u) = 0 .

(2) ql(u) = 0 ⇔ def(u) = 0 .

Proof. (1) pl(u) = 0 ⇔ R(u) = {0} ⇔ nul(u) = 0 .

(2) Use Proposition 7.3 (1) to get

ql(u) = 0 ⇔ pr(u) = 0 ⇔ L(u) = {0} ⇔ def(u) = 0 .

In Theorem 3.11 (4) we have seen that if x ∈ Φg(A), then there is

δ > 0 such that ∏e − x ∈ Φ(A) for 0 < |∏| < δ. This and Theorem 3.6

(3) (ii) show

Proposition 7.6. If x ∈ Φg(A), then there is ≤ > 0 and there are

n,m ∈ IN0 such that

nul(∏e − x) = n and def(∏e − x) = m for 0 < |∏| < ≤ .
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Theorem 7.7. Let x ∈ Φg(A).

(1) If pl(x) (= qr(x)) < 1, then there is ≤ > 0 such that

pl(∏e − x) = nul(∏e − x) = 0 for 0 < |∏| < ≤ .

(2) If ql(x) (= pr(x)) < 1, then there is ≤ > 0 such that

ql(∏e − x) = def(∏e − x) = 0 for 0 < |∏| < ≤ .

(3) The following assertions are equivalent:

(i) pl(x) (= qr(x)) = 1 .

(ii) 0 ∈ al(x) .

(iii) There is ≤ > 0 with nul(∏e − x) > 0 for |∏| < ≤ .

(4) The following assertions are equivalent:

(i) ql(x) = (pr(x)) = 1 .

(ii) 0 ∈ ar(x) .

(iii) There is ≤ > 0 with def(∏e − x) > 0 for |∏| < ≤ .

Proof. We only prove (1) and (3).

(1) Define the bounded linear operator T : A → A by Ta = xa (a ∈
A). Then p(T ) = pl(x) and T n(A) = xnA (n ∈ IN). Since xn ∈ Φg(A),

xn is relatively regular, thus T n(A) is closed. Lemma 2.5 in [9] shows

that there is ≤ > 0 with p(∏I −T ) = 0 for 0 < |∏| < ≤. Use Lemma 7.5 to

conclude that (1) holds.

(3) (i) ⇒ (ii): Write M =
1T

n=1
xnA. As above, each xnA is closed,

thus M is a closed subspace of A. We have

(7.8) xM = M .

In fact, since the inclusion “⊆” is clear, we only have to show that

M ⊆ xM. Since ∆l(x) 6= ∅ (Proposition 7.2), there is α ∈ IN0 with

R(x) ∩ xαA = R(x) ∩ xα+kA for k ≥ 0 .
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Take y ∈ M. Then there is a sequence (uk)
1
k=1 in A such that y =

xα+kuk for k ≥ 1. Put zk = xαu1 − xα+k−1uk. Then xzk = 0, thus

zk ∈ R(x) ∩ xαA = R(x) ∩ xα+k−1A for all k ≥ 1. It follows that

xαu1 = zk + xα+k−1uk ∈ xα+k−1A (k ≥ 1) .

Hence xαu1 ∈ M and therefore y = xα+1u1 ∈ xM. The proof of (7.8) is

now complete.

(7.8) and the open mapping theorem show that there is a constant

∞ > 0 such that

for each y ∈ M there is z ∈ M with xz = y and kzk ≤ ∞kyk .

Since R(x) ∩ M = R(x) ∩ xαA and pl(x) = 1, we get some a0 ∈
R(x) ∩ M with a0 6= 0 (Proposition 7.1 (1)).

Now use (7.9) to construct a sequence (an)1n=1 such that

xan+1 = an and kank ≤ ∞nka0k for n ∈ IN .

Put U = {∏ ∈ C : |∏| < 1/∞} and f(∏) =
1P

n=0
an∏

n. Then f is holomor-

phic on U and a simple computation gives

(∏e − x)f(∏) = −xa0 = 0 for each ∏ ∈ U .

From f(0) = a0 6= 0 we derive 0 ∈ al(x).

(ii) ⇒ (iii): Since al(x) is open, there is ≤ > 0 such that ∏ ∈ al(x) for

|∏| < ≤. Take ∏0 ∈ C with |∏0| < ≤. Then there is a neighbourhoud V of

∏0 and a holomorphic f : V → A with f(∏0) 6= 0 and (∏0e−x)f(∏0) = 0.

This shows that R(∏0e − x) 6= {0}, thus nul(∏0e − x) > 0.

(iii) ⇒ (i) Assume to the contrary that pl(x) < 1. (1) shows that

there is a positive δ ≤ ≤ such that nul(∏e − x) = 0 for 0 < |∏| < δ, a

contradiction.
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For x ∈ A we define

Φg(x) = {∏ ∈ C : ∏e − x ∈ Φg(A)} .

It is clear that C\σ(x) ⊆ Φg(x). From Theorem 3.11 (4) we see that

Φg(x) is open.

Theorem 7.10. Let x ∈ A and let C be a connected component of

Φg(x).

(1) Either pl(∏e−x) < 1 for all ∏ ∈ C or pl(∏e−x) = 1 for all ∏ ∈ C.

(2) Either ql(∏e− x) < 1 for all ∏ ∈ C or ql(∏e− x) = 1 for all ∏ ∈ C.

Proof. We only show (1). The proof for (2) is similar since ql(∏e−
x) = pr(∏e − x).

Put M = {∏ ∈ C : pl(∏e−x) < 1}. Theorem 7.7 (1) shows that M

is open.

Take ∏0 ∈ C\M , hence pl(∏0e − x) = 1. Theorem 7.7 (3) gives

∏0 ∈ al(x). Since al(x) is open, there is ≤ > 0 such that ∏ ∈ al(x) if

|∏−∏0| < ≤. Then it follows from Proposition 7.4 (1) that pl(∏e−x) = 1
if |∏ − ∏0| < ≤. Hence C\M is open. Since C is connected, M = ∅ or

C = M .

Theorem 7.11. For x ∈ Φg(A) the following assertions are equiv-

alent:

(1) 0 is a boundary point of σ(x).

(2) 0 is an isolated point of σ(x).

(3) 0 is a pole of (∏e − x)−1.

Proof. The implications (3) ⇒ (2) ⇒ (1) are clear.

(1) ⇒ (3): By C we denote the connected component of Φg(x) for

which 0 ∈ C. There is some ≤ > 0 such that for U = {∏ ∈ C : |∏| < ≤}
we have U ⊆ C and U ∩ (C\σ(x)) 6= ∅. For ∏ ∈ U ∩ (C\σ(x)) we have

pl(∏e−x) = ql(∏e−x) = 0. Theorem 7.10 shows now that pl(x), ql(x) <

1. Observe that pl(x), ql(x) > 0. Proposition 4.1 (1) shows then that

0 < pl(x) = ql(x) < 1. From [18, Theorem 15.6] (see also [11]) we

conclude that 0 is a pole of (∏e − x)−1.
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Examples for Φg(x).

(1) If x ∈ soc(A) then Φg(x) = C.

(2) If x ∈ soc(A)\soc(A) then Φg(x) = C\{0} (see Theorem 6.6).

(3) If x is a Riesz element then C\{0} ⊆ Φg(x).

(4) Let x ∈ A with x2 = x. Then σ(x) ⊆ {0, 1}, thus C\{0, 1} ⊆
Φg(x). We also have (e − x)2 = e − x. Therefore, by Example 3.9 (5),

0, 1 ∈ Φg(x). Thus Φg(x) = C.

We close this paper with

Theorem 7.12. Suppose that dimA = 1 and let x ∈ A. The

following assertions are equivalent:

(1) Φg(x) = C.

(2) There are ∏1, . . . , ∏m ∈ C with ∏i 6= ∏j for i 6= j and

mY

j=1

(x − ∏je) ∈ soc(A) .

Proof. (1) ⇒ (2): Take µ ∈ σ(x). Since µ ∈ Φg(x), it follows from

Theorem 3.11 (4) that there is an open neighbourhood Uµ of µ with

(7.13) x − ∏e ∈ Φ(A) for ∏ ∈ Uµ\{µ} .

Since σ(x) ⊆ S
µ∈σ(x)

Uµ and σ(x) is compact, there are ∏1, . . . , ∏n ∈
σ(x) such that

σ(x) ⊆
n[

j=1

U∏j
.

This and (7.13) show that σΦ(x) = σ(ex) ⊆ {∏1, . . . , ∏n}. Since

dimA = 1, σ(ex) 6= ∅, thus σ(ex) = {∏1, . . . , ∏m} with m ≤ n and

∏i 6= ∏j for i 6= j. Define the polynomial p by p(∏) =
mQ

j=1
(∏− ∏j). Then

σΦ(p(x)) = σ(gp(x)) = σ(p(ex)) = p(σ(ex)) = {0} .
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It follows that p(x) is a Riesz element. Since x − ∏je ∈ Φg(A) for

j = 1, . . . ,m, we have p(x) ∈ Φg(A) (see Theorem 5.2 (1)). Now use

Theorem 6.7 to get p(x) ∈ soc(A).

(2) ⇒ (1): Let p denote the polynomial p(∏) =
mQ

j=1
(∏ − ∏j). Since

p(x) ∈ soc(A), b0 = dp(x) = p(bx). Proposition 4.6 yields bx − ∏be ∈ bAg for

each ∏ ∈ C, thus Φg(x) = C.
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