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Generalized Fredholm theory in semisimple algebras

D. MANNLE - C. SCHMOEGER

RIASSUNTO: Sia A una algebra complessa semisemplice con identita e # 0. Sia
D, (A) la sottoclasse formata dagli elementix € A che verificano la sequente condizione:

Jy € A: tale che xyz = z,e inoltre e — xy — yz & un elemento di Fredholm.

Ogni elemento di Fredholm appartiene a ®4(A). Si studia la classe 4(A) i cui elementi
sono detti elementi di Fredholm generalizzati.

ABSTRACT: Let A be a semisimple complex algebra with identity e # 0. We write
D, (A) for the following class of elements of A.

®y(A) ={z € A: Ty € Asuch that zyz = z and e — zy — yz is Fredholm }.

Each Fredholm element of A belongs to ®4(A). Elements in ®4(A) we call generalized
Fredholm elements. In this paper we investigate the class ®4(A).

1 — Introduction

In this paper we always assume that A is a complex algebra with
identity e # 0. If X is a complex Banach space, then it is well known
that £(X) ={T: X — X : T is linear and bounded} is a semisimple
Banach algebra.

In [1] S. R. CARADUS has introduced the class of generalized Fred-
holm operators. T € L(X) is called a generalized Fredholm operator, if
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there is some S € £(X) with TST =T and I —T'S — ST is a Fredholm
operator. This class of operators is studied in [15], [16] and [17].

If A is semisimple, generalized Fredholm elementsin A are introduced
in [10] as follows: x € A is called a generalized Fredholm element if there
is some y € A such that xyr = x and e — zy — yz is a Fredholm element
in A. Some of the results in [15] and [16] are generalized in [10].

The present paper is an improvement and a continuation of [10].
Furthermore we generalize some of the results in [17].

In Section 2 of this paper we collect some results concerning relatively
regular elements in algebras. Section 3 contains a summary of Fredholm
theory in semisimple algebras. In section 4 we investigate generalized
invertible elements. This concept will be useful in the next sections,
where we present the main results of this paper.

In Section 5 we study algebraic properties of generalized Fredholm
elements. Section 6 contains a characterization of Riesz elements in com-
plex semisimple Banach algebras and a result concerning the stability
of generalized Fredholm elements under holomorphic functional calculus.
Section 7 contains various results on ascent and descent and a “punctured
neighbourhood theorem” for generalized Fredholm elements.

2 — Relatively regular elements

An element = € A is called relatively reqular, if xyx = x for some
y € A. In this case y is called a pseudo-inverse of x.

PROPOSITION 2.1.  For x € A the following assertions are equiva-

lent:
(1) x is relatively regular.

(2) There is y € A with xyxr = x and yxy = y.
(3) There is p = p* € A with v A = pA.

(4) There is q = ¢* € A with Ax = Aq.

PROOF. (1) = (2): Suppose that zyor = x. Put y = yozyos. Then it
is easy to see that xyxr = x and yzy = y.
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(2) = (1): Clear.

(1) = (3): Take y € A with zyx = = and put p = zy. Then
zA = zyx A C pA =xyA C xA.

(3) = (1): We have p = za for some a € A and = = pzx, thus
x = px = (ra)x = rax.

Similar arguments as above show that (1) and (4) are equivalent. [

PROPOSITION 2.2.  Suppose that z,u € A, zux — x is relatively
regular and that r is a pseudo-inverse of xux — x. Then x is relatively

regular and
Y=uU—7T+Urr +rru — urrru

is a pseudo-inverse of x.
PRrROOF. From (zuz — z)r(zux — x) = zux — x, we get
T = TUT — TUXTTUL + TULTT + TTTUL — TTT =

= z(u — uxrzu + urr + reu — r)r = YT

For z € A we define
R(z)={a€ A: za=0}and L(z) ={a € A: ax =0} .
The proof of the next proposition is easy and left to the reader.

PROPOSITION 2.3.  Suppose that x € A is relatively reqular and y is
a pseudo-inverse of x. Then xy, yr, e —xy and e — yx are idempotent
and

zyA =xA, Ayr = Az,
R(z) = (e —yx)A, L(x) = Ale —zy) .

A proof for the following result can be found in [6, p. 15].

PRrROPOSITION 2.4. If x € A is relatively reqular, zyx = x and
yxy =y, then we have for z € A:

z s a pseudo-inverse of x if and only if there is some u € A with

Z2=1Y+u—yrury .



586 D. MANNLE ~ C. SCHMOEGER [4]

3 — Fredholm theory in semisimple algebras

Throughout this section we assume that A is semisimple. This means
that rad(A) = {0}, where rad(A) denotes the radical of A. For the con-
venience of the reader we shall summarize some concepts of the Fredholm
theory in algebras. See [2]-[4], [11]-[14], [18]-[20] for details.

We call an element e, € A minimal idempotent, if ey Aeq is a division
algebra and eZ = e;. Min(A) denotes the set of all minimal idempotents

of A.

ProPOSITION 3.1. (1) Suppose that R C A[L C A] is a right
[left] ideal in A. Then R[L] is a minimal right [lefl] ideal if and only if
R = eg AL = Aeg| for some ey € Min(A).

(2) If Min(A) # 0, then the sum of all minimal right ideals equals
the sum of all minimal left ideals.

ProOF. (1) [4, B.A. 3.1], (2) [5, Prop. 30.10.]. 0

The socle of A, soc(A), is defined to be the sum of all minimal right
ideals if Min(A) # 0. If Min(A) = 0, then we set soc(A) = {0}. Propo-
sition 3.1 shows that

(3.2) soc (A) is an ideal of A,
and
(3.3) Min(A) C soc(A).

From now on we always assume in this section that soc(A) # {0}.

Suppose that J C A is a right [left] ideal of A. J has finite order
if 7 can be written as the sum of a finite number of minimal right [left]
ideals of A. The order ©(J) of J is defined to be the smallest number
of minimal right [left] ideals which have sum J. We define ©({0}) = 0
and O(J) = oo, if J does not have finite order.

PROPOSITION 3.4.  Suppose that J and KC are right [left] ideals of
A and n € IN.

(1) O(J) <o & J Csoc(A).
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(2) ©(TJ) =mn, if and only if there are e4, ..., e, € Min(A) such that
eiej =0 fori# j and

TJ=(e1+...e.) A=t AD - - De, A
(T =Ale1+-+e,) = Ae, @ & A6, .

(3) IfO(K) <00, J CK and J # K then ©(K) < O(J).
(4) ©(xA) = O(Azx) for each x € A.
(5) soc(A) ={zr e A: O(zA) < 0}.

PROOF. (1) Clear. (2) and (3): [2, §2]. (4) and (5): [9]. a

DEFINITIONS.
(1) For z € A we define the nullity of x by

nul(z) = O(R(x))
and the defect of x by
def(z) = O(L(x)) .

(2) The group of the invertible elements of A is denoted by A~!.

(3) The quotient algebra A/soc(A) is denoted by A. For z € A we write
z = a+soc(A) for the coset of z in A.

(4) The set of Fredholm elements of A is given by

(A ={zecA: TeA}.

The next proposition contains some useful characterisations of Fred-
holm elements.

PRrROPOSITION 3.5. For xz € A the following assertions are equiva-
lent:

(1) z € ®(A).
(2) There are p,q € soc(A) such that p = p?*, ¢ = ¢* and

Ax = A(e —p), tA=(e—q)A.
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(3) x is relatively reqular and R(x), L(z) C soc(A).
(4) x is relatively regular and nul(z), def(x) < oco.
(

5) x is relatively regular and for each pseudo-inverse y of © we have

TYy=e=yx.

(6) x is relatively regular and there is a pseudo-inverse y of x such
that Ty = € = yz.

Proor. (1) < (2) [4, F.1.10].

(2) = (3): It is easy to see that R(x) = pA and L(z) = gA. Thus
R(z), L(x) C soc(A).

(3) & (4) & (5): Suppose that y is a pseudo-inverse of z. Proposi-
tion 2.3 gives

R(z) = (e —yx)A and L(z) = A(e — zy) .
Therefore we get from Proposition 3.4 (1):
R(x),L(z) C soc(A) & O(R(z)),0(L(z)) < o0 &
< nul(x),def(z) < 00 & e —yx,e —xy € soc(A) .
(5) = (6): Clear.
(6) = (1): From 7y = € = yT we get 7 € A~1, thus z € ®(A). 0
The indez of x € ®(A) is defined by

ind(z) = nul(x) — def(x) .

A proof of the next result can be found in [19, Theorem 4.5 and
Theorem 4.6].

THEOREM 3.6. Ifx,y € ®(A) and s € soc(A) then
(1) zy € ®(A) and ind(zy) = ind(x)+ ind(y);
(2) x+s € ®(A) and ind(x + s) = ind(x);
(3) If A is a Banach algebra then there are § > 0 and o, € INg such
that
(i) z4+u € ®(A), ind(x + u) = ind(z), nul(x + v) < nul(z) and
def(z + u) < def(z) for all u € A with |Jul| < 4.
(ii)) nul(Ae — z) = a < nul(z) and def(Ae — z) = [ < def(x) for
A€ C with 0 < |A] < 6.
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The ideal of inessential elements of A is given by
I(A) = ﬂ {P: P is a primitive ideal of A with soc(.A) C P} .

We write A for the quotient algebra A/I(A) and Z for the coset
z+I(A) of x € A

PROPOSITION 3.7.

(1) soc(A) C I(A).

2 redA)ecic Al

(3) If A is a Banach algebra, then I(A) is closed.

PROOF. (1) Clear. (2) [4, F.3.2]. (3) Each primitive ideal of a Banach
algebra is closed. 0

PROPOSITION 3.8. Let s € soc(A). Then s is relatively reqular and
there is b € soc(A) such that

sbs=s and bsb=0">.

PRrROOF. From Proposition 3.4 we get ey, . .., e, € Min(A) with e;e; =
5”-62- and
sA=(e1+--+e)A=e AD---de,A.

Put p=e; +---+e,. Then sA = pA and p?> = p. Proposition 2.1
shows that s is relatively regular, hence there is a € A with sas = s. Put
b = asa. Then sbs = s and bsb = b. 0

Now we are ready to introduce the class of generalized Fredholm
elements. First we give some examples.

EXAMPLES 3.9. (1) Let s € soc(A). By Proposition 3.8 there is b €
soc(A) such that sbs = s. Hence

(e — sb—bs) +soc(A) =ee A

thus
e—sb—bse D(A).
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(2) Let x € ®(A). Proposition 3.5 gives Ty = € = yx for each pseudo-
inverse y of . Thus

(e — zy — yx) +soc(A) = —e € A

hence
e—zy—yzx e d(A).

(3)Ifz e A and y = 27!, then xyx = x and
e—zy—yr=—-e€ A CP(A).

(4) Let x € A with A = 2A® R(x) or A = Az @ L(z). Theorem 3.3
in [15] shows that there exists y € A such that zyz = x and zy = y=x.
Therefore e — xy — yr = e — 2xy and (e — 2xy)? = e — day + dwyry = e.
Thus

e—xy—yr € A CP(A).

(5) Let © € A with 22 = z. Put y = 2. Then zyz = z and e — 2y — yx =
e —2z. From (e — 2x)% = e we get

e—zy—yr € A CP(A).

In each of the above examples the elements x € A has the following
property: there is a pseudo-inverse y of = such that e — zy — yz € ®(A).

Therefore we call an element x € A a generalized Fredholm element if
x is relatively regular and there is a pseudo-inverse y of x with e—xy—yx €
®(A). By ¢,(.A) we denote the set of all generalized Fredholm elements
of A.

Before we state our first results concerning the class ®,(.A) we need
the following lemma.

LEMMA 3.10. Suppose that x,u € A.
(1) If zux —x € A thenx € AL
(2) If zux — x € ®(A) then z € O(A).
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PROOF. (1) Put v = (zuzx —x)~ !, ; = v(zu—e) and x,

= (ux —e)v.
Then zy2 = v(zu — e)r = v(zur — x) = e and zxy = z(ur — e)v =
(zuxr — x)v =e.

(2) Since 7z — 7 € A, it follows from (1) that # € A~!, thus
z € P(A).

U
THEOREM 3.11.

(1) soc(A) C @ (A).
(2) ®(A) S By(A).
(3) If x € ®(A) and if y is a pseudo-inverse of x, then e — xy — yx €
®(A) and ind(e —zy —yx) =0
(4) If A is a Banach algebra and x € ®,(A), then there is 6 > 0 such
that

Xe —x € ®,(A) for all X € C with [N\ < ¢
and

de—1z € P(A) for all A € € with 0 < |\ <0

PRrOOF. (1) follows from Example 3.9 (1)
(2) follows from Example 3.9 (2).

(3) From Example 3.9 (2) we get s € soc(A) such that e—xy—yzr = —e+s
Use Theorem 3.6 (2) to derive

ind(e — xy — yx) = ind(—e + s)

ind(—e) =0.
(4) Take y € A such that zyx = z and v = ¢ — zy — yx € ¢(A). For
A e C put

w(\) = (Ae — z)(y + N?e)(Ne — )
An easy computation gives

+ (e —x) .

w(A) = AA(Ae — 2)? + Ay +v) .

Since ®(.A) is open (Theorem 3.6 (3)), there is v > 0 such that v +u €
®(A) for all u € A with ||u]| <. There is 6 > 0 such that

A Ae —z)* + \y|| < forall Xe C with |\ <J.
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Thus +w(\) € ®(A) for 0 < |\| < §. This gives w(\) € ®(A) for

Y
0 < |A\| < 4. From Lemma 3.10 we get Ae —xz € ®(A) if 0 < |A\| < 4.

THEOREM 3.12. For x € A the following assertions are equivalent:
(1) z € @,(A).
(2) There is y € A such that TJz =% and ¢ — 3 — jz € AL,

PrOOF. (1) = (2) Clear.

(2) < (1): Since zyxr — x € soc(A), zyx — x is relatively regular
(Proposition 3.8). Proposition 2.2 shows that x is relatively regular and
that

Yo =Y — T +YITr + 1Y — YITTY

is a pseudo-inverse of z, where r is a pseudo-inverse of xyx —x. Then we
get
TYo = TY — IT + TYTT 4+ TTIY — YT TRy =
~— ~—
=7y .
A similar argument shows that gz = yx. We summarize: xyoxr = x
and
e—2Yp—Yoxr=e—Ty—yz € A .
Thus z € ®,(A). a

Let B be a complex algebra with identity e # 0. In view of The-
orem 3.12 it seems to be useful to consider elements ¢ € B with the
following property:

(3.13) t is relatively regular and for some pseudo-inverse s of ¢
. the element e — ts — st belongs to B,

Therefore we define
BY? = {t € B: t has the property (3.13)} .

Elements in B can be called generalized invertible, since B~ C B9. Ob-
serve that 0 € B9, thus B~! is a proper subset of BY. With these notations
we have

red(A)eze A
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and, by Theorem 3.12,
(3.14) red,(A) e Te A

In the next section we shall investigate the class 9.

4 — Properties of BY

In this section B always denotes a complex algebra with identity e.

Let V be a vector space and T : V — V linear. For the definitions
of the ascent p(T) and the descent q(T') of T we refer the reader to [8,
§72].

Let t € B and let the linear operators L;, R; : B — B be defined by

Li(b) = tb and R, (b) = bt (b € B) .

Then we have L;(B) = tB, R,(B) = Bt, kernL, = R(t) and kernR, =
L(t) .

PRrROPOSITION 4.1. Lett € B.
(1) If pi(t) and q(t) [p-(t) and q.(t)] are both finite, then they are
equal and for n = pi(t) [n = p.(t)] we have
B=R(t")®t"B [B=L(t") ® Bt"] .

(2) p(t) < a(t), m(t) < gq-(t).

Proor. (1) [8, §72].

(2) We only show that p,(t) < q(t). If n = ¢(t) < oo then t"B =
t"T1B. Take b € B with t" = t""'b. If ¢ € L(¢t"*') then ct" = ct"T'b = 0,
thus ¢ € L(t"), therefore L(t"') C L(t"), thus p,(t) < n. a
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From [15, Theorem 3.3] we get the following characterization of ele-
ments of 9.

PROPOSITION 4.2.  Fort € B the following assertions are equivalent.
(1) teBs.

(2) pi(t) = @u(t) < 1.
(3) pr(t) = qo(t) < 1.
(4)

4) There is u € B with tut =t and tu = ut.

COROLLARY 4.3. Let A be a complex semisimple algebra with iden-
tity. Suppose that 0 < p =p(z) = q(z) < co. Then P € ®,(A).

PROOF. Since p;(z?) = ¢ (z?) < 1, it follows from Proposition 4.2,
that zPuz? = zP and zPu = ux? for some v € A. Then we get e — xPu —
ur? = e — 2uz? and (e — 2uz?)* = e. Thus

e—2Pu—ur’ € A7 CD(A) . 0

PROPOSITION 4.4. Suppose that t,u,ty,ty € B.
(1) If t1,ts € BY, tity = tity then tit, € BY.

(2) If t € B and n € IN then t" € BY.

(3) If t € BY then there is a unique s € B with

tst =t, sts =s and ts = st .

Furthermore we have s € B9 and if ta = at for some a € B, then sa = as.
(4) If t,u € B? and tu = ut =0, then t+u € BY.
(5) € — tltg S BY <— e *tgtl S B9.
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Proor. (1) follows from Proposition 3.4 in [15] and 4.2.
(2) follows from (1).

(3) Proposition 3.9 in [15] shows that there is a unique s € B such
that tst = t, sts = s and ts = st. From Proposition 4.2 (4) we get s € BBY.
If ta = at, then

sta = sat = satst = sat’s = st’as = tas ,
thus s?ta = tas?® and therefore
sa = stsa = s’ta = tas® = ats®> = as .

(4) From (3) we get s,v € B such that tst = t, sts = s, ts = st,
uvu = u, vuv = v and uv = vu. Then

(t+u)(s+v)=ts+tv+ us + uv = ts + tvuv + usts + uv =
=ts + tuv® + uts® + uwv = ts + uv .

A similar computation gives (s+v)(t+u) = st+vu. Thus (t+u)(s+
v) = (s +v)(t + u). From Proposition 4.2 we get ¢t + u € BY since

(t+u)(s+v)(t+u) = (ts +uv)(t + u) = tst + tsu + uvt + vou =
=t+stutovutt+tu=t+u.

(5) We only have to show that e —t,t, € B9 implies e — tot; € B?. By
Proposition 4.2 (4) there is a pseudo-inverse s of e —t,t, which commutes
with e — t1t,. Put r = e + tyst;. A simple computation shows that r is a
pseudo-inverse of e — t5t; which commutes with e — tot;. O

NoTATIONS. Let B be a Banach algebra and ¢ € B. By o(t) and
r(t) we denote the spectrum and the spectral radius of t, respectively. If
D C Cis open, o(t) € D and f: D — C holomorphic, then f(¢) is
defined by the well-known operational calculus.

PROPOSITION 4.5. Suppose that B is a Banach algebra and t € 9.
(1) t is quasinilpotent if and only if t = 0.
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(2) If t # 0 and if s is the unique pseudo-inverse of t with the prop-
erties in part (3) of Proposition 4.4, then
(i) s is not quasinilpotent;

(i) o(s )\{0} ={ e C\{0}: ;eo(t)};

(iii) t € B™! or 0 is a pole of order 1 of (Ne—1t)™*

(iv) dist(0,0(t)\{0}) = r(s)".

(3) Suppose that 0 € o(t), D C C is a region, o(t) C D, f: D— C
holomorphic, injective and f(0) = 0. Then f(t) € BY.

PROOF. [16, Propositions 2.6, 2.7 and 2.13]. 0

PROPOSITION 4.6.  Let Ay, ..., A\, pairwise distinct complex num-
bers. If t € B and
H (t —Ne)

then t — Ae € B9 for each A € C.

PROOF. [16, Proposition 2.4]. 0

5 — Algebraic properties of ®,(A)

As in Section 3 we denote by A a complex semisimple algebra with
identity. Furthermore we assume {0} # soc(A).

THEOREM 5.1. ®,(A) +soc(A) C O (A).

PROOF. Let 2 € ®,(A) and s € soc(A). Then z+s5 =Z+5=2.
By (3.14), # € A9, thus z + s € A%, hence = + s € ®,(A). a

REMARK. From Proposition 3 (2) we know that
DO(A)+I(A) CP(A) .
In Section 6 of this paper we shall see that in general

Dy (A) + I(A) £ By(A) -
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THEOREM 5.2. (1) If z1,25 € ®,(A) and z,29 — 292, € soc(A),
then xyzy € @, (A).
(2) If x € ®,(A) and n € IN, then 2™ € O (A).

PRrROOF. (1) By (3.14), 1,25 € A9. Since T1Ty = ToX1, we get from
Proposition 4.4 (1), that #1722 = 712> € AY. By (3.14), z125 € ®,(A).
(2) follows from (1). 0

REMARKS. (1) In [15, 1.7 (d)] it is shown by an example, that if
x1, Ty € P, (A) it does not follow that zyz5 € P (A).

(2) In [15, 1.7 (b)] it is shown by an example, that if z" € ®,(.A) for
some n € IN it does not follow that x € ®,(A).

THEOREM 5.3. For xi,z, € A we have:

e— 1122 € Py(A) <= e—xam1 € D (A) .

PROOF. Proposition 4.4 (5) and (3.14) give

e— 111y € By(A) = 6 — 117 € A =
= e—wx € P, (A) . 0

THEOREM 5.4. For x € A the following assertions are equivalent:
(1) z € B4(A);
(2) there is y € A such that xyx = x and Ty = yz.

PROOF. (1) = (2): From Z € A it follows that there exists some
u € A with ZuZ = = and Zu = uZ (Proposition 4.2 (4)). Then we have
zur—x € soc(A). Proposition 3.8 shows that xuz —z is relatively regular.
Let r be a pseudo-inverse of xux — x. Then

Y=U—T+UTr + 17U — UTTTU
is a pseudo-inverse of z (Proposition 2.2). Then it is easy to see that
Ty = Tu = ur = yzr.
(2) = (1) Proposition 4.2 (4) gives Z € A9, thus z € ®,(A). a
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THEOREM 5.5. For x € ®,(A) the following assertions are equiva-
lent:

(1) z € ®(A);
(2) nul(z) < oo;
(3) def(z) < 0.

PROOF. It is clear that (1) implies (2) and (3).
(2) = (1): Take a pseudo-inverse y of x with yz = Zy (Theorem 5.4).
Since

Q.

nul(z) = O(R(z)) = O((e — yz)A) < o,

we get from Proposition 3.4 (5), that e—yz € soc(.A), hence € = yz = Zy,
thus 7 € A71.
A similar proof shows that (3) implies (1). g

THEOREM 5.6. Suppose that x,u € ®,(A) and that zu, ux € soc(A).
Then x4+ u € ®,(A).

~

PROOF. Since 7,4 € A9 and 71 = 0 = ux, Proposition 4.4 (4) gives
Ttu=I+0e€ A% thus x4+ u e d,(A). 0

6 — Topological properties of ®,(A)

In this section we assume that A is complex semisimple Banach al-
gebra with identity e # 0. From [4, R. 3.6] it follows that

A#I(A) <= dimA=00.
Hence, if dim A = oo, A = A/I(A) is a complex Banach algebra with
identity € # o.
The first result in this section is an improvement of Theorem 3.11 (4).

THEOREM 6.1.  Suppose that x € ®,(A), z € ®(A) and vz — zx €
soc(A). Then there is 6 > 0 such that

x—Az€P(A) for 0 < [N\ <0.
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Proor. Take u € A such that zu = uz = e. From 7z = 2T we
get T = Z(uz) = TzZu = zzu, thus 4T = UzTu = Zu, hence zu — ux €
soc(A). Since u € ®(A) C ®,(A), we derive from Theorem 5.2 (1)
that uz € ®,(A). Theorem 3.11 (4) shows that there is 6 > 0 such
that uz — Xe € ®(A) for 0 < |A| < §. This implies, since z € ®(A),
that zux — Az = z(ux — Xe) € ®(A) (0 < |A| < §). Then we have for
0 < |A] < that

TN =2uz - e Al

thus z — Az € ®(A). a
DEFINITION. Let z € A. The set
op(x)={ e C: Xe—x ¢ P(A)}

is called the Fredholm spectrum of z. If og(x) = {0}, then z is called a
Riesz element of A.

If dim A = oo, then by Proposition 3.7 (2)

and (see Theorem 6.1)
dist(0, e (2)\{0}) > 0 if z € ®,(A) .
Suppose that x € ®,(A), then there is y € A such that
(6.2) ryr =z, yry=y, and xy—yx € soc(A).

In fact, by Theorem 5.4, zyox = x and xyy — yox € soc(A) for some
yo € A. Then y = yoxy, satisfies (6.2).

THEOREM 6.3.  Suppose that dim A = oo, x € ®,(A) and y is a
pseudo-inverse of x which satisfies (6.2).

(1) = is a Riesz element <= y is a Riesz element. In this case
oe(x) = {0} and dist(0, 04 (x)\{0}) = cc.
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(2) If x is not a Riesz element, then

To\0} = {A € OV[0}: 5 € on(a)]}

and

dist(0, o9 (2)\{0}) = (@) " .

PROOF. (1) (6.2) and Proposition 4.2 (4) show that Z,7 € A9, There-
fore, by Proposition 4.5 (1) and (6.2)

 is Riesz <= r(Z) = T=0 = J=0

=0
< r(y) =0 < yis Riesz.

(2) From (1) we see that 7(z), r(y) > 0. Proposition 4.5 (2) (ii) shows
that

73 (y)\ 0} = o @\(0} = {X € ©\{0} : | €@} =

— {,\ e C\{0}: % € %(w)} :

From Proposition 4.5 (2) (iv) we conclude that

dist (0, o (2)\{0}) = dist(0, o(#)\{0}) = r(H)~" . 0

THEOREM 6.4.  Suppose that dimA = oo, x € ®,(A), 0 € o(z),
D C C is a region, o(x) C D, f: D — C is holomorphic and injective
and f(0) =0. Then f(z) € ®,(A).

PROOF. It is clear that o(Z) C o(z).
CAse 1. =z € ®(A). Hence 0 ¢ o(x). Since f is injective and
f(0) =0, we get

0¢ fo(2) =o(f(7)) = o(f(2)) = o (f(z)) ,

thus f(z) € ®(A) C & (A).

CASE 2. z ¢ ®(A). Then 0 € o(Z). Let y be a pseudo-inverse of
such that (6.2) holds. Since f’ is injective, there is a holomorphic function
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g: f(D)— C such that g(f(\)) = A. Without loss of generality we can
assume that f'(0) = ¢’(0) = —1, thus there is h : f(D) — C holomorphic
such that

g(A) = =X+ Xh()) .

Put ¢ = ho f. From

we derive

(6.5) z = f(x)p(x)f(x) - fz) .

Since z is relatively regular, (6.5) and Proposition 2.2 show that f(x)
is relatively regular and that

r=o(x) = [p(x)f(x) — elylp(z) f(z) — €]

is a pseudo-inverse of f(z) (observe that f(z)p(z) = ¢(x)f(z)). From
Ty = yx we get §f(z) = f(x)y and yo(z) = @(x)y, thus 7f(x) = f(2)7.
Hence

@ —7f(z) - f(a)F)? = (€— 27f(2))* =

= & — 47 f(z) + 47 f(2)Tf(zx) =€ .
———

=f(x)
This shows that e — rf(z) — f(x)r € ®(A). a

For our next results we denote by M the closure of a subset M C A.

THEOREM 6.6. Letx € A.

(1) If x is relatively reqular then xAx is closed.
(2) x € soc(A) & dimzAxr < oco.

(3) If x is relatively regular then

xz €soc(A) & z €soc(A).



602 D. MANNLE — C. SCHMOEGER [20]

PROOF. (1) Let y be a pseudo-inverse of . Then zA = zy A, Az =
Ayz, xy and yr are idempotent. It follows that A and Az are closed,
thus xA N Az is closed. To complete the proof we show that

zAr =z AN Az .

The inclusion “C” is clear. Take z € AN Az, thus z € xyA and z € Ayzx,
hence z = zyz and z = zyzx. This gives z = zy(zyx) = z(yzy)z € xAx.
(2) is shown in [1].
(3) We only have to show the implication “=". There is a sequence
(x,) in soc(.A) such that ||z, — x| = 0 (n — o00). Thus there is v > 0

with [|z,|| < v for all n € IN. Define the bounded linear operators
F,, K:A— Aby

F,a =x,az, and Ka=uzax (a € A, neN).
For each a € A we get

|Ka — Fal| = ||[(x — x,)az + z,a(z — x,)|| <
< lall(lzll +Vllz =zl
hence ||[K = F,|| < (lz] + )]z — zn]].
This shows that (F,) converges uniformly to K. From (2) we get
that each F), is a finite-dimensional operator, hence K is compact. Since

x is relatively regular, K has closed range, by (1), hence K has a finite-
dimensional range. Now use (2) to get = € soc(A). a

REMARK. From Proposition 3.7 (2) we know that

O(A) +I(A) CD(A).

Now take = € soc(A). Since 0 € ®,(A), we have z € ®,(A) + soc(A).
Theorem 6.6 (3) shows that

z € P (A) & xesoc(A).

Thus, in general,

P, (A) +soc(A)  D,(A) ,
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hence

Dy (A) + I(A) £ By(A) -

THEOREM 6.7. Let dim A = oo and let © € ®,(A). The following
assertions are equivalent:

(1) x is a Riesz element of A.
(2) zeI(A).
(3) = € soc(A).

PRrROOF. (1) = (2): If z is a Riesz element then Z is quasinilpotent.
As in the proof of Theorem 6.3 we have # € A% Proposition 4.5 (1)
shows then that Z = 0, hence z € I(A).

(2) = (3): By A we denote the quotient algebra A/soc(A). Since
dimA = 0o (& A # I(A)), A is a Banach algebra with identity é # 0,
where % = z +soc(A) denotes the coset of z in A. Take A € €\{0}. Then
N —Z = Aé € AL, From Proposition 3.7 (2) we get Ae —x € ®(A), thus
e — 7 € AL, hence, for some z € A,

z(de —x) —e, (Ae —x)z — e € soc(A)

therefore 2(A\é — &) = é = (A\é —Z)%. This gives \é —& € A~!. Thus, since
A € C\{0} was arbitrary, & is quasinilpotent. Let y be a pseudo-inverse
of x such that (6.2) holds. Proposition 4.2 (4) shows that Z € A9. Now
use Proposition 4.5 (1) to derive & = 0. Therefore 2 € soc(A). Theorem
6.6 (3) gives = € soc(A).

(3) = (1). For each A € C\{0} we have e —x € ®(A) + soc(A) C
O(A). g

Let J be an ideal in A. J is called a ®-ideal, if soc(A) C J C I(A).
It is clear that soc(.A), soc(A) and I(.A) are ®-ideals and that

P(A)+ T < B(A)
for each ®-ideal J.
COROLLARY 6.8. Suppose that dim A = oo, J is a ®-ideal and that

Dy(A) + T C 0y(A) .



604 D. MANNLE — C. SCHMOEGER [22]

Then J = soc(A).

PrOOF. Take a € J. Thena = 0+a € ®,(A) + T C D (A).
Since a € I(A), \é —a = )\é, thus we have that \e —a € ®(A) for
A € C\{0}. Therefore a is a Riesz element and a € ®,(A). Theorem 6.7
gives a € soc(A). 0

THEOREM 6.9. @,(A) C &(A).

PRrOOF. Use Theorem 3.11 (4). g

7 — Ascent and descent of elements in ¢,(A)

In this section we assume that A is a complex semisimple Banach
algebra with identity e and that soc(A) # {0}.

For x € A we define
A(z)={ae€Ny: Rx)Nz* A= R(x)Nx**A forall k >0}
and

A (z)={B€Ny: L(x)NAz"” = L(x) N Az’** for all k > 0}.

ProproOSITION 7.1. Ifz € A and n € INy, then
(z) Nz A ={0};

2) q(z) <n & R(a")+zA=A;
(

n < L(x)NAz™ = {0};
A(z) = {a € Ny: R(x*)+xA = R(z**)+z2A forall k >0}
A.(z) ={B € Ny : L(z?)+Ax = L(z°**)+ Az for all k> 0}.
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PrOOF. We only show (1), (2) and (5). The proofs for (3), (4) and
(6) are similar.

(1) follows from [8, Satz 72.1].

(2) “=" By [8, Satz 72.2], there is a subspace U of A such that
A=U®zAand U C R(z™). Thus R(z") + zA = A.

“<": Take y € " A. Then y = x"a for some a € A. There are u,v
with a = u+v, v € R(z") and v € zA. It follows that y = 2" (u 4+ v) =
z"v € " A. Hence ¢, (z) < n.

(5) Denote by M the set on the right side in (5). Let « € A;(z) and
take z € R(z*™') + zA, hence z = u + v with v € R(z*™') and v € A.
Then z*u € R(z) Nz*A = R(z) N z*"A, thus 2°u = z*"'w for some
w € A, hence u — zw € R(z®). It follows that z = u + zv = (u — zw) +
r(w+v) € R(z®)+xA. We have shown that R(z**!)+2A = R(xz*)+zA.
By induction we see that a € M.

Now let o« € M and take z € R(xz) N x*A. Then there is y € A
with z = 2%y and 2*t'y = 0. Thus y € R(z*™') C R(z*™') + zA =
R(z*) + zA. Therefore y = y; + yo with y; € R(z*), y» € xA. Then
z=x%(y1 +y2) = %Y € 2 A, thus z € R(z) Nzt A. We have shown
that R(z)Nz*A = R(z)Nz*T' A. By induction we see that o € A;(z). [

PROPOSITION 7.2. Let x € ®,(A). Then
(1) ©(R(z)NzA) < 00

(2) ©(L(x) N Ax) < 00 ;

(3) Ay(z) #0 and A.(x) #0 .

PrOOF. We only show that O(R(z) NzA) < oo and A(z) # 0. Take
a pseudo-inverse y of x such that v = e—zxy—yzr € ®(A). If z € R(z)NzA,
then z = (e — yx)z = zyz, hence vz = z — xyz — yxrz = 0, thus z € R(v).
Therefore R(z) Nz A C R(v). It follows from Proposition 3.4 (3) and
3.5 (4) that ©(R(z) NzA) < O(R(v)) = nul(v) < co. For n € IN put
0, = O(R(z)Na"A). Since R(x)Nz"" A C R(x)Nz"A we derive from
Proposition 3.4 (3) that

0< <01 <6, <---<O; <0,
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Since 6,, € INg for n € IN, there is some « € IN such that 6, = ©, for
all k > 0. Use Proposition 3.4 (3) to see that R(z)Nz*A = R(z)Nz***A
for all £ > 0. Hence a € Aj(x). g

In view of Proposition 7.2 (3) we define for x € ®,(A):

0i(x) =min Ay(z) and §,(x) = minA,.(z) .

PROPOSITION 7.3. For z € ®,(A) we have

(1) pi(z) = ¢-(2) and q(z) = p.(z) .
(2) If a = §;(x) then

p(z) <oo & R(z)naz*A={0}.

In this case p)(x) = 6,(x).
(3) If B = 6,(x) then

qg(z) <oo & LE°)+Az=A.
In this case q(x) = 6,(x).

PROOF. (1) Proposition 4.1 (2) gives p;(z) < ¢,.(x). Without loss of
generality we assume that n = p,(z) < co. Since z", 2" € & (A), ="
and z"! are relatively regular. Thus Az™ = Ap, Ax"™' = Aq for some
p=p? q=q*> € A Then it follows that

(e =pJA=R(a") = R@""") = (e —q)A,

thus e — ¢ = (e — p)(e —q) = e — q— p + pq, hence p = pq. Then
Az™ = Ap = Apq C Aqg = Az"' C Az™. Hence q,(z) < n = p(z).

The proof for q;(x) = p,.(z) is similar.

(2) “=": Put p = p;(x). Proposition 7.1 (1) gives R(x) Nz? A = {0},
thus p € Aj(x) and a < p.

“«<” follows from Proposition 7.1 (1).

(3) Similar. a0
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For the rest of this section we always assume that A is a Banach algebra.

For our further investigation the following concepts will be useful.

For x € A we define

a;(z) = {p € C: there is a neighbourhood U of p and a holomorphic
function f : U — A such that (Ae — z)f(A\) = 0 on U

and f(p) # 0} .

a,(x) = {p € C: there is a neighbourhood U of y and a holomorphic
function f : U — A such that f(A)(Ae —z) =0 on U

and f(p) # 0} .

It is clear that a;(z) and a,(z) are open subsets of C.

PROPOSITION 7.4. Letz € A.
(1) If Ao € ay(x) then py(Aoe — z) = q(Aoe — ) = 00 .
(2) If Xo € a,(x) then p.(Aoe — ) = ¢ (Noe — ) =00 .

PROOF. [13, Theorem 3.5]. g

LEMMA 7.5. Let u € ®(A).
(1) p(u) =0 < nul(u) =0.
(2) qi(u) =0 < def(u) =0.

PrOOF. (1) p(u) =0 < R(u) ={0} < nul(u)=0.
(2) Use Proposition 7.3 (1) to get

q(u) =0 < p.(u)=0 < L(u)={0} < def(u)=0. g

In Theorem 3.11 (4) we have seen that if € ®,(.A), then there is

0 > 0 such that e —x € ®(A) for 0 < |A\| < ¢. This and Theorem 3.6
(3) (ii) show

PROPOSITION 7.6. If x € ®,(A), then there is € > 0 and there are
n,m € Ny such that

nul(Ae —x) =n and def(Ae —z) =m  for 0< |\ <e€.
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THEOREM 7.7. Let x € ®,(A).
(1) If pi(z) (= ¢-(z)) < o0, then there is € > 0 such that

p(de —z) =nul(de —z) =0 for 0 < |\ < €.

(2) If qi(x) (= pr(z)) < 00, then there is € > 0 such that

g(Ae—z)=def(Ae —z) =0for 0 < [N < €.

(3) The following assertions are equivalent:
(i) pu(2) (= gr(2)) = 00
(i) 0 € a(z) .
(iii) There is € > 0 with nul(Ae —x) > 0 for |\ < €.

(4) The following assertions are equivalent:
(i) a(z) = (p(z)) =00 .
(i) 0 € a,(z) .
(iii) There is € > 0 with def(Ae — x) > 0 for |\ < €.

PROOF. We only prove (1) and (3).

(1) Define the bounded linear operator T': A — A by Ta = za (a €
A). Then p(T) = p/(z) and T"(A) = 2" A (n € IN). Since 2" € ®,(A),
x™ is relatively regular, thus 7"(A) is closed. Lemma 2.5 in [9] shows
that there is € > 0 with p(AI —T") =0 for 0 < |A\| < e. Use Lemma 7.5 to
conclude that (1) holds.

(3) (i) = (ii): Write M = ﬂ 2" A. As above, each z"A is closed,
thus M is a closed subspace of A We have

(7.8) M =M.

In fact, since the inclusion “C” is clear, we only have to show that
M C zM. Since A;(z) # () (Proposition 7.2), there is o € INy with

R(x) N2 A= R(x) Nz A for k>0.
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Take y € M. Then there is a sequence (u;)32; in A such that y =
xtry, for k > 1. Put z, = 2% — 2%  1u,. Then zz, = 0, thus
zx € R(z) Na*A = R(z) Na*T =1 A for all k > 1. It follows that

rouy = 2z, + 2y € 22T A (B> 1) .

Hence 2%u; € M and therefore y = 2*"'u; € xM. The proof of (7.8) is
now complete.

(7.8) and the open mapping theorem show that there is a constant
v > 0 such that

for each y € M thereis ze M with zz=y and ||z]| <~y .

Since R(x) N M = R(xz) N z*A and p;(z) = oo, we get some ay €
R(xz) N M with ag # 0 (Proposition 7.1 (1)).

Now use (7.9) to construct a sequence (a,, )22 ; such that

ZTpp1 =a, and |a,|| <A"|lag|] for neIN.

Put U={ e C: |\ <1/y}and f(N) = f: a,A". Then f is holomor-
n=0

phic on U and a simple computation gives
(e —x)f(A) = —xap=0 foreach AeU.

From f(0) = ag # 0 we derive 0 € a;(x).

(ii) = (iii): Since a;(z) is open, there is € > 0 such that A € q;(x) for
|A| < e. Take A\g € C with |A¢| < e. Then there is a neighbourhoud V' of
Ao and a holomorphic f : V — A with f(X\g) # 0 and (Ae — ) f(Ag) = 0.
This shows that R(Age — x) # {0}, thus nul(Age — x) > 0.

(ili) = (i) Assume to the contrary that p;(z) < oo. (1) shows that
there is a positive § < € such that nul(Ae —z) = 0 for 0 < || < 0, a
contradiction. g
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For z € A we define
D (z)={AeC: Xe—zec Py (A)}.

It is clear that C\o(x) C ®,(x). From Theorem 3.11 (4) we see that
®,(x) is open.

THEOREM 7.10. Let x € A and let C' be a connected component of
Py(z).
(1) Either py(Ae—z) < oo for all A € C or py(Ae—x) = 0o for all X € C.
(2) Either qy(Ae —x) < oo for all X € C or qi(Ae —x) = oo for all X € C.

ProOOF. We only show (1). The proof for (2) is similar since g;(Ae —
x) = p.(Ae — x).

Put M ={A e C: p(le—x) < oco}. Theorem 7.7 (1) shows that M
is open.

Take Ao € C\M, hence p;(Aoe — x) = oco. Theorem 7.7 (3) gives
Ao € ai(z). Since a;(x) is open, there is € > 0 such that A € a;(x) if
|IA—Xo| < €. Then it follows from Proposition 7.4 (1) that p;(Ae—z) = oo
if ]\ — X\g| < e. Hence C\M is open. Since C' is connected, M = () or
C=M. a

THEOREM 7.11. For z € ®,(A) the following assertions are equiv-
alent:

(1) 0 is a boundary point of o(x).
(2) 0 is an isolated point of o(x).
(3) 0 is a pole of (Ae —x)~L.

PROOF. The implications (3) = (2) = (1) are clear.

(1) = (3): By C we denote the connected component of ®,(z) for
which 0 € C. There is some € > 0 such that for U = {\ € C: |\ < €}
we have U C C and U N (C\o(z)) # 0. For A € U N (C\o(x)) we have
pi(Ae—x) = ¢ (Ae—x) = 0. Theorem 7.10 shows now that p,(z), ¢(x) <
oo. Observe that pi(x), ¢(x) > 0. Proposition 4.1 (1) shows then that
0 < p(z) = q(z) < oo. From [18, Theorem 15.6] (see also [11]) we
conclude that 0 is a pole of (Ae — z)~!. 0
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EXAMPLES FOR @, (z).
(1) If = € soc(A) then ®,(z) = C.

(2) If = € soc(A)\soc(A) then ®,(x) = C\{0} (see Theorem 6.6).
(3) If x is a Riesz element then C\{0} C ®,(x).
(4)

4) Let z € A with 22 = z. Then o(z) C {0,1}, thus C\{0,1} C
®,(z). We also have (e — z)> = e — x. Therefore, by Example 3.9 (5),
0,1 € ®,(x). Thus ¢,(x) = C.

We close this paper with

THEOREM 7.12.  Suppose that dim A = oo and let x € A. The
following assertions are equivalent:

(1) @y(z) = C.
(2) There are Ay, ..., Ay € C with X\; # X\ fori # j and

[z — Xje) € soc(A) .
j=1

ProOF. (1) = (2): Take p € o(x). Since p € ®,(z), it follows from
Theorem 3.11 (4) that there is an open neighbourhood U, of p with

(7.13) x—Xe € ®(A) for e U \{p}.

Since o(z) € U U, and o(x) is compact, there are A\y,..., A, €

peEa(x)
o(x) such that
c U Uy, -
j=1

This and (7.13) show that og(x) = (f) C {A\,..., A}, Since
dimA = oo, o(x) # 0, thus o(Z) = {\ )\}W1thm<nand
Ai # A; for i@ # j. Define the polynomial p by p( )= [T (A—A;). Then

j=1

0 (p(x)) = o(p(x)) = o(p(¥)) = p(a(z)) = {0} .
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It follows that p(z) is a Riesz element. Since x — \je € ®,(A) for
j =1,...,m, we have p(z) € ®,(A) (see Theorem 5.2 (1)). Now use
Theorem 6.7 to get p(z) € soc(A).

m

(2) = (1): Let p denote the polynomial p(A) = ] (A — A;). Since

j=1
p(z) € soc(A), 0 = p(z) = p(z). Proposition 4.6 yields # — A\é € A? for
each A € C, thus ®,(z) = C. g
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