# Generalized Fredholm theory in semisimple algebras 

D. MÄNNLE - C. SCHMOEGER

Riassunto: Sia $\mathcal{A}$ una algebra complessa semisemplice con identità $e \neq 0$. Sia $\Phi_{g}(\mathcal{A})$ la sottoclasse formata dagli elementi $x \in \mathcal{A}$ che verificano la seguente condizione:
$\exists y \in \mathcal{A}$ : tale che $x y x=x$, e inoltre $e-x y-y x$ è un elemento di Fredholm. Ogni elemento di Fredholm appartiene a $\Phi_{g}(\mathcal{A})$. Si studia la classe $\Phi_{g}(\mathcal{A})$ i cui elementi sono detti elementi di Fredholm generalizzati.

Abstract: Let $\mathcal{A}$ be a semisimple complex algebra with identity $e \neq 0$. We write $\Phi_{g}(\mathcal{A})$ for the following class of elements of $\mathcal{A}$.

$$
\Phi_{g}(\mathcal{A})=\{x \in \mathcal{A}: \exists y \in \mathcal{A} \text { such that } x y x=x \text { and } e-x y-y x \text { is Fredholm }\} .
$$

Each Fredholm element of $\mathcal{A}$ belongs to $\Phi_{g}(\mathcal{A})$. Elements in $\Phi_{g}(\mathcal{A})$ we call generalized Fredholm elements. In this paper we investigate the class $\Phi_{g}(\mathcal{A})$.

## 1 - Introduction

In this paper we always assume that $\mathcal{A}$ is a complex algebra with identity $e \neq 0$. If $X$ is a complex Banach space, then it is well known that $\mathcal{L}(X)=\{T: X \rightarrow X: T$ is linear and bounded $\}$ is a semisimple Banach algebra.

In [1] S. R. Caradus has introduced the class of generalized Fredholm operators. $T \in \mathcal{L}(X)$ is called a generalized Fredholm operator, if
there is some $S \in \mathcal{L}(X)$ with $T S T=T$ and $I-T S-S T$ is a Fredholm operator. This class of operators is studied in [15], [16] and [17].

If $\mathcal{A}$ is semisimple, generalized Fredholm elements in $\mathcal{A}$ are introduced in [10] as follows: $x \in \mathcal{A}$ is called a generalized Fredholm element if there is some $y \in \mathcal{A}$ such that $x y x=x$ and $e-x y-y x$ is a Fredholm element in $\mathcal{A}$. Some of the results in [15] and [16] are generalized in [10].

The present paper is an improvement and a continuation of [10]. Furthermore we generalize some of the results in [17].

In Section 2 of this paper we collect some results concerning relatively regular elements in algebras. Section 3 contains a summary of Fredholm theory in semisimple algebras. In section 4 we investigate generalized invertible elements. This concept will be useful in the next sections, where we present the main results of this paper.

In Section 5 we study algebraic properties of generalized Fredholm elements. Section 6 contains a characterization of Riesz elements in complex semisimple Banach algebras and a result concerning the stability of generalized Fredholm elements under holomorphic functional calculus. Section 7 contains various results on ascent and descent and a "punctured neighbourhood theorem" for generalized Fredholm elements.

## 2 - Relatively regular elements

An element $x \in \mathcal{A}$ is called relatively regular, if $x y x=x$ for some $y \in \mathcal{A}$. In this case $y$ is called a pseudo-inverse of $x$.

Proposition 2.1. For $x \in \mathcal{A}$ the following assertions are equivalent:
(1) $x$ is relatively regular.
(2) There is $y \in \mathcal{A}$ with $x y x=x$ and $y x y=y$.
(3) There is $p=p^{2} \in \mathcal{A}$ with $x \mathcal{A}=p \mathcal{A}$.
(4) There is $q=q^{2} \in \mathcal{A}$ with $\mathcal{A} x=\mathcal{A} q$.

Proof. (1) $\Rightarrow(2)$ : Suppose that $x y_{0} x=x$. Put $y=y_{0} x y_{0}$. Then it is easy to see that $x y x=x$ and $y x y=y$.
$(2) \Rightarrow(1):$ Clear.
$(1) \Rightarrow(3):$ Take $y \in \mathcal{A}$ with $x y x=x$ and put $p=x y$. Then $x \mathcal{A}=x y x \mathcal{A} \subseteq p \mathcal{A}=x y \mathcal{A} \subseteq x \mathcal{A}$.
$(3) \Rightarrow(1):$ We have $p=x a$ for some $a \in \mathcal{A}$ and $x=p x$, thus $x=p x=(x a) x=x a x$.

Similar arguments as above show that (1) and (4) are equivalent.
Proposition 2.2. Suppose that $x, u \in \mathcal{A}$, xux $-x$ is relatively regular and that $r$ is a pseudo-inverse of $x u x-x$. Then $x$ is relatively regular and

$$
y=u-r+u x r+r x u-u x r x u
$$

is a pseudo-inverse of $x$.
Proof. From $(x u x-x) r(x u x-x)=x u x-x$, we get

$$
\begin{aligned}
x & =x u x-x u x r x u x+x u x r x+x r x u x-x r x= \\
& =x(u-u x r x u+u x r+r x u-r) x=x y x
\end{aligned}
$$

For $x \in \mathcal{A}$ we define

$$
R(x)=\{a \in \mathcal{A}: x a=0\} \text { and } L(x)=\{a \in \mathcal{A}: a x=0\}
$$

The proof of the next proposition is easy and left to the reader.
Proposition 2.3. Suppose that $x \in \mathcal{A}$ is relatively regular and $y$ is a pseudo-inverse of $x$. Then $x y, y x, e-x y$ and $e-y x$ are idempotent and

$$
\begin{aligned}
& x y \mathcal{A}=x \mathcal{A}, \mathcal{A} y x=\mathcal{A} x \\
& R(x)=(e-y x) \mathcal{A}, L(x)=\mathcal{A}(e-x y)
\end{aligned}
$$

A proof for the following result can be found in [6, p. 15].
Proposition 2.4. If $x \in \mathcal{A}$ is relatively regular, $x y x=x$ and $y x y=y$, then we have for $z \in \mathcal{A}$ :
$z$ is a pseudo-inverse of $x$ if and only if there is some $u \in \mathcal{A}$ with

$$
z=y+u-y x u x y
$$

## 3 - Fredholm theory in semisimple algebras

Throughout this section we assume that $\mathcal{A}$ is semisimple. This means that $\operatorname{rad}(\mathcal{A})=\{0\}$, where $\operatorname{rad}(\mathcal{A})$ denotes the radical of $\mathcal{A}$. For the convenience of the reader we shall summarize some concepts of the Fredholm theory in algebras. See [2]-[4], [11]-[14], [18]-[20] for details.

We call an element $e_{0} \in \mathcal{A}$ minimal idempotent, if $e_{0} \mathcal{A} e_{0}$ is a division algebra and $e_{0}^{2}=e_{0} . \operatorname{Min}(\mathcal{A})$ denotes the set of all minimal idempotents of $\mathcal{A}$.

Proposition 3.1. (1) Suppose that $\mathcal{R} \subseteq \mathcal{A}[\mathcal{L} \subseteq \mathcal{A}]$ is a right [left $]$ ideal in $\mathcal{A}$. Then $\mathcal{R}[\mathcal{L}]$ is a minimal right [left $]$ ideal if and only if $\mathcal{R}=e_{0} \mathcal{A}\left[\mathcal{L}=\mathcal{A} e_{0}\right]$ for some $e_{0} \in \operatorname{Min}(\mathcal{A})$.
(2) If $\operatorname{Min}(\mathcal{A}) \neq \emptyset$, then the sum of all minimal right ideals equals the sum of all minimal left ideals.

Proof. (1) [4, B.A. 3.1], (2) [5, Prop. 30.10.].
The socle of $\mathcal{A}, \operatorname{soc}(\mathcal{A})$, is defined to be the sum of all minimal right ideals if $\operatorname{Min}(\mathcal{A}) \neq \emptyset$. If $\operatorname{Min}(\mathcal{A})=\emptyset$, then we set $\operatorname{soc}(\mathcal{A})=\{0\}$. Proposition 3.1 shows that

$$
\begin{equation*}
\operatorname{soc}(\mathcal{A}) \text { is an ideal of } \mathcal{A}, \tag{3.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{Min}(\mathcal{A}) \subseteq \operatorname{soc}(\mathcal{A}) \tag{3.3}
\end{equation*}
$$

From now on we always assume in this section that $\operatorname{soc}(\mathcal{A}) \neq\{0\}$.
Suppose that $\mathcal{J} \subseteq \mathcal{A}$ is a right [left] ideal of $\mathcal{A}$. $\mathcal{J}$ has finite order if $\mathcal{J}$ can be written as the sum of a finite number of minimal right [left] ideals of $\mathcal{A}$. The order $\Theta(\mathcal{J})$ of $\mathcal{J}$ is defined to be the smallest number of minimal right [left] ideals which have sum $\mathcal{J}$. We define $\Theta(\{0\})=0$ and $\Theta(\mathcal{J})=\infty$, if $\mathcal{J}$ does not have finite order.

Proposition 3.4. Suppose that $\mathcal{J}$ and $\mathcal{K}$ are right [left $]$ ideals of $\mathcal{A}$ and $n \in \mathbb{N}$.
(1) $\Theta(\mathcal{J})<\infty \Leftrightarrow \mathcal{J} \subseteq \operatorname{soc}(\mathcal{A})$.
(2) $\Theta(\mathcal{J})=n$, if and only if there are $e_{1}, \ldots, e_{n} \in \operatorname{Min}(\mathcal{A})$ such that $e_{i} e_{j}=0$ for $i \neq j$ and

$$
\begin{aligned}
& \mathcal{J}=\left(e_{1}+\ldots e_{n}\right) \mathcal{A}=e_{1} \mathcal{A} \oplus \cdots \oplus e_{n} \mathcal{A} \\
& {\left[\mathcal{J}=\mathcal{A}\left(e_{1}+\cdots+e_{n}\right)=\mathcal{A} e_{1} \oplus \cdots \oplus \mathcal{A} e_{n}\right] .}
\end{aligned}
$$

(3) If $\Theta(\mathcal{K})<\infty, \mathcal{J} \subseteq \mathcal{K}$ and $\mathcal{J} \neq \mathcal{K}$ then $\Theta(\mathcal{K})<\Theta(\mathcal{J})$.
(4) $\Theta(x \mathcal{A})=\Theta(\mathcal{A} x)$ for each $x \in \mathcal{A}$.
(5) $\operatorname{soc}(\mathcal{A})=\{x \in \mathcal{A}: \Theta(x \mathcal{A})<\infty\}$.

Proof. (1) Clear. (2) and (3): [2, §2]. (4) and (5): [9].

## Definitions.

(1) For $x \in \mathcal{A}$ we define the nullity of $x$ by

$$
\operatorname{nul}(x)=\Theta(R(x))
$$

and the defect of $x$ by

$$
\operatorname{def}(x)=\Theta(L(x))
$$

(2) The group of the invertible elements of $\mathcal{A}$ is denoted by $\mathcal{A}^{-1}$.
(3) The quotient algebra $\mathcal{A} / \operatorname{soc}(\mathcal{A})$ is denoted by $\widehat{\mathcal{A}}$. For $x \in \mathcal{A}$ we write $\widehat{x}=x+\operatorname{soc}(\mathcal{A})$ for the coset of $x$ in $\widehat{\mathcal{A}}$.
(4) The set of Fredholm elements of $\mathcal{A}$ is given by

$$
\Phi(\mathcal{A})=\left\{x \in \mathcal{A}: \widehat{x} \in \widehat{\mathcal{A}}^{-1}\right\} .
$$

The next proposition contains some useful characterisations of Fredholm elements.

Proposition 3.5. For $x \in \mathcal{A}$ the following assertions are equivalent:
(1) $x \in \Phi(\mathcal{A})$.
(2) There are $p, q \in \operatorname{soc}(\mathcal{A})$ such that $p=p^{2}, q=q^{2}$ and

$$
\mathcal{A} x=\mathcal{A}(e-p), x \mathcal{A}=(e-q) \mathcal{A} .
$$

(3) $x$ is relatively regular and $R(x), L(x) \subseteq \operatorname{soc}(\mathcal{A})$.
(4) $x$ is relatively regular and $\operatorname{nul}(x), \operatorname{def}(x)<\infty$.
(5) $x$ is relatively regular and for each pseudo-inverse $y$ of $x$ we have $\widehat{x} \widehat{y}=\widehat{e}=\widehat{y} \widehat{x}$.
(6) $x$ is relatively regular and there is a pseudo-inverse $y$ of $x$ such that $\widehat{x} \widehat{y}=\widehat{e}=\widehat{y} \widehat{x}$.

Proof. (1) $\Leftrightarrow(2)$ [4, F.1.10].
$(2) \Rightarrow(3):$ It is easy to see that $R(x)=p \mathcal{A}$ and $L(x)=q \mathcal{A}$. Thus $R(x), L(x) \subseteq \operatorname{soc}(\mathcal{A})$.
$(3) \Leftrightarrow(4) \Leftrightarrow(5)$ : Suppose that $y$ is a pseudo-inverse of $x$. Proposition 2.3 gives

$$
R(x)=(e-y x) \mathcal{A} \text { and } L(x)=\mathcal{A}(e-x y)
$$

Therefore we get from Proposition 3.4 (1):

$$
\begin{aligned}
& R(x), L(x) \subseteq \operatorname{soc}(\mathcal{A}) \Leftrightarrow \Theta(R(x)), \Theta(L(x))<\infty \Leftrightarrow \\
& \Leftrightarrow \operatorname{nul}(x), \operatorname{def}(x)<\infty \Leftrightarrow e-y x, e-x y \in \operatorname{soc}(\mathcal{A})
\end{aligned}
$$

$(5) \Rightarrow(6):$ Clear.
$(6) \Rightarrow(1)$ : From $\widehat{x} \widehat{y}=\widehat{e}=\widehat{y} \widehat{x}$ we get $\widehat{x} \in \widehat{\mathcal{A}}^{-1}$, thus $x \in \Phi(\mathcal{A})$.
The index of $x \in \Phi(\mathcal{A})$ is defined by

$$
\operatorname{ind}(x)=\operatorname{nul}(x)-\operatorname{def}(x)
$$

A proof of the next result can be found in [19, Theorem 4.5 and Theorem 4.6].

Theorem 3.6. If $x, y \in \Phi(\mathcal{A})$ and $s \in \operatorname{soc}(\mathcal{A})$ then
(1) $x y \in \Phi(\mathcal{A})$ and $\operatorname{ind}(x y)=\operatorname{ind}(x)+\operatorname{ind}(y)$;
(2) $x+s \in \Phi(\mathcal{A})$ and $\operatorname{ind}(x+s)=\operatorname{ind}(x)$;
(3) If $\mathcal{A}$ is a Banach algebra then there are $\delta>0$ and $\alpha, \beta \in \mathbb{N}_{0}$ such that
(i) $x+u \in \Phi(\mathcal{A})$, ind $(x+u)=\operatorname{ind}(x), \operatorname{nul}(x+u) \leq \operatorname{nul}(x)$ and $\operatorname{def}(x+u) \leq \operatorname{def}(x)$ for all $u \in \mathcal{A}$ with $\|u\|<\delta$.
(ii) $\operatorname{nul}(\lambda e-x)=\alpha \leq \operatorname{nul}(x)$ and $\operatorname{def}(\lambda e-x)=\beta \leq \operatorname{def}(x)$ for $\lambda \in \mathbb{C}$ with $0<|\lambda|<\delta$.

The ideal of inessential elements of $\mathcal{A}$ is given by
$I(\mathcal{A})=\bigcap\{P: P$ is a primitive ideal of $\mathcal{A}$ with $\operatorname{soc}(\mathcal{A}) \subseteq \mathcal{P}\}$.
We write $\widetilde{\mathcal{A}}$ for the quotient algebra $\mathcal{A} / I(\mathcal{A})$ and $\widetilde{x}$ for the coset $x+I(\mathcal{A})$ of $x \in \mathcal{A}$.

Proposition 3.7.
$(1) \operatorname{soc}(\mathcal{A}) \subseteq I(\mathcal{A})$.
(2) $x \in \Phi(\mathcal{A}) \Leftrightarrow \widetilde{x} \in \widetilde{\mathcal{A}}^{-1}$.
(3) If $\mathcal{A}$ is a Banach algebra, then $I(\mathcal{A})$ is closed.

Proof. (1) Clear. (2) [4, F.3.2]. (3) Each primitive ideal of a Banach algebra is closed.

Proposition 3.8. Let $s \in \operatorname{soc}(\mathcal{A})$. Then $s$ is relatively regular and there is $b \in \operatorname{soc}(\mathcal{A})$ such that

$$
s b s=s \quad \text { and } \quad b s b=b .
$$

Proof. From Proposition 3.4 we get $e_{1}, \ldots, e_{n} \in \operatorname{Min}(\mathcal{A})$ with $e_{i} e_{j}=$ $\delta_{i j} e_{i}$ and

$$
s \mathcal{A}=\left(e_{1}+\cdots+e_{n}\right) \mathcal{A}=e_{1} \mathcal{A} \oplus \cdots \oplus e_{n} \mathcal{A}
$$

Put $p=e_{1}+\cdots+e_{n}$. Then $s \mathcal{A}=p \mathcal{A}$ and $p^{2}=p$. Proposition 2.1 shows that $s$ is relatively regular, hence there is $a \in \mathcal{A}$ with sas $=s$. Put $b=a s a$. Then $s b s=s$ and $b s b=b$.

Now we are ready to introduce the class of generalized Fredholm elements. First we give some examples.

Examples 3.9. (1) Let $s \in \operatorname{soc}(\mathcal{A})$. By Proposition 3.8 there is $b \in$ $\operatorname{soc}(\mathcal{A})$ such that $s b s=s$. Hence

$$
(e-s b-b s)+\operatorname{soc}(\mathcal{A})=\widehat{e} \in \widehat{\mathcal{A}}^{-1}
$$

thus

$$
e-s b-b s \in \Phi(\mathcal{A})
$$

(2) Let $x \in \Phi(\mathcal{A})$. Proposition 3.5 gives $\widehat{x} \widehat{y}=\widehat{e}=\widehat{y} \widehat{x}$ for each pseudoinverse $y$ of $x$. Thus

$$
(e-x y-y x)+\operatorname{soc}(\mathcal{A})=-\widehat{e} \in \widehat{\mathcal{A}}^{-1}
$$

hence

$$
e-x y-y x \in \Phi(\mathcal{A})
$$

(3) If $x \in \mathcal{A}^{-1}$ and $y=x^{-1}$, then $x y x=x$ and

$$
e-x y-y x=-e \in \mathcal{A}^{-1} \subseteq \Phi(\mathcal{A})
$$

(4) Let $x \in \mathcal{A}$ with $\mathcal{A}=x \mathcal{A} \oplus R(x)$ or $\mathcal{A}=\mathcal{A} x \oplus L(x)$. Theorem 3.3 in [15] shows that there exists $y \in \mathcal{A}$ such that $x y x=x$ and $x y=y x$. Therefore $e-x y-y x=e-2 x y$ and $(e-2 x y)^{2}=e-4 x y+4 x y x y=e$. Thus

$$
e-x y-y x \in \mathcal{A}^{-1} \subseteq \Phi(\mathcal{A})
$$

(5) Let $x \in \mathcal{A}$ with $x^{2}=x$. Put $y=x$. Then $x y x=x$ and $e-x y-y x=$ $e-2 x$. From $(e-2 x)^{2}=e$ we get

$$
e-x y-y x \in \mathcal{A}^{-1} \subseteq \Phi(\mathcal{A})
$$

In each of the above examples the elements $x \in \mathcal{A}$ has the following property: there is a pseudo-inverse $y$ of $x$ such that $e-x y-y x \in \Phi(\mathcal{A})$.

Therefore we call an element $x \in \mathcal{A}$ a generalized Fredholm element if $x$ is relatively regular and there is a pseudo-inverse $y$ of $x$ with $e-x y-y x \in$ $\Phi(\mathcal{A})$. By $\Phi_{g}(\mathcal{A})$ we denote the set of all generalized Fredholm elements of $\mathcal{A}$.

Before we state our first results concerning the class $\Phi_{g}(\mathcal{A})$ we need the following lemma.

Lemma 3.10. Suppose that $x, u \in \mathcal{A}$.
(1) If $x u x-x \in \mathcal{A}^{-1}$ then $x \in \mathcal{A}^{-1}$.
(2) If $x u x-x \in \Phi(\mathcal{A})$ then $x \in \Phi(\mathcal{A})$.

Proof. (1) Put $v=(x u x-x)^{-1}, x_{1}=v(x u-e)$ and $x_{2}=(u x-e) v$. Then $x_{1} x=v(x u-e) x=v(x u x-x)=e$ and $x x_{2}=x(u x-e) v=$ $(x u x-x) v=e$.
(2) Since $\widehat{x} \widehat{x} \widehat{x}-\widehat{x} \in \widehat{\mathcal{A}}^{-1}$, it follows from (1) that $\widehat{x} \in \widehat{\mathcal{A}}^{-1}$, thus $x \in \Phi(\mathcal{A})$.

Theorem 3.11.
(1) $\operatorname{soc}(\mathcal{A}) \subseteq \Phi_{g}(\mathcal{A})$.
(2) $\Phi(\mathcal{A}) \subseteq \Phi_{g}(\mathcal{A})$.
(3) If $x \in \Phi(\mathcal{A})$ and if $y$ is a pseudo-inverse of $x$, then $e-x y-y x \in$ $\Phi(\mathcal{A})$ and $\operatorname{ind}(e-x y-y x)=0$.
(4) If $\mathcal{A}$ is a Banach algebra and $x \in \Phi_{g}(\mathcal{A})$, then there is $\delta>0$ such that

$$
\lambda e-x \in \Phi_{g}(\mathcal{A}) \text { for all } \lambda \in \mathbb{C} \text { with }|\lambda|<\delta
$$

and

$$
\lambda e-x \in \Phi(\mathcal{A}) \text { for all } \lambda \in \mathbb{C} \text { with } 0<|\lambda|<\delta \text {. }
$$

Proof. (1) follows from Example 3.9 (1).
(2) follows from Example 3.9 (2).
(3) From Example 3.9 (2) we get $s \in \operatorname{soc}(\mathcal{A})$ such that $e-x y-y x=-e+s$. Use Theorem 3.6 (2) to derive

$$
\operatorname{ind}(e-x y-y x)=\operatorname{ind}(-e+s)=\operatorname{ind}(-e)=0 .
$$

(4) Take $y \in \mathcal{A}$ such that $x y x=x$ and $v=e-x y-y x \in \Phi(\mathcal{A})$. For $\lambda \in \mathbb{C}$ put

$$
w(\lambda)=(\lambda e-x)\left(y+\lambda^{2} e\right)(\lambda e-x)+(\lambda e-x) .
$$

An easy computation gives

$$
w(\lambda)=\lambda\left(\lambda(\lambda e-x)^{2}+\lambda y+v\right) .
$$

Since $\Phi(\mathcal{A})$ is open (Theorem 3.6 (3)), there is $\gamma>0$ such that $v+u \in$ $\Phi(\mathcal{A})$ for all $u \in \mathcal{A}$ with $\|u\|<\gamma$. There is $\delta>0$ such that

$$
\left\|\lambda(\lambda e-x)^{2}+\lambda y\right\|<\gamma \quad \text { for all } \quad \lambda \in \mathbb{C} \text { with }|\lambda|<\delta .
$$

Thus $\frac{1}{\lambda} w(\lambda) \in \Phi(\mathcal{A})$ for $0<|\lambda|<\delta$. This gives $w(\lambda) \in \Phi(\mathcal{A})$ for $0<|\lambda|<\delta$. From Lemma 3.10 we get $\lambda e-x \in \Phi(\mathcal{A})$ if $0<|\lambda|<\delta$.

Theorem 3.12. For $x \in \mathcal{A}$ the following assertions are equivalent:
(1) $x \in \Phi_{g}(\mathcal{A})$.
(2) There is $y \in \mathcal{A}$ such that $\widehat{x} \widehat{y} \widehat{x}=\widehat{x}$ and $\widehat{e}-\widehat{x} \widehat{y}-\widehat{y} \widehat{x} \in \widehat{\mathcal{A}}^{-1}$.

Proof. (1) $\Rightarrow$ (2) Clear.
$(2) \Leftarrow(1)$ : Since $x y x-x \in \operatorname{soc}(\mathcal{A}), x y x-x$ is relatively regular (Proposition 3.8). Proposition 2.2 shows that $x$ is relatively regular and that

$$
y_{0}=y-r+y x r+r x y-y x r x y
$$

is a pseudo-inverse of $x$, where $r$ is a pseudo-inverse of $x y x-x$. Then we get

$$
\begin{aligned}
\widehat{x} \widehat{y}_{0} & =\widehat{x} \widehat{y}-\widehat{x} \widehat{r}+\underbrace{\widehat{x} \widehat{y} \widehat{x}}_{=\widehat{x}} \widehat{r}+\widehat{x} \widehat{r} \widehat{x} \widehat{y}-\underbrace{\widehat{x} \widehat{y} \widehat{x}}_{=\widehat{x}} \widehat{r} \widehat{x} \widehat{y}= \\
& =\widehat{x} \widehat{y} .
\end{aligned}
$$

A similar argument shows that $\widehat{y}_{0} \widehat{x}=\widehat{y} \widehat{x}$. We summarize: $x y_{0} x=x$ and

$$
\widehat{e}-\widehat{x} \widehat{y}_{0}-\widehat{y}_{0} \widehat{x}=\widehat{e}-\widehat{x} \widehat{y}-\widehat{y} \widehat{x} \in \widehat{\mathcal{A}}^{-1}
$$

Thus $x \in \Phi_{g}(\mathcal{A})$.
Let $\mathcal{B}$ be a complex algebra with identity $e \neq 0$. In view of Theorem 3.12 it seems to be useful to consider elements $t \in \mathcal{B}$ with the following property:
$t$ is relatively regular and for some pseudo-inverse $s$ of $t$ the element $e-t s-s t$ belongs to $\mathcal{B}^{-1}$.

Therefore we define

$$
\mathcal{B}^{g}=\{t \in \mathcal{B}: t \text { has the property }(3.13)\}
$$

Elements in $\mathcal{B}^{g}$ can be called generalized invertible, since $\mathcal{B}^{-1} \subseteq \mathcal{B}^{g}$. Observe that $0 \in \mathcal{B}^{g}$, thus $\mathcal{B}^{-1}$ is a proper subset of $\mathcal{B}^{g}$. With these notations we have

$$
x \in \Phi(\mathcal{A}) \Leftrightarrow \widehat{x} \in \widehat{\mathcal{A}}^{-1}
$$

and, by Theorem 3.12,

$$
\begin{equation*}
x \in \Phi_{g}(\mathcal{A}) \Leftrightarrow \widehat{x} \in \widehat{\mathcal{A}}^{g} \tag{3.14}
\end{equation*}
$$

In the next section we shall investigate the class $\mathcal{B}^{g}$.

## 4 - Properties of $\mathcal{B}^{g}$

In this section $\mathcal{B}$ always denotes a complex algebra with identity $e$.
Let $V$ be a vector space and $T: V \rightarrow V$ linear. For the definitions of the ascent $p(T)$ and the descent $q(T)$ of $T$ we refer the reader to [8, §72].

Let $t \in \mathcal{B}$ and let the linear operators $L_{t}, R_{t}: \mathcal{B} \rightarrow \mathcal{B}$ be defined by

$$
L_{t}(b)=t b \text { and } R_{t}(b)=b t(b \in \mathcal{B})
$$

Then we have $L_{t}(\mathcal{B})=t \mathcal{B}, R_{t}(\mathcal{B})=\mathcal{B} t, \operatorname{kern} L_{t}=R(t)$ and $\operatorname{kern} R_{t}=$ $L(t)$.

Put

$$
\begin{array}{ll}
p_{l}(t)=p\left(L_{t}\right), & q_{l}(t)=q\left(L_{t}\right) \\
p_{r}(t)=p\left(R_{t}\right), & q_{r}(t)=q\left(R_{t}\right)
\end{array}
$$

Proposition 4.1. Let $t \in \mathcal{B}$.
(1) If $p_{l}(t)$ and $q_{l}(t)\left[p_{r}(t)\right.$ and $\left.q_{r}(t)\right]$ are both finite, then they are equal and for $n=p_{l}(t)\left[n=p_{r}(t)\right]$ we have

$$
\mathcal{B}=R\left(t^{n}\right) \oplus t^{n} \mathcal{B}\left[\mathcal{B}=L\left(t^{n}\right) \oplus \mathcal{B} t^{n}\right]
$$

(2) $p_{r}(t) \leq q_{l}(t), p_{l}(t) \leq q_{r}(t)$.

Proof. (1) [8, §72].
(2) We only show that $p_{r}(t) \leq q_{l}(t)$. If $n=q_{l}(t)<\infty$ then $t^{n} \mathcal{B}=$ $t^{n+1} \mathcal{B}$. Take $b \in \mathcal{B}$ with $t^{n}=t^{n+1} b$. If $c \in L\left(t^{n+1}\right)$ then $c t^{n}=c t^{n+1} b=0$, thus $c \in L\left(t^{n}\right)$, therefore $L\left(t^{n+1}\right) \subseteq L\left(t^{n}\right)$, thus $p_{r}(t) \leq n$.

From [15, Theorem 3.3] we get the following characterization of elements of $\mathcal{B}^{g}$.

Proposition 4.2. For $t \in \mathcal{B}$ the following assertions are equivalent.
(1) $t \in \mathcal{B}^{g}$.
(2) $p_{l}(t)=q_{l}(t) \leq 1$.
(3) $p_{r}(t)=q_{r}(t) \leq 1$.
(4) There is $u \in \mathcal{B}$ with tut $=t$ and $t u=u t$.

Corollary 4.3. Let $\mathcal{A}$ be a complex semisimple algebra with identity. Suppose that $0<p=p_{l}(x)=q_{l}(x)<\infty$. Then $x^{p} \in \Phi_{g}(\mathcal{A})$.

Proof. Since $p_{l}\left(x^{p}\right)=q_{l}\left(x^{p}\right) \leq 1$, it follows from Proposition 4.2, that $x^{p} u x^{p}=x^{p}$ and $x^{p} u=u x^{p}$ for some $u \in \mathcal{A}$. Then we get $e-x^{p} u-$ $u x^{p}=e-2 u x^{p}$ and $\left(e-2 u x^{p}\right)^{2}=e$. Thus

$$
e-x^{p} u-u x^{p} \in \mathcal{A}^{-1} \subseteq \Phi(\mathcal{A}) .
$$

Proposition 4.4. Suppose that $t, u, t_{1}, t_{2} \in \mathcal{B}$.
(1) If $t_{1}, t_{2} \in \mathcal{B}^{g}$, $t_{1} t_{2}=t_{1} t_{2}$ then $t_{1} t_{2} \in \mathcal{B}^{g}$.
(2) If $t \in \mathcal{B}^{g}$ and $n \in \mathbb{N}$ then $t^{n} \in \mathcal{B}^{g}$.
(3) If $t \in \mathcal{B}^{g}$ then there is a unique $s \in \mathcal{B}$ with

$$
t s t=t, s t s=s \text { and } t s=s t .
$$

Furthermore we have $s \in \mathcal{B}^{g}$ and if ta $=$ at for some $a \in \mathcal{B}$, then $s a=$ as.
(4) If $t, u \in \mathcal{B}^{g}$ and $t u=u t=0$, then $t+u \in \mathcal{B}^{g}$.
(5) $e-t_{1} t_{2} \in \mathcal{B}^{g} \Longleftrightarrow e-t_{2} t_{1} \in \mathcal{B}^{g}$.

Proof. (1) follows from Proposition 3.4 in [15] and 4.2.
(2) follows from (1).
(3) Proposition 3.9 in [15] shows that there is a unique $s \in \mathcal{B}$ such that $t s t=t, s t s=s$ and $t s=s t$. From Proposition 4.2 (4) we get $s \in \mathcal{B}^{g}$. If $t a=a t$, then

$$
s t a=s a t=s a t s t=s a t^{2} s=s t^{2} a s=t a s,
$$

thus $s^{2} t a=t a s^{2}$ and therefore

$$
s a=s t s a=s^{2} t a=t a s^{2}=a t s^{2}=a s .
$$

(4) From (3) we get $s, v \in \mathcal{B}$ such that $t s t=t$, sts $=s$, $t s=s t$, $u v u=u, v u v=v$ and $u v=v u$. Then

$$
\begin{aligned}
(t+u)(s+v) & =t s+t v+u s+u v=t s+t v u v+u s t s+u v= \\
& =t s+t u v^{2}+u t s^{2}+u v=t s+u v .
\end{aligned}
$$

A similar computation gives $(s+v)(t+u)=s t+v u$. Thus $(t+u)(s+$ $v)=(s+v)(t+u)$. From Proposition 4.2 we get $t+u \in \mathcal{B}^{g}$ since

$$
\begin{aligned}
(t+u)(s+v)(t+u) & =(t s+u v)(t+u)=t s t+t s u+u v t+u v u= \\
& =t+s t u+v u t+u=t+u
\end{aligned}
$$

(5) We only have to show that $e-t_{1} t_{2} \in \mathcal{B}^{g}$ implies $e-t_{2} t_{1} \in \mathcal{B}^{g}$. By Proposition 4.2 (4) there is a pseudo-inverse $s$ of $e-t_{1} t_{2}$ which commutes with $e-t_{1} t_{2}$. Put $r=e+t_{2} s t_{1}$. A simple computation shows that $r$ is a pseudo-inverse of $e-t_{2} t_{1}$ which commutes with $e-t_{2} t_{1}$.

Notations. Let $\mathcal{B}$ be a Banach algebra and $t \in \mathcal{B}$. By $\sigma(t)$ and $r(t)$ we denote the spectrum and the spectral radius of $t$, respectively. If $D \subseteq \mathbb{C}$ is open, $\sigma(t) \subseteq D$ and $f: D \rightarrow \mathbb{C}$ holomorphic, then $f(t)$ is defined by the well-known operational calculus.

Proposition 4.5. Suppose that $\mathcal{B}$ is a Banach algebra and $t \in \mathcal{B}^{g}$.
(1) $t$ is quasinilpotent if and only if $t=0$.
(2) If $t \neq 0$ and if $s$ is the unique pseudo-inverse of $t$ with the properties in part (3) of Proposition 4.4, then
(i) $s$ is not quasinilpotent;
(ii) $\sigma(s) \backslash\{0\}=\left\{\lambda \in \mathbb{C} \backslash\{0\}: \frac{1}{\lambda} \in \sigma(t)\right\}$;
(iii) $t \in \mathcal{B}^{-1}$ or 0 is a pole of order 1 of $(\lambda e-t)^{-1}$;
(iv) $\operatorname{dist}(0, \sigma(t) \backslash\{0\})=r(s)^{-1}$.
(3) Suppose that $0 \in \sigma(t), D \subseteq \mathbb{C}$ is a region, $\sigma(t) \subseteq D, f: D \rightarrow \mathbb{C}$ holomorphic, injective and $f(0)=0$. Then $f(t) \in \mathcal{B}^{g}$.

Proof. [16, Propositions 2.6, 2.7 and 2.13].

Proposition 4.6. Let $\lambda_{1}, \ldots, \lambda_{m}$ pairwise distinct complex numbers. If $t \in \mathcal{B}$ and

$$
\prod_{j=1}^{m}\left(t-\lambda_{j} e\right)=0
$$

then $t-\lambda e \in \mathcal{B}^{g}$ for each $\lambda \in \mathbb{C}$.
Proof. [16, Proposition 2.4].

## 5 - Algebraic properties of $\Phi_{g}(\mathcal{A})$

As in Section 3 we denote by $\mathcal{A}$ a complex semisimple algebra with identity. Furthermore we assume $\{0\} \neq \operatorname{soc}(\mathcal{A})$.

TheOrem 5.1. $\Phi_{g}(\mathcal{A})+\operatorname{soc}(\mathcal{A}) \subseteq \Phi_{g}(\mathcal{A})$.
Proof. Let $x \in \Phi_{g}(\mathcal{A})$ and $s \in \operatorname{soc}(\mathcal{A})$. Then $\widehat{x+s}=\widehat{x}+\widehat{s}=\widehat{x}$. By (3.14), $\widehat{x} \in \widehat{\mathcal{A}}^{g}$, thus $\widehat{x+s} \in \widehat{\mathcal{A}}^{g}$, hence $x+s \in \Phi_{g}(\mathcal{A})$.

Remark. From Proposition 3 (2) we know that

$$
\Phi(\mathcal{A})+I(\mathcal{A}) \subseteq \Phi(\mathcal{A})
$$

In Section 6 of this paper we shall see that in general

$$
\Phi_{g}(\mathcal{A})+I(\mathcal{A}) \nsubseteq \Phi_{g}(\mathcal{A})
$$

Theorem 5.2. (1) If $x_{1}, x_{2} \in \Phi_{g}(\mathcal{A})$ and $x_{1} x_{2}-x_{2} x_{1} \in \operatorname{soc}(\mathcal{A})$, then $x_{1} x_{2} \in \Phi_{g}(\mathcal{A})$.
(2) If $x \in \Phi_{g}(\mathcal{A})$ and $n \in \mathbb{N}$, then $x^{n} \in \Phi_{g}(\mathcal{A})$.

Proof. (1) By (3.14), $\widehat{x}_{1}, \widehat{x}_{2} \in \widehat{\mathcal{A}}^{g}$. Since $\widehat{x}_{1} \widehat{x}_{2}=\widehat{x}_{2} \widehat{x}_{1}$, we get from Proposition 4.4 (1), that $\widehat{x_{1} x_{2}}=\widehat{x}_{1} \widehat{x}_{2} \in \widehat{\mathcal{A}}{ }^{g}$. By (3.14), $x_{1} x_{2} \in \Phi_{g}(\mathcal{A})$.
(2) follows from (1).

Remarks. (1) In [15, 1.7 (d)] it is shown by an example, that if $x_{1}, x_{2} \in \Phi_{g}(\mathcal{A})$ it does not follow that $x_{1} x_{2} \in \Phi_{g}(\mathcal{A})$.
(2) In $\left[15,1.7\right.$ (b)] it is shown by an example, that if $x^{n} \in \Phi_{g}(\mathcal{A})$ for some $n \in \mathbb{N}$ it does not follow that $x \in \Phi_{g}(\mathcal{A})$.

Theorem 5.3. For $x_{1}, x_{2} \in \mathcal{A}$ we have:

$$
e-x_{1} x_{2} \in \Phi_{g}(\mathcal{A}) \Longleftrightarrow e-x_{2} x_{1} \in \Phi_{g}(\mathcal{A}) .
$$

Proof. Proposition 4.4 (5) and (3.14) give

$$
\begin{aligned}
e-x_{1} x_{2} \in \Phi_{g}(\mathcal{A}) & \Longleftrightarrow \widehat{e}-\widehat{x}_{1} \widehat{x}_{2} \in \widehat{\mathcal{A}}^{g} \Longleftrightarrow \\
& \Longleftrightarrow e-x_{2} x_{1} \in \Phi_{g}(\mathcal{A}) .
\end{aligned}
$$

Theorem 5.4. For $x \in \mathcal{A}$ the following assertions are equivalent:
(1) $x \in \Phi_{g}(\mathcal{A})$;
(2) there is $y \in \mathcal{A}$ such that $x y x=x$ and $\widehat{x} \widehat{y}=\widehat{y} \widehat{x}$.

Proof. (1) $\Rightarrow$ (2): From $\widehat{x} \in \widehat{\mathcal{A}}^{g}$ it follows that there exists some $u \in \mathcal{A}$ with $\widehat{x} \widehat{u} \widehat{x}=\widehat{x}$ and $\widehat{x} \widehat{u}=\widehat{u} \widehat{x}$ (Proposition 4.2 (4)). Then we have $x u x-x \in \operatorname{soc}(\mathcal{A})$. Proposition 3.8 shows that $x u x-x$ is relatively regular. Let $r$ be a pseudo-inverse of $x u x-x$. Then

$$
y=u-r+u x r+r x u-u x r x u
$$

is a pseudo-inverse of $x$ (Proposition 2.2). Then it is easy to see that $\widehat{x} \widehat{y}=\widehat{x} \widehat{u}=\widehat{u} \widehat{x}=\widehat{y} \widehat{x}$.
$(2) \Rightarrow$ (1) Proposition 4.2 (4) gives $\widehat{x} \in \widehat{\mathcal{A}^{g}}$, thus $x \in \Phi_{g}(\mathcal{A})$.

THEOREM 5.5. For $x \in \Phi_{g}(\mathcal{A})$ the following assertions are equivalent:
(1) $x \in \Phi(\mathcal{A})$;
(2) $\operatorname{nul}(x)<\infty$;
(3) $\operatorname{def}(x)<\infty$.

Proof. It is clear that (1) implies (2) and (3).
$(2) \Rightarrow(1)$ : Take a pseudo-inverse $y$ of $x$ with $\widehat{y} \widehat{x}=\widehat{x} \widehat{y}$ (Theorem 5.4). Since

$$
\operatorname{nul}(x)=\Theta(R(x))=\Theta((e-y x) \mathcal{A})<\infty
$$

we get from Proposition 3.4 (5), that $e-y x \in \operatorname{soc}(\mathcal{A})$, hence $\widehat{e}=\widehat{y} \widehat{x}=\widehat{x} \widehat{y}$, thus $\widehat{x} \in \widehat{\mathcal{A}}^{-1}$.

A similar proof shows that (3) implies (1).

Theorem 5.6. Suppose that $x, u \in \Phi_{g}(\mathcal{A})$ and that $x u, u x \in \operatorname{soc}(\mathcal{A})$. Then $x+u \in \Phi_{g}(\mathcal{A})$.

Proof. Since $\widehat{x}, \widehat{u} \in \widehat{\mathcal{A}}^{g}$ and $\widehat{x} \widehat{u}=\widehat{0}=\widehat{u} \widehat{x}$, Proposition 4.4 (4) gives $\widehat{x+u}=\widehat{x}+\widehat{u} \in \widehat{\mathcal{A}}^{g}$, thus $x+u \in \Phi_{g}(\mathcal{A})$.

## 6 - Topological properties of $\Phi_{g}(\mathcal{A})$

In this section we assume that $\mathcal{A}$ is complex semisimple Banach algebra with identity $e \neq 0$. From [4, R. 3.6] it follows that

$$
\mathcal{A} \neq I(\mathcal{A}) \Longleftrightarrow \operatorname{dim} \mathcal{A}=\infty
$$

Hence, if $\operatorname{dim} \mathcal{A}=\infty, \widetilde{\mathcal{A}}=\mathcal{A} / I(\mathcal{A})$ is a complex Banach algebra with identity $\widetilde{e} \neq \widetilde{o}$.

The first result in this section is an improvement of Theorem 3.11 (4).
Theorem 6.1. Suppose that $x \in \Phi_{g}(\mathcal{A}), z \in \Phi(\mathcal{A})$ and $x z-z x \in$ $\operatorname{soc}(\mathcal{A})$. Then there is $\delta>0$ such that

$$
x-\lambda z \in \Phi(\mathcal{A}) \text { for } 0<|\lambda|<\delta .
$$

Proof. Take $u \in \mathcal{A}$ such that $\widehat{z} \widehat{u}=\widehat{u} \widehat{z}=\widehat{e}$. From $\widehat{x} \widehat{z}=\widehat{z} \widehat{x}$ we get $\widehat{x}=\widehat{x}(\widehat{u} \widehat{z})=\widehat{x} \widehat{z} \widehat{u}=\widehat{z} \widehat{x} \widehat{u}$, thus $\widehat{u} \widehat{x}=\widehat{u} \widehat{z} \widehat{x} \widehat{u}=\widehat{x} \widehat{u}$, hence $x u-u x \in$ $\operatorname{soc}(\mathcal{A})$. Since $u \in \Phi(\mathcal{A}) \subseteq \Phi_{g}(\mathcal{A})$, we derive from Theorem 5.2 (1) that $u x \in \Phi_{g}(\mathcal{A})$. Theorem 3.11 (4) shows that there is $\delta>0$ such that $u x-\lambda e \in \Phi(\mathcal{A})$ for $0<|\lambda|<\delta$. This implies, since $z \in \Phi(\mathcal{A})$, that $z u x-\lambda z=z(u x-\lambda e) \in \Phi(\mathcal{A})(0<|\lambda|<\delta)$. Then we have for $0<|\lambda|<\delta$ that

$$
\widehat{x}-\lambda \widehat{z}=\widehat{z} \widehat{u} \widehat{x}-\lambda \widehat{z} \in \widehat{\mathcal{A}}^{-1},
$$

thus $x-\lambda z \in \Phi(\mathcal{A})$.
Definition. Let $x \in \mathcal{A}$. The set

$$
\sigma_{\Phi}(x)=\{\lambda \in \mathbb{C}: \lambda e-x \notin \Phi(\mathcal{A})\}
$$

is called the Fredholm spectrum of $x$. If $\sigma_{\Phi}(x)=\{0\}$, then $x$ is called a Riesz element of $\mathcal{A}$.

If $\operatorname{dim} \mathcal{A}=\infty$, then by Proposition 3.7 (2)

$$
\sigma_{\Phi}(x)=\sigma(\tilde{x}) ;
$$

and (see Theorem 6.1)

$$
\operatorname{dist}\left(0, \sigma_{\Phi}(x) \backslash\{0\}\right)>0 \text { if } x \in \Phi_{g}(\mathcal{A}) .
$$

Suppose that $x \in \Phi_{g}(\mathcal{A})$, then there is $y \in \mathcal{A}$ such that

$$
\begin{equation*}
x y x=x, \quad y x y=y, \quad \text { and } \quad x y-y x \in \operatorname{soc}(\mathcal{A}) . \tag{6.2}
\end{equation*}
$$

In fact, by Theorem 5.4, $x y_{0} x=x$ and $x y_{0}-y_{0} x \in \operatorname{soc}(\mathcal{A})$ for some $y_{0} \in \mathcal{A}$. Then $y=y_{0} x y_{0}$ satisfies (6.2).

Theorem 6.3. Suppose that $\operatorname{dim} \mathcal{A}=\infty, x \in \Phi_{g}(\mathcal{A})$ and $y$ is a pseudo-inverse of $x$ which satisfies (6.2).
(1) $x$ is a Riesz element $\Longleftrightarrow y$ is a Riesz element. In this case $\sigma_{\Phi}(x)=\{0\}$ and $\operatorname{dist}\left(0, \sigma_{\Phi}(x) \backslash\{0\}\right)=\infty$.
(2) If $x$ is not a Riesz element, then

$$
\sigma_{\Phi}(y) \backslash\{0\}=\left\{\lambda \in \mathbb{C} \backslash\{0\}: \frac{1}{\lambda} \in \sigma_{\Phi}(x)\right\}
$$

and

$$
\operatorname{dist}\left(0, \sigma_{\Phi}(x) \backslash\{0\}\right)=r(\widetilde{y})^{-1}
$$

Proof. (1) (6.2) and Proposition 4.2 (4) show that $\widetilde{x}, \widetilde{y} \in \widetilde{\mathcal{A}}^{g}$. Therefore, by Proposition 4.5 (1) and (6.2)

$$
\begin{aligned}
x \text { is Riesz } & \Longleftrightarrow r(\widetilde{x})=0 \Longleftrightarrow \widetilde{x}=\widetilde{0} \Longleftrightarrow \widetilde{y}=\widetilde{0} \Longleftrightarrow \\
& \Longleftrightarrow r(\widetilde{y})=0 \Longleftrightarrow y \text { is Riesz } .
\end{aligned}
$$

(2) From (1) we see that $r(\widetilde{x}), r(\widetilde{y})>0$. Proposition 4.5 (2) (ii) shows that

$$
\begin{aligned}
\sigma_{\Phi}(y) \backslash\{0\} & =\sigma(\widetilde{y}) \backslash\{0\}=\left\{\lambda \in \mathbb{C} \backslash\{0\}: \frac{1}{\lambda} \in \sigma(\widetilde{x})\right\}= \\
& =\left\{\lambda \in \mathbb{C} \backslash\{0\}: \frac{1}{\lambda} \in \sigma_{\Phi}(x)\right\}
\end{aligned}
$$

From Proposition 4.5 (2) (iv) we conclude that

$$
\operatorname{dist}\left(0, \sigma_{\Phi}(x) \backslash\{0\}\right)=\operatorname{dist}(0, \sigma(\widetilde{x}) \backslash\{0\})=r(\widetilde{y})^{-1}
$$

THEOREM 6.4. Suppose that $\operatorname{dim} \mathcal{A}=\infty, x \in \Phi_{g}(\mathcal{A}), 0 \in \sigma(x)$, $D \subseteq \mathbb{C}$ is a region, $\sigma(x) \subseteq D, f: D \rightarrow \mathbb{C}$ is holomorphic and injective and $f(0)=0$. Then $f(x) \in \Phi_{g}(\mathcal{A})$.

Proof. It is clear that $\sigma(\widetilde{x}) \subseteq \sigma(x)$.
Case 1. $\quad x \in \Phi(\mathcal{A})$. Hence $0 \notin \sigma(\widetilde{x})$. Since $f$ is injective and $f(0)=0$, we get

$$
0 \notin f(\sigma(\widetilde{x}))=\sigma(f(\widetilde{x}))=\sigma(\widetilde{f(x)})=\sigma_{\Phi}(f(x))
$$

thus $f(x) \in \Phi(\mathcal{A}) \subseteq \Phi_{g}(\mathcal{A})$.
Case 2. $x \notin \Phi(\mathcal{A})$. Then $0 \in \sigma(\widetilde{x})$. Let $y$ be a pseudo-inverse of $x$ such that (6.2) holds. Since $f^{\prime}$ is injective, there is a holomorphic function
$g: f(D) \rightarrow \mathbb{C}$ such that $g(f(\lambda))=\lambda$. Without loss of generality we can assume that $f^{\prime}(0)=g^{\prime}(0)=-1$, thus there is $h: f(D) \rightarrow \mathbb{C}$ holomorphic such that

$$
g(\lambda)=-\lambda+\lambda^{2} h(\lambda)
$$

Put $\varphi=h \circ f$. From

$$
\lambda=g(f(\lambda))=-f(\lambda)+f(\lambda)^{2} h(f(\lambda))=f(\lambda) \varphi(\lambda) f(\lambda)-f(\lambda)
$$

we derive

$$
\begin{equation*}
x=f(x) \varphi(x) f(x)-f(x) \tag{6.5}
\end{equation*}
$$

Since $x$ is relatively regular, (6.5) and Proposition 2.2 show that $f(x)$ is relatively regular and that

$$
r=\varphi(x)-[\varphi(x) f(x)-e] y[\varphi(x) f(x)-e]
$$

is a pseudo-inverse of $f(x)$ (observe that $f(x) \varphi(x)=\varphi(x) f(x)$ ). From $\widetilde{x} \widetilde{y}=\widetilde{y} \widetilde{x}$ we get $\widetilde{y} \widetilde{f(x)}=\widetilde{f(x)} \widetilde{y}$ and $\widetilde{y} \widetilde{\varphi(x)}=\widetilde{\varphi(x)} \widetilde{y}$, thus $\widetilde{r} \widetilde{f(x)}=\widetilde{f(x)} \widetilde{r}$. Hence

$$
\begin{aligned}
(\widetilde{e}-\widetilde{r} \widetilde{f(x)}-\widetilde{f(x)} \widetilde{r})^{2} & =(\widetilde{e}-2 \widetilde{r} \widetilde{f(x)})^{2}= \\
& =\widetilde{e}-4 \widetilde{r} \widetilde{f(x)}+4 \widetilde{r} \underbrace{\widetilde{f(x)} \widetilde{r} \widetilde{f(x)}}_{=\widetilde{f(x)}}=\widetilde{e}
\end{aligned}
$$

This shows that $e-r f(x)-f(x) r \in \Phi(\mathcal{A})$.
For our next results we denote by $\overline{\mathcal{M}}$ the closure of a subset $\mathcal{M} \subseteq \mathcal{A}$.
Theorem 6.6. Let $x \in \mathcal{A}$.
(1) If $x$ is relatively regular then $x \mathcal{A} x$ is closed.
(2) $x \in \operatorname{soc}(\mathcal{A}) \Leftrightarrow \operatorname{dim} x \mathcal{A} x<\infty$.
(3) If $x$ is relatively regular then

$$
x \in \overline{\operatorname{soc}(\mathcal{A})} \Leftrightarrow x \in \operatorname{soc}(\mathcal{A})
$$

Proof. (1) Let $y$ be a pseudo-inverse of $x$. Then $x \mathcal{A}=x y \mathcal{A}, \mathcal{A} x=$ $\mathcal{A} y x, x y$ and $y x$ are idempotent. It follows that $x \mathcal{A}$ and $\mathcal{A} x$ are closed, thus $x \mathcal{A} \cap \mathcal{A} x$ is closed. To complete the proof we show that

$$
x \mathcal{A} x=x \mathcal{A} \cap \mathcal{A} x .
$$

The inclusion " $\subseteq$ " is clear. Take $z \in x \mathcal{A} \cap \mathcal{A} x$, thus $z \in x y \mathcal{A}$ and $z \in \mathcal{A} y x$, hence $z=x y z$ and $z=z y x$. This gives $z=x y(z y x)=x(y z y) x \in x \mathcal{A} x$.
(2) is shown in [1].
(3) We only have to show the implication " $\Rightarrow$ ". There is a sequence $\left(x_{n}\right)$ in $\operatorname{soc}(\mathcal{A})$ such that $\left\|x_{n}-x\right\| \rightarrow 0(n \rightarrow \infty)$. Thus there is $\gamma \geq 0$ with $\left\|x_{n}\right\| \leq \gamma$ for all $n \in \mathbb{N}$. Define the bounded linear operators $F_{n}, K: \mathcal{A} \rightarrow \mathcal{A}$ by

$$
F_{n} a=x_{n} a x_{n} \quad \text { and } \quad K a=\operatorname{xax}(a \in \mathcal{A}, n \in \mathbb{N}) .
$$

For each $a \in \mathcal{A}$ we get

$$
\begin{aligned}
\left\|K a-F_{n} a\right\| & =\left\|\left(x-x_{n}\right) a x+x_{n} a\left(x-x_{n}\right)\right\| \leq \\
& \leq\|a\|(\|x\|+\gamma)\left\|x-x_{n}\right\|,
\end{aligned}
$$

hence $\left\|K-F_{n}\right\| \leq(\|x\|+\gamma)\left\|x-x_{n}\right\|$.
This shows that $\left(F_{n}\right)$ converges uniformly to $K$. From (2) we get that each $F_{n}$ is a finite-dimensional operator, hence $K$ is compact. Since $x$ is relatively regular, $K$ has closed range, by (1), hence $K$ has a finitedimensional range. Now use (2) to get $x \in \operatorname{soc}(\mathcal{A})$.

Remark. From Proposition 3.7 (2) we know that

$$
\Phi(\mathcal{A})+I(\mathcal{A}) \subseteq \Phi(\mathcal{A}) .
$$

Now take $x \in \overline{\operatorname{soc}(\mathcal{A})}$. Since $0 \in \Phi_{g}(\mathcal{A})$, we have $x \in \Phi_{g}(\mathcal{A})+\overline{\operatorname{soc}(\mathcal{A})}$. Theorem 6.6 (3) shows that

$$
x \in \Phi_{g}(\mathcal{A}) \Leftrightarrow x \in \operatorname{soc}(\mathcal{A}) .
$$

Thus, in general,

$$
\Phi_{g}(\mathcal{A})+\overline{\operatorname{soc}(\mathcal{A})} \nsubseteq \Phi_{g}(\mathcal{A}),
$$

hence

$$
\Phi_{g}(\mathcal{A})+I(\mathcal{A}) \nsubseteq \Phi_{g}(\mathcal{A})
$$

Theorem 6.7. Let $\operatorname{dim} \mathcal{A}=\infty$ and let $x \in \Phi_{g}(\mathcal{A})$. The following assertions are equivalent:
(1) $x$ is a Riesz element of $\mathcal{A}$.
(2) $x \in I(\mathcal{A})$.
(3) $x \in \operatorname{soc}(\mathcal{A})$.

Proof. (1) $\Rightarrow(2)$ : If $x$ is a Riesz element then $\widetilde{x}$ is quasinilpotent. As in the proof of Theorem 6.3 we have $\widetilde{x} \in \widetilde{\mathcal{A}}^{g}$. Proposition 4.5 (1) shows then that $\widetilde{x}=\widetilde{0}$, hence $x \in I(\mathcal{A})$.
$(2) \Rightarrow(3)$ : By $\check{\mathcal{A}}$ we denote the quotient algebra $\mathcal{A} / \overline{\operatorname{soc}(\mathcal{A})}$. Since $\operatorname{dim} \mathcal{A}=\infty(\Leftrightarrow \mathcal{A} \neq I(\mathcal{A})), \check{\mathcal{A}}$ is a Banach algebra with identity $\check{e} \neq \check{0}$, where $\check{z}=z+\overline{\operatorname{soc}(\mathcal{A})}$ denotes the coset of $z$ in $\check{\mathcal{A}}$. Take $\lambda \in \mathbb{C} \backslash\{0\}$. Then $\lambda \widetilde{e}-\widetilde{x}=\lambda \widetilde{e} \in \widetilde{\mathcal{A}}^{-1}$. From Proposition 3.7 (2) we get $\lambda e-x \in \Phi(\mathcal{A})$, thus $\lambda \widehat{e}-\widehat{x} \in \widehat{\mathcal{A}}^{-1}$, hence, for some $z \in \mathcal{A}$,

$$
z(\lambda e-x)-e,(\lambda e-x) z-e \in \operatorname{soc}(\mathcal{A})
$$

therefore $\check{z}(\lambda \check{e}-\check{x})=\check{e}=(\lambda \check{e}-\check{x}) \check{z}$. This gives $\lambda \check{e}-\check{x} \in \check{\mathcal{A}}^{-1}$. Thus, since $\lambda \in \mathbb{C} \backslash\{0\}$ was arbitrary, $\check{x}$ is quasinilpotent. Let $y$ be a pseudo-inverse of $x$ such that (6.2) holds. Proposition 4.2 (4) shows that $\check{x} \in \check{\mathcal{A}}^{g}$. Now use Proposition $4.5(1)$ to derive $\check{x}=\check{0}$. Therefore $x \in \overline{\operatorname{soc}(\mathcal{A})}$. Theorem 6.6 (3) gives $x \in \operatorname{soc}(\mathcal{A})$.
$(3) \Rightarrow(1)$. For each $\lambda \in \mathbb{C} \backslash\{0\}$ we have $\lambda e-x \in \Phi(\mathcal{A})+\operatorname{soc}(\mathcal{A}) \subseteq$ $\Phi(\mathcal{A})$.

Let $\mathcal{J}$ be an ideal in $\mathcal{A}$. $\mathcal{J}$ is called a $\Phi$-ideal, if $\operatorname{soc}(\mathcal{A}) \subseteq \mathcal{J} \subseteq I(\mathcal{A})$. It is clear that $\operatorname{soc}(\mathcal{A}), \overline{\operatorname{soc}(\mathcal{A})}$ and $I(\mathcal{A})$ are $\Phi$-ideals and that

$$
\Phi(\mathcal{A})+\mathcal{J} \subseteq \Phi(\mathcal{A})
$$

for each $\Phi$-ideal $\mathcal{J}$.
Corollary 6.8. Suppose that $\operatorname{dim} \mathcal{A}=\infty, \mathcal{J}$ is a $\Phi$-ideal and that

$$
\Phi_{g}(\mathcal{A})+\mathcal{J} \subseteq \Phi_{g}(\mathcal{A})
$$

Then $\mathcal{J}=\operatorname{soc}(\mathcal{A})$.
Proof. Take $a \in \mathcal{J}$. Then $a=0+a \in \Phi_{g}(\mathcal{A})+\mathcal{J} \subseteq \Phi_{g}(\mathcal{A})$. Since $a \in I(\mathcal{A}), \lambda \widetilde{e}-\widetilde{a}=\lambda \widetilde{e}$, thus we have that $\lambda e-a \in \Phi(\mathcal{A})$ for $\lambda \in \mathbb{C} \backslash\{0\}$. Therefore $a$ is a Riesz element and $a \in \Phi_{g}(\mathcal{A})$. Theorem 6.7 gives $a \in \operatorname{soc}(\mathcal{A})$.

THEOREM 6.9. $\quad \Phi_{g}(\mathcal{A}) \subseteq \overline{\Phi(\mathcal{A})}$.

Proof. Use Theorem 3.11 (4).

## 7 - Ascent and descent of elements in $\Phi_{g}(\mathcal{A})$

In this section we assume that $\mathcal{A}$ is a complex semisimple Banach algebra with identity $e$ and that $\operatorname{soc}(\mathcal{A}) \neq\{0\}$.

For $x \in \mathcal{A}$ we define

$$
\Delta_{l}(x)=\left\{\alpha \in \mathbb{N}_{0}: R(x) \cap x^{\alpha} \mathcal{A}=R(x) \cap x^{\alpha+k} \mathcal{A} \quad \text { for all } \quad k \geq 0\right\}
$$

and

$$
\Delta_{r}(x)=\left\{\beta \in \mathbb{N}_{0}: L(x) \cap \mathcal{A} x^{\beta}=L(x) \cap \mathcal{A} x^{\beta+k} \quad \text { for all } \quad k \geq 0\right\}
$$

Proposition 7.1. If $x \in \mathcal{A}$ and $n \in \mathbb{N}_{0}$, then
(1) $p_{l}(x) \leq n \Leftrightarrow R(x) \cap x^{n} \mathcal{A}=\{0\}$;
(2) $q_{l}(x) \leq n \Leftrightarrow R\left(x^{n}\right)+x \mathcal{A}=\mathcal{A}$;
(3) $q_{r}(x) \leq n \Leftrightarrow L\left(x^{n}\right)+\mathcal{A} x=\mathcal{A}$;
(4) $p_{r}(x) \leq n \Leftrightarrow L(x) \cap \mathcal{A} x^{n}=\{0\}$;
(5) $\Delta_{l}(x)=\left\{\alpha \in \mathbb{N}_{0}: R\left(x^{\alpha}\right)+x \mathcal{A}=R\left(x^{\alpha+k}\right)+x \mathcal{A} \quad\right.$ for all $\left.\quad k \geq 0\right\} ;$
(6) $\Delta_{r}(x)=\left\{\beta \in \mathbb{N}_{0}: L\left(x^{\beta}\right)+\mathcal{A} x=L\left(x^{\beta+k}\right)+\mathcal{A} x \quad\right.$ for all $\left.\quad k \geq 0\right\}$.

Proof. We only show (1), (2) and (5). The proofs for (3), (4) and (6) are similar.
(1) follows from [8, Satz 72.1].
(2) " $\Rightarrow$ " By [8, Satz 72.2], there is a subspace $\mathcal{U}$ of $\mathcal{A}$ such that $\mathcal{A}=\mathcal{U} \oplus x \mathcal{A}$ and $\mathcal{U} \subseteq R\left(x^{n}\right)$. Thus $R\left(x^{n}\right)+x \mathcal{A}=\mathcal{A}$.
" $\Leftarrow ":$ Take $y \in x^{n} \mathcal{A}$. Then $y=x^{n} a$ for some $a \in \mathcal{A}$. There are $u, v$ with $a=u+v, u \in R\left(x^{n}\right)$ and $v \in x \mathcal{A}$. It follows that $y=x^{n}(u+v)=$ $x^{n} v \in x^{n+1} \mathcal{A}$. Hence $q_{l}(x) \leq n$.
(5) Denote by $M$ the set on the right side in (5). Let $\alpha \in \Delta_{l}(x)$ and take $z \in R\left(x^{\alpha+1}\right)+x \mathcal{A}$, hence $z=u+x v$ with $u \in R\left(x^{\alpha+1}\right)$ and $v \in \mathcal{A}$. Then $x^{\alpha} u \in R(x) \cap x^{\alpha} \mathcal{A}=R(x) \cap x^{\alpha+1} \mathcal{A}$, thus $x^{\alpha} u=x^{\alpha+1} w$ for some $w \in \mathcal{A}$, hence $u-x w \in R\left(x^{\alpha}\right)$. It follows that $z=u+x v=(u-x w)+$ $x(w+v) \in R\left(x^{\alpha}\right)+x \mathcal{A}$. We have shown that $R\left(x^{\alpha+1}\right)+x \mathcal{A}=R\left(x^{\alpha}\right)+x \mathcal{A}$. By induction we see that $\alpha \in M$.

Now let $\alpha \in M$ and take $z \in R(x) \cap x^{\alpha} \mathcal{A}$. Then there is $y \in \mathcal{A}$ with $z=x^{\alpha} y$ and $x^{\alpha+1} y=0$. Thus $y \in R\left(x^{\alpha+1}\right) \subseteq R\left(x^{\alpha+1}\right)+x \mathcal{A}=$ $R\left(x^{\alpha}\right)+x \mathcal{A}$. Therefore $y=y_{1}+y_{2}$ with $y_{1} \in R\left(x^{\alpha}\right), y_{2} \in x \mathcal{A}$. Then $z=x^{\alpha}\left(y_{1}+y_{2}\right)=x^{\alpha} y_{2} \in x^{\alpha+1} \mathcal{A}$, thus $z \in R(x) \cap x^{\alpha+1} \mathcal{A}$. We have shown that $R(x) \cap x^{\alpha} \mathcal{A}=R(x) \cap x^{\alpha+1} \mathcal{A}$. By induction we see that $\alpha \in \Delta_{l}(x)$.

Proposition 7.2. Let $x \in \Phi_{g}(\mathcal{A})$. Then
(1) $\Theta(R(x) \cap x \mathcal{A})<\infty$;
(2) $\Theta(L(x) \cap \mathcal{A} x)<\infty$;
(3) $\Delta_{l}(x) \neq \emptyset$ and $\Delta_{r}(x) \neq \emptyset$.

Proof. We only show that $\Theta(R(x) \cap x \mathcal{A})<\infty$ and $\Delta_{l}(x) \neq \emptyset$. Take a pseudo-inverse $y$ of $x$ such that $v=e-x y-y x \in \Phi(\mathcal{A})$. If $z \in R(x) \cap x \mathcal{A}$, then $z=(e-y x) z=x y z$, hence $v z=z-x y z-y x z=0$, thus $z \in R(v)$. Therefore $R(x) \cap x \mathcal{A} \subseteq R(v)$. It follows from Proposition 3.4 (3) and 3.5 (4) that $\Theta(R(x) \cap x \mathcal{A}) \leq \Theta(R(v))=\operatorname{nul}(v)<\infty$. For $n \in \mathbb{N}$ put $\Theta_{n}=\Theta\left(R(x) \cap x^{n} \mathcal{A}\right)$. Since $R(x) \cap x^{n+1} \mathcal{A} \subseteq R(x) \cap x^{n} \mathcal{A}$ we derive from Proposition 3.4 (3) that

$$
0 \leq \cdots \leq \Theta_{n+1} \leq \Theta_{n} \leq \cdots \leq \Theta_{1}<\infty
$$

Since $\Theta_{n} \in \mathbb{N}_{0}$ for $n \in \mathbb{N}$, there is some $\alpha \in \mathbb{N}$ such that $\Theta_{\alpha+k}=\Theta_{\alpha}$ for all $k \geq 0$. Use Proposition 3.4 (3) to see that $R(x) \cap x^{\alpha} \mathcal{A}=R(x) \cap x^{\alpha+k} \mathcal{A}$ for all $k \geq 0$. Hence $\alpha \in \Delta_{l}(x)$.

In view of Proposition $7.2(3)$ we define for $x \in \Phi_{g}(\mathcal{A})$ :

$$
\delta_{l}(x)=\min \Delta_{l}(x) \quad \text { and } \quad \delta_{r}(x)=\min \Delta_{r}(x)
$$

Proposition 7.3. For $x \in \Phi_{g}(\mathcal{A})$ we have
(1) $p_{l}(x)=q_{r}(x)$ and $q_{l}(x)=p_{r}(x)$.
(2) If $\alpha=\delta_{l}(x)$ then

$$
p_{l}(x)<\infty \Leftrightarrow R(x) \cap x^{\alpha} \mathcal{A}=\{0\}
$$

In this case $p_{l}(x)=\delta_{l}(x)$.
(3) If $\beta=\delta_{r}(x)$ then

$$
q_{l}(x)<\infty \Leftrightarrow L\left(x^{\beta}\right)+\mathcal{A} x=\mathcal{A} .
$$

In this case $q_{l}(x)=\delta_{r}(x)$.

Proof. (1) Proposition 4.1 (2) gives $p_{l}(x) \leq q_{r}(x)$. Without loss of generality we assume that $n=p_{l}(x)<\infty$. Since $x^{n}, x^{n+1} \in \Phi_{g}(\mathcal{A}), x^{n}$ and $x^{n+1}$ are relatively regular. Thus $\mathcal{A} x^{n}=\mathcal{A} p, \mathcal{A} x^{n+1}=\mathcal{A} q$ for some $p=p^{2}, q=q^{2} \in \mathcal{A}$. Then it follows that

$$
(e-p) \mathcal{A}=R\left(x^{n}\right)=R\left(x^{n+1}\right)=(e-q) \mathcal{A}
$$

thus $e-q=(e-p)(e-q)=e-q-p+p q$, hence $p=p q$. Then $\mathcal{A} x^{n}=\mathcal{A} p=\mathcal{A} p q \subseteq \mathcal{A} q=\mathcal{A} x^{n+1} \subseteq \mathcal{A} x^{n}$. Hence $q_{r}(x) \leq n=p_{l}(x)$.

The proof for $q_{l}(x)=p_{r}(x)$ is similar.
(2) " $\Rightarrow$ ": Put $p=p_{l}(x)$. Proposition 7.1 (1) gives $R(x) \cap x^{p} \mathcal{A}=\{0\}$, thus $p \in \Delta_{l}(x)$ and $\alpha \leq p$.
$" \Leftarrow$ " follows from Proposition 7.1 (1).
(3) Similar.

For the rest of this section we always assume that $\mathcal{A}$ is a Banach algebra.
For our further investigation the following concepts will be useful.
For $x \in \mathcal{A}$ we define
$a_{l}(x)=\{\mu \in \mathbb{C}$ : there is a neighbourhood $U$ of $\mu$ and a holomorphic function $f: U \rightarrow \mathcal{A}$ such that $(\lambda e-x) f(\lambda)=0$ on $U$ and $f(\mu) \neq 0\}$.
$a_{r}(x)=\{\mu \in \mathbb{C}$ : there is a neighbourhood $U$ of $\mu$ and a holomorphic function $f: U \rightarrow \mathcal{A}$ such that $f(\lambda)(\lambda e-x)=0$ on $U$ and $f(\mu) \neq 0\}$.
It is clear that $a_{l}(x)$ and $a_{r}(x)$ are open subsets of $\mathbb{C}$.
Proposition 7.4. Let $x \in \mathcal{A}$.
(1) If $\lambda_{0} \in a_{l}(x)$ then $p_{l}\left(\lambda_{0} e-x\right)=q_{l}\left(\lambda_{0} e-x\right)=\infty$.
(2) If $\lambda_{0} \in a_{r}(x)$ then $p_{r}\left(\lambda_{0} e-x\right)=q_{r}\left(\lambda_{0} e-x\right)=\infty$.

Proof. [13, Theorem 3.5].

Lemma 7.5. Let $u \in \Phi(\mathcal{A})$.
(1) $p_{l}(u)=0 \Leftrightarrow \operatorname{nul}(u)=0$.
(2) $q_{l}(u)=0 \Leftrightarrow \operatorname{def}(u)=0$.

Proof. (1) $p_{l}(u)=0 \Leftrightarrow R(u)=\{0\} \Leftrightarrow \operatorname{nul}(u)=0$.
(2) Use Proposition 7.3 (1) to get

$$
q_{l}(u)=0 \Leftrightarrow p_{r}(u)=0 \Leftrightarrow L(u)=\{0\} \Leftrightarrow \operatorname{def}(u)=0
$$

In Theorem 3.11 (4) we have seen that if $x \in \Phi_{g}(\mathcal{A})$, then there is $\delta>0$ such that $\lambda e-x \in \Phi(\mathcal{A})$ for $0<|\lambda|<\delta$. This and Theorem 3.6 (3) (ii) show

Proposition 7.6. If $x \in \Phi_{g}(\mathcal{A})$, then there is $\epsilon>0$ and there are $n, m \in \mathbb{N}_{0}$ such that

$$
\operatorname{nul}(\lambda e-x)=n \text { and } \operatorname{def}(\lambda e-x)=m \quad \text { for } \quad 0<|\lambda|<\epsilon
$$

Theorem 7.7. Let $x \in \Phi_{g}(\mathcal{A})$.
(1) If $p_{l}(x)\left(=q_{r}(x)\right)<\infty$, then there is $\epsilon>0$ such that

$$
p_{l}(\lambda e-x)=\operatorname{nul}(\lambda e-x)=0 \text { for } 0<|\lambda|<\epsilon .
$$

(2) If $q_{l}(x)\left(=p_{r}(x)\right)<\infty$, then there is $\epsilon>0$ such that

$$
q_{l}(\lambda e-x)=\operatorname{def}(\lambda e-x)=0 \text { for } 0<|\lambda|<\epsilon .
$$

(3) The following assertions are equivalent:
(i) $p_{l}(x)\left(=q_{r}(x)\right)=\infty$.
(ii) $0 \in a_{l}(x)$.
(iii) There is $\epsilon>0$ with $\operatorname{nul}(\lambda e-x)>0$ for $|\lambda|<\epsilon$.
(4) The following assertions are equivalent:
(i) $q_{l}(x)=\left(p_{r}(x)\right)=\infty$.
(ii) $0 \in a_{r}(x)$.
(iii) There is $\epsilon>0$ with $\operatorname{def}(\lambda e-x)>0$ for $|\lambda|<\epsilon$.

Proof. We only prove (1) and (3).
(1) Define the bounded linear operator $T: \mathcal{A} \rightarrow \mathcal{A}$ by $T a=x a(a \in$ $\mathcal{A})$. Then $p(T)=p_{l}(x)$ and $T^{n}(\mathcal{A})=x^{n} \mathcal{A}(n \in \mathbb{N})$. Since $x^{n} \in \Phi_{g}(\mathcal{A})$, $x^{n}$ is relatively regular, thus $T^{n}(\mathcal{A})$ is closed. Lemma 2.5 in [9] shows that there is $\epsilon>0$ with $p(\lambda I-T)=0$ for $0<|\lambda|<\epsilon$. Use Lemma 7.5 to conclude that (1) holds.
(3) (i) $\Rightarrow$ (ii): Write $\mathcal{M}=\bigcap_{n=1}^{\infty} x^{n} \mathcal{A}$. As above, each $x^{n} \mathcal{A}$ is closed, thus $\mathcal{M}$ is a closed subspace of $\mathcal{A}$. We have

$$
\begin{equation*}
x \mathcal{M}=\mathcal{M} . \tag{7.8}
\end{equation*}
$$

In fact, since the inclusion " $\subseteq$ " is clear, we only have to show that $\mathcal{M} \subseteq x \mathcal{M}$. Since $\Delta_{l}(x) \neq \emptyset$ (Proposition 7.2), there is $\alpha \in \mathbb{N}_{0}$ with

$$
R(x) \cap x^{\alpha} \mathcal{A}=R(x) \cap x^{\alpha+k} \mathcal{A} \quad \text { for } \quad k \geq 0 .
$$

Take $y \in \mathcal{M}$. Then there is a sequence $\left(u_{k}\right)_{k=1}^{\infty}$ in $\mathcal{A}$ such that $y=$ $x^{\alpha+k} u_{k}$ for $k \geq 1$. Put $z_{k}=x^{\alpha} u_{1}-x^{\alpha+k-1} u_{k}$. Then $x z_{k}=0$, thus $z_{k} \in R(x) \cap x^{\alpha} \mathcal{A}=R(x) \cap x^{\alpha+k-1} \mathcal{A}$ for all $k \geq 1$. It follows that

$$
x^{\alpha} u_{1}=z_{k}+x^{\alpha+k-1} u_{k} \in x^{\alpha+k-1} \mathcal{A}(k \geq 1) .
$$

Hence $x^{\alpha} u_{1} \in \mathcal{M}$ and therefore $y=x^{\alpha+1} u_{1} \in x \mathcal{M}$. The proof of (7.8) is now complete.
(7.8) and the open mapping theorem show that there is a constant $\gamma>0$ such that
for each $y \in \mathcal{M}$ there is $z \in \mathcal{M}$ with $\quad x z=y$ and $\|z\| \leq \gamma\|y\|$.
Since $R(x) \cap \mathcal{M}=R(x) \cap x^{\alpha} \mathcal{A}$ and $p_{l}(x)=\infty$, we get some $a_{0} \in$ $R(x) \cap \mathcal{M}$ with $a_{0} \neq 0$ (Proposition 7.1 (1)).

Now use (7.9) to construct a sequence $\left(a_{n}\right)_{n=1}^{\infty}$ such that

$$
x a_{n+1}=a_{n} \quad \text { and } \quad\left\|a_{n}\right\| \leq \gamma^{n}\left\|a_{0}\right\| \quad \text { for } \quad n \in \mathbb{N} .
$$

Put $U=\{\lambda \in \mathbb{C}:|\lambda|<1 / \gamma\}$ and $f(\lambda)=\sum_{n=0}^{\infty} a_{n} \lambda^{n}$. Then $f$ is holomorphic on $U$ and a simple computation gives

$$
(\lambda e-x) f(\lambda)=-x a_{0}=0 \quad \text { for each } \quad \lambda \in U .
$$

From $f(0)=a_{0} \neq 0$ we derive $0 \in a_{l}(x)$.
(ii) $\Rightarrow$ (iii): Since $a_{l}(x)$ is open, there is $\epsilon>0$ such that $\lambda \in a_{l}(x)$ for $|\lambda|<\epsilon$. Take $\lambda_{0} \in \mathbb{C}$ with $\left|\lambda_{0}\right|<\epsilon$. Then there is a neighbourhoud $V$ of $\lambda_{0}$ and a holomorphic $f: V \rightarrow \mathcal{A}$ with $f\left(\lambda_{0}\right) \neq 0$ and $\left(\lambda_{0} e-x\right) f\left(\lambda_{0}\right)=0$. This shows that $R\left(\lambda_{0} e-x\right) \neq\{0\}$, thus $\operatorname{nul}\left(\lambda_{0} e-x\right)>0$.
(iii) $\Rightarrow$ (i) Assume to the contrary that $p_{l}(x)<\infty$. (1) shows that there is a positive $\delta \leq \epsilon$ such that $\operatorname{nul}(\lambda e-x)=0$ for $0<|\lambda|<\delta$, a contradiction.

For $x \in \mathcal{A}$ we define

$$
\Phi_{g}(x)=\left\{\lambda \in \mathbb{C}: \lambda e-x \in \Phi_{g}(\mathcal{A})\right\} .
$$

It is clear that $\mathbb{C} \backslash \sigma(x) \subseteq \Phi_{g}(x)$. From Theorem 3.11 (4) we see that $\Phi_{g}(x)$ is open.

ThEOREM 7.10. Let $x \in \mathcal{A}$ and let $C$ be a connected component of $\Phi_{g}(x)$.
(1) Either $p_{l}(\lambda e-x)<\infty$ for all $\lambda \in C$ or $p_{l}(\lambda e-x)=\infty$ for all $\lambda \in C$.
(2) Either $q_{l}(\lambda e-x)<\infty$ for all $\lambda \in C$ or $q_{l}(\lambda e-x)=\infty$ for all $\lambda \in C$.

Proof. We only show (1). The proof for (2) is similar since $q_{l}(\lambda e-$ $x)=p_{r}(\lambda e-x)$.

Put $M=\left\{\lambda \in C: p_{l}(\lambda e-x)<\infty\right\}$. Theorem 7.7 (1) shows that $M$ is open.

Take $\lambda_{0} \in C \backslash M$, hence $p_{l}\left(\lambda_{0} e-x\right)=\infty$. Theorem 7.7 (3) gives $\lambda_{0} \in a_{l}(x)$. Since $a_{l}(x)$ is open, there is $\epsilon>0$ such that $\lambda \in a_{l}(x)$ if $\left|\lambda-\lambda_{0}\right|<\epsilon$. Then it follows from Proposition 7.4 (1) that $p_{l}(\lambda e-x)=\infty$ if $\left|\lambda-\lambda_{0}\right|<\epsilon$. Hence $C \backslash M$ is open. Since $C$ is connected, $M=\emptyset$ or $C=M$.

THEOREM 7.11. For $x \in \Phi_{g}(\mathcal{A})$ the following assertions are equivalent:
(1) 0 is a boundary point of $\sigma(x)$.
(2) 0 is an isolated point of $\sigma(x)$.
(3) 0 is a pole of $(\lambda e-x)^{-1}$.

Proof. The implications $(3) \Rightarrow(2) \Rightarrow(1)$ are clear.
$(1) \Rightarrow(3)$ : By $C$ we denote the connected component of $\Phi_{g}(x)$ for which $0 \in C$. There is some $\epsilon>0$ such that for $U=\{\lambda \in \mathbb{C}:|\lambda|<\epsilon\}$ we have $U \subseteq C$ and $U \cap(\mathbb{C} \backslash \sigma(x)) \neq \emptyset$. For $\lambda \in U \cap(\mathbb{C} \backslash \sigma(x))$ we have $p_{l}(\lambda e-x)=q_{l}(\lambda e-x)=0$. Theorem 7.10 shows now that $p_{l}(x), q_{l}(x)<$ $\infty$. Observe that $p_{l}(x), q_{l}(x)>0$. Proposition 4.1 (1) shows then that $0<p_{l}(x)=q_{l}(x)<\infty$. From [18, Theorem 15.6] (see also [11]) we conclude that 0 is a pole of $(\lambda e-x)^{-1}$.

Examples for $\Phi_{g}(x)$.
(1) If $x \in \operatorname{soc}(\mathcal{A})$ then $\Phi_{g}(x)=\mathbb{C}$.
(2) If $x \in \overline{\operatorname{soc}(\mathcal{A})} \backslash \operatorname{soc}(\mathcal{A})$ then $\Phi_{g}(x)=\mathbb{C} \backslash\{0\}$ (see Theorem 6.6).
(3) If $x$ is a Riesz element then $\mathbb{C} \backslash\{0\} \subseteq \Phi_{g}(x)$.
(4) Let $x \in \mathcal{A}$ with $x^{2}=x$. Then $\sigma(x) \subseteq\{0,1\}$, thus $\mathbb{C} \backslash\{0,1\} \subseteq$ $\Phi_{g}(x)$. We also have $(e-x)^{2}=e-x$. Therefore, by Example 3.9 (5), $0,1 \in \Phi_{g}(x)$. Thus $\Phi_{g}(x)=\mathbb{C}$.

We close this paper with

Theorem 7.12. Suppose that $\operatorname{dim} \mathcal{A}=\infty$ and let $x \in \mathcal{A}$. The following assertions are equivalent:
(1) $\Phi_{g}(x)=\mathbb{C}$.
(2) There are $\lambda_{1}, \ldots, \lambda_{m} \in \mathbb{C}$ with $\lambda_{i} \neq \lambda_{j}$ for $i \neq j$ and

$$
\prod_{j=1}^{m}\left(x-\lambda_{j} e\right) \in \operatorname{soc}(\mathcal{A})
$$

Proof. (1) $\Rightarrow(2)$ : Take $\mu \in \sigma(x)$. Since $\mu \in \Phi_{g}(x)$, it follows from Theorem 3.11 (4) that there is an open neighbourhood $U_{\mu}$ of $\mu$ with

$$
\begin{equation*}
x-\lambda e \in \Phi(\mathcal{A}) \text { for } \lambda \in U_{\mu} \backslash\{\mu\} \tag{7.13}
\end{equation*}
$$

Since $\sigma(x) \subseteq \bigcup_{\mu \in \sigma(x)} U_{\mu}$ and $\sigma(x)$ is compact, there are $\lambda_{1}, \ldots, \lambda_{n} \in$ $\sigma(x)$ such that

$$
\sigma(x) \subseteq \bigcup_{j=1}^{n} U_{\lambda_{j}}
$$

This and (7.13) show that $\sigma_{\Phi}(x)=\sigma(\widetilde{x}) \subseteq\left\{\lambda_{1}, \ldots, \lambda_{n}\right\}$. Since $\operatorname{dim} \mathcal{A}=\infty, \sigma(\widetilde{x}) \neq \emptyset$, thus $\sigma(\widetilde{x})=\left\{\lambda_{1}, \ldots, \lambda_{m}\right\}$ with $m \leq n$ and $\lambda_{i} \neq \lambda_{j}$ for $i \neq j$. Define the polynomial $p$ by $p(\lambda)=\prod_{j=1}^{m}\left(\lambda-\lambda_{j}\right)$. Then

$$
\sigma_{\Phi}(p(x))=\sigma(\widetilde{p(x)})=\sigma(p(\widetilde{x}))=p(\sigma(\widetilde{x}))=\{0\}
$$

It follows that $p(x)$ is a Riesz element. Since $x-\lambda_{j} e \in \Phi_{g}(\mathcal{A})$ for $j=1, \ldots, m$, we have $p(x) \in \Phi_{g}(\mathcal{A})$ (see Theorem 5.2 (1)). Now use Theorem 6.7 to get $p(x) \in \operatorname{soc}(\mathcal{A})$.
$(2) \Rightarrow(1)$ : Let $p$ denote the polynomial $p(\lambda)=\prod_{j=1}^{m}\left(\lambda-\lambda_{j}\right)$. Since $p(x) \in \operatorname{soc}(\mathcal{A}), \widehat{0}=\widehat{p(x)}=p(\widehat{x})$. Proposition 4.6 yields $\widehat{x}-\lambda \widehat{e} \in \widehat{\mathcal{A}}^{g}$ for each $\lambda \in \mathbb{C}$, thus $\Phi_{g}(x)=\mathbb{C}$.

## REFERENCES

[1] J. C. Alexander: Compact Banach algebras, Proc. London Math. Soc. III, Ser. 18 (1968), 1-18.
[2] B. A. Barnes: A generalized Fredholm theory for certain maps in the regular representation of an algebra, Can. J. Math., 20 (1968), 495-504.
[3] B. A. Barnes: The Fredholm elements of a ring, Can. J. Math., 21 (1969), 84-95.
[4] B. A. Barnes - G. J. Murphy - M. R. F. Smyth - T. T. West: Riesz and Fredholm theory in Banach algebras, London. Pitman, 1982.
[5] F. F. Bonsall - J. Duncan: Complete normed algebras, Berlin. Springer, 1973.
[6] S. R. Caradus: Operator theory of the pseudo-inverse, Queen's papers in pure and appl. math. No. 38 (1974).
[7] S. R. Caradus: Generalized inverses and operator theory, Queen's papers in pure and appl. math. No. 50 (1978).
[8] H. Heuser: Funktionalanalysis, 2. Aufl. Stuttgart. Teubner, 1986.
[9] D. C. LAY: Spectral analysis using ascent, descent nullity and defect, Math. Ann., 184 (1971), 197-214.
[10] D. MÄnnle: Verallgemeinerte Fredholmelemente in halbeinfachen Banachalgebren, Diplomarbeit, Karlsruhe, 1998.
[11] L. D. Pearlman: Riesz points of the spectrum of an element in a semisimple Banach algebra, Trans. Amer. Math. Soc., 193 (1974), 303-328.
[12] Ch. Schmoeger: Atkinson theory an holomorphic functions in Banach algebras, Proc. R. Ir. Acad. 91A, No. 1 (1991), 113-127.
[13] Ch. Schmoeger: Ascent, descent, and the Atkinson region in Banach algebras, Ricerche Mat., 42 (1993), 123-143.
[14] Ch. Schmoeger: Ascent, descent, and the Atkinson region in Banach algebras, II. Ricerche Mat., 42 (1993), 249-264.
[15] Ch. Schmoeger: On a class of generalized Fredholm operators, I. Demonstratio Math., 30 (1997), 829-842.
[16] Ch. Schmoeger: On a class of generalized Fredholm operators, II. Demonstratio Math., 31 (1998), 705-722.
[17] Ch. Schmoeger: On a class of generalized Fredholm operators, III. Demonstratio Math., 31 (1998), 723-733.
[18] M. Schreieck: Atkinson-, Fredholm- und Rieszelemente, Dissertation, Karlsruhe, 1984.
[19] M. R. F. Smyth: Fredholm theory in Banach algebras, Banach center publications, 8 (1982), 403-414.
[20] Ä. Weckbach: Wesentliche Spektren und Störungen von Atkinson- und Fredholmelementen, Dissertation, Karlsruhe, 1983.

Lavoro pervenuto alla redazione il 18 gennaio1999 ed accettato per la pubblicazione il 23 febbraio 2000.

Bozze licenziate il 10 maggio 2000

## Indirizzo DEGLi AUTORI:

Daniel Männle - Christoph Schmoeger - Math. Institut I - Universität Karlsruhe - D-76128 Karlsruhe, Germany
E-mail: christoph.schmoeger@math.uni-karlsruhe.de

