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On the expansions in non-integer bases

V. KOMORNIK – P. LORETI

Riassunto: In [2] Erdös, Horváth e Joó trovarono una proprietà di unicità per
l’espansione del numero 1 in qualche base non intera q. Questi numeri q sono stati poi
caretterizzati in [3]. Utilizzando questa caratterizzazione il più piccolo di tali numeri è
stato determinato in [8]. Allouche e Cosnard [1] hanno trovato che questo numero è in
relazione con la ben nota successione di Thue-Morse, e usando questa relazione hanno
poi dimostrato la transcendenza di questo numero. Erdös e Joó [4] hanno costruito
anche, per ogni intero positivo N , basi q per le quali 1 ha esattamente N differenti
espansioni. La loro costruzione è stata generalizzata in [5]. La caratterizzazione di
questi numeri rimane una questione aperta per N > 1. Lo scopo di questo lavoro è di
fornire una condizione utile e sufficiente per N = 2 e di usare questo per la costruzione
di numeri q piccoli per i quali il numero 1 ha esattamente 2 differenti espansioni.

Abstract: In [2] Erdös, Horváth and Joó found a curious uniqueness property
for the expansions of the number 1 in some noninteger bases q. These numbers q were
then characterized in [3]. Using that characterization the smallest such number was
determined in [8]. Allouche and Cosnard [1] discovered that this number is closely
related to the classical Thue-Morse sequence, and using this relation they proved the
transcendence of this number. Erdös and Joó [4] also constructed, for each positive
integer N , bases q for which the number 1 has exactly N different expansions. Their
construction was generalized in [5]. The characterization of these numbers remains
an open question for N > 1. The purpose of this paper is to give a useful sufficient
condition for N = 2 and to use this for the construction of small numbers q for which
the number 1 has exactly 2 different expansions.
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1 – A review of greedy expansions

In [11] Rényi introduced a generalization of the familiar dyadic ex-

pansions of real numbers and he studied the ergodic properties of the

distribution of the digits. His results were extended by Parry [10].

Analogous problems, of probabiliste nature, appeared in some works

of T. Varga on the expected length of the longest head run; they were

studied more thoroughly by Erdös and Révész [6]. In this framework

the earlier studies correspond to the case of unsymmetric coins where the

probability of the head is some number 1/q instead of 1/2.

A later work of Erdös, Horváth and Joó [2] revealed that all these

questions have an essentialy combinatorial nature. This led to a series

of papers by various authors; see, e.g., the review paper [7] of Joó and

Schnitzer for a more detailed analysis. For the reader’s convenience we

recall in this and the next section some of these results, by giving direct

and simpler proofs than the original ones.

The results of this section are very close (although not identical) to

some theorems obtained earlier by Rényi and Parry in [10], [11]. We

prove them in a different, direct way.

Fix a real number 1 < q ≤ 2. By an expansion of a real number x we

mean a sequence c1, c2, . . . of integers in {0, 1} satisfying the equality

(1.1)
1X

i=1

ci

qi
= x.

Proposition 1.1 (Cf. [11]). A real number x has an expansion if

and only if

(1.2) 0 ≤ x ≤ 1

q − 1
.

Proof. The necessity of the condition is obvious because

1X

i=1

1

qi
=

1

q − 1
.

Conversely, if this condition is fulfilled, then an expansion can be ob-

tained for example by the so-called greedy algorithm: we always choose
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the biggest possible value for ci. More precisely, define recursively a se-

quence a1, a2, . . . as follows. If for some positive integer n the numbers

ai are defined for all i < n (no assumption if n = 1), then set an = 1 if

(1.3)
n−1X

i=1

ai

qi
+

1

qn
≤ x

and set an = 0 otherwise. Since x ≥ 0, we can start this construction

and hence the definition is meaningful.

We claim that (ai) is an expansion. First we note that we cannot

have a last index n such that an = 0. Indeed, then we would have

nX

i=1

ai

qi
> x − 1

qn

and
nX

i=1

ai

qi
+

kX

i=n+1

1

qi
≤ x

for all k > n. These inequalities imply that

1X

i=n+1

1

qi
<

1

qn
.

This is equivalent to q > 2, contradicting the choice of q. So we have

either an = 1 for all n, or an = 0 for infinitely many indices n.

In the first case we obtain

1X

i=1

ai

qi
=

1X

i=1

1

qi
=

1

q − 1
≥ x,

proving that the inequality in (1.3) is in fact an equality. In the second

case we have
nX

i=1

ai

qi
> x − 1

qn

for all n satisfying an = 0. Letting n → 1 we conclude again that the

inverse inequality to (1.3) holds true.
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Remark. The greedy algorithm also provides an expansion of x = 0

and of x = 1 if q = 1, given by a1 = x and ai = 0 for all i > 1.

We are going to characterize the greedy expansions by using the

lexicographic order between sequences: given two sequences (bi) and (ci),

we write (bi) < (ci) or b1b2 · · · < c1c2 . . . if there exists a positive integer

n such that bi = ci for all i < n but bn < cn. This is a complete ordering.

Theorems 1.2 and 1.3 below are very close to former theorems of Parry.

Definition. A sequence a1, a2, . . . of integers in {0, 1, . . . ,m} is

distinguished if

(1.4) an+1an+2 · · · < a1a2 . . . whenever an = 0.

Theorem 1.2 (Cf. [10]). Let us denote by (εi) the greedy expansion

of 1 for 1 ≤ q ≤ 2. Then the map q 7→ (εi) is a strictly increasing bijection

of the closed interval [1, 2] onto the set of distinguished sequences.

Theorem 1.3 (Cf. [10]). Fix 1 < q ≤ 2 arbitrarily and let us

denote by (εi) the corresponding greedy expansion of 1. Furthermore, let

us denote by (ai) the greedy expansion of some x.

(a) Assume that the sequence (εi) is infinite, i.e., it contains infinitely

many nonzero elements. Then the map x 7→ (ai) is a strictly increasing

bijection of the closed interval [0, 1/(q − 1)] onto the set of all sequences

(ai) satisfying

(1.5) an+1an+2 · · · < ε1ε2 . . . whenever an = 0.

(b) Assume that the sequence (εi) is finite, i.e., all but finitely many

elements vanish. Let εk be its last nonzero element. Then the map x 7→
(ai) is a strictly increasing bijection of the closed interval [0, 1/(q−1)] onto

the set of all sequences (ai) satisfying (1.5) and which are not eventually

periodic with period ε1 . . . εk−1(εk − 1).
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We need two lemmas. Fix 1 < q ≤ 2 arbitrarily and denote by (εi)

the corresponding greedy expansion of 1.

Lemma 1.4. (a) The greedy expansion (ai) of every number x ∈
[0, 1/(q − 1)] satisfies the condition (1.5).

(b) If the sequence (ε) is finite with a last nonzero digit εk, then

no greedy expansion is eventually periodic with the period ε1, . . . , εk−1,

εk − 1.

Proof. (a) If (an+i) > (εi) for some n, then there exists an integer

k such that

an+i = εi for i = 1, . . . , k − 1

but

an+k > εk.

Then we have
kX

i=1

an+i

qi
> 1

by the definition of the sequence (εi). Hence

X

i<n

ai

qi
+

an + 1

qn
<

1X

i=1

ai

qi
≤ x.

This contradicts the definition of an unless an = 1.

If (an+i) = (εi) for some n, then

X

i<n

ai

qi
+

an + 1

qn
=

1X

i=1

ai

qi
= x

This contradicts the definition of an again unless an = 1.

(b) Assume on the contrary that the greedy expansion (an) of some

x is eventually periodic with the period ε1, . . . , εk−1, εk − 1, and let ap

be the last element of a period. Then changing an = εk − 1 to εk and

an to 0 for all n > p, we obtain a lexicographically larger expansion of x,

contradicting the definition of the greedy expansion.
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Lemma 1.5. (a) Let (ei) be an infinite expansion of 1. Let (ai) be

an expansion of some real number x, satisfying

(1.6) an+1an+2 · · · < e1e2 . . . whenever an = 0.

Then (ai) is the greedy expansion of x.

(b) Let (ei) be a finite expansion of 1 and denote ek its last nonzero

element. Let (ai) be an expansion of some real number x, satisfying (1.6),

and assume that (ai) is not eventually periodic with period e1 . . . ek−1(ek−
1). Then (ai) is the greedy expansion of x.

Proof. There is nothing to prove if an = 1 for all n. Otherwise fix

n such that an = 0. We have to show that

(1.7)
1X

i=1

an+i

qi
< 1 whenever an = 0.

Using the hypothesis of the lemma we can construct a sequence of integers

n = k0 < k1 < . . .

satisfying for each j = 1, 2, . . . the conditions

akj−1+i = ei for all 1 ≤ i < kj − kj−1

and

akj
< ekj−kj−1

.

(a) If the sequence (ei) is infinite, then

1X

i=1

an+i

qi
≤

1X

j=1

≥kj−kj−1X

i=1

ei

qkj−1+i
− 1

qkj

¥
<

1X

j=1

≥ 1

qkj−1
− 1

qkj

¥
= 1,

proving (1.7).

(b) If the sequence (ei) is finite, then the above proof leads to (1.7)

with ≤ instead of <. A closer inspection of the proof reveals that

we obtain = exactly if kj − kj−1 = k for every j and if the sequence

(an+i) is periodic with period e1 . . . ek−1(ek − 1). However, this case was

excluded.
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Proof of Theorem 1.2. It follows at once from the definition of

the greedy expansion that the map q 7→ (εi) is strictly increasing.

Lemma 1.4 shows that for any 1 < q ≤ 2 the greedy expansion (εi)

of 1 is a distinguished sequence. This is also for true q = 1 because the

sequence 1000 . . . is obviously distinguished.

Conversely, let (ei) be a distinguished sequence satisfying

1X

i=1

ei

qi
= 1

for some 1 ≤ q ≤ 2. We claim that then (ei) is the greedy expansion of 1

for this q. Indeed, if en = 0 for some n, then we deduce from Lemma 1.5

that
X

i<n

ei

qi
+

en + 1

qn
>

1X

i=1

ei

qi
= 1.

This proves that (ei) is the greedy expansion of 1.

Proof of Theorem 1.3. Again, the strict increasingness of the

map x 7→ (ai) follows from the definition of greedy expansions. Further-

more, Lemma 1.4 shows that (ai) satisfies the condition (1.5) for every x.

Conversely, let (ai) be an expansion of some number x and assume

that the condition (1.5) is satisfied. If an = 0 for some n, then applying

Lemma 1.5 we obtain that

X

i<n

ai

qi
+

an + 1

qn
>

1X

i=1

ai

qi
= x.

This proves that (ai) is the greedy expansion of x.

2 – Lazy and unique expansions

In this section we recall some results from [3] and [5].

Fixing 1 < q ≤ 2 again, we may define for every 0 ≤ y ≤ 1/(q − 1)

another expansion (bi) of y by the so-called lazy algorithm: we choose

always the smallest possible nonnegative integer bi. More precisely, define

recursively a sequence b1, b2, . . . as follows. If for some positive integer
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n the numbers bi are defined for all i < n (no assumption if n = 1), then

set bn = 0

(2.1)
nX

i=1

bi

qi
+
X

i>n

1

qi
≥ y,

and set bn = 1 otherwise. It follows at once from this definition that (bi)

is the lazy expansion of y if and only if the sequence (ai) := (1 − bi) is

the greedy expansion of x := (q − 1)−1 − y. Using this “duality” relation

we deduce from Proposition 1.1 that every 0 ≤ y ≤ 1/(q − 1) has a lazy

expansion. Furthermore, it follows at once from the definitions that if

(ai) and (bi) are the greedy and lazy expansions of some x and if there

exists another expansion (ci) of x, then

(bi) < (ci) < (ai).

In other words, the greedy expansion is the greatest expansion and the

lazy expansion is the smallest expansion of a given number x with respect

to the lexicographic order.

Using this duality, we deduce from Lemma 1.5 the

Proposition 2.1(Cf. [5]). Let (ei) be an infinite expansion of 1.

(This means that ei > 0 for infinitely many indices i.) If an expansion

(bi) of some number y satisfies the condition

(2.2) (1 − bn+i) < (ei) whenever bn > 0,

then (bi) is the lazy expansion of y.

Remark. This condition is not necessary. For example, the expan-

sion of 0 is unique and hencre lazy, but the corresponding sequence bi ≡ 0

for all i does not satisfy (2.2). It would be interesting to find a necessary

and sufficient condition.

Now we can determine those numbers q for which the greedy and

lazy expansions of 1 coincide. Equivalently, these are the numbers q for

which the expansion of 1 is unique. Let us introduce a subset of the set

of distinguished sequences:
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Definition. A sequence a1, a2, ...of integers in {0,1} is 1-admissible if

(2.3) (an+i) < (ai) whenever an = 0

and

(2.4) (1 − an+i) < (ai) whenever an = 1.

In the sequel we shall often write εi instead of 1 − εi and s instead of

ε1 . . . εn if s = ε1 . . . εn for brevity. Thus the condition (2.4) may be

rewritten in the form

(an+i) < (ai) whenever an = 1.

Theorem 2.2 (Cf. [3]). The number 1 has a unique expansion for

a given q if and only if the greedy expansion (εi) of 1 is a 1-admissible

sequence. In other words, the bijection q 7→ (εi) of Theorem 1.2 estab-

lishes also a bijection between the set of numbers q having the uniqueness

property and the set of 1-admissible sequences.

It follows from this theorem that there are continuum many q’s having

this curious uniqueness property. See [8] for the determination of the

smallest such q, and [1] for the proof of its transcendence.

3 – Numbers with exactly two expansions

Let ε = (εi) be a sequence of zeroes and ones, satisfying the condition

(3.1) εn+1εn+2 · · · < ε1ε2 . . . whenever εn = 0.

Then ε1 = 1. Indeed, otherwise applying (3.1) we would obtain by in-

duction that εi ≡ 0, contradicting (3.1). Hence there exists a unique

q ∈ [1, 2] satisfying

(3.2)
1X

i=1

εiq
−i = 1.

By Theorem 1.2 (εi) is the corresponding greedy expansion of 1.
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Assume that there exists a positive integer m satisfying

(3.3) εm = 1

and

(3.4) εi + εi+m ∈ {0, 1} for all i ≥ 1.

Then we can define another expansion

(3.5)
1X

i=1

δiq
−i = 1

of 1 by setting

(3.6) δi =





εi if i < m,

0 if i = m,

εi + εi−m if i > m.

Indeed, thanks to (3.4), δ = (δi) is a sequence of zeroes and ones. Fur-

thermore, using (3.2) and (3.3) we have

1X

i=1

δiq
−i =

X

i<m

εiq
−i +

X

i>m

(εi + εi−m)q−i =

=
X

i6=m

εiq
−i + q−m

1X

i=1

εiq
−i =

1X

i=1

εiq
−i = 1.

Now we give a sufficient condition for q in order to have exactly two

expansions of 1. In the sequel we write for brevity εi instead of 1−εi and

also s instead of ε1ε2 . . . if s = ε1ε2 . . . is a finite or infinite sequence of

zeroes and ones.

Theorem 3.1. Assume (3.1), (3.3), (3.4) and define q by (3.2).

Furthermore, define the sequence (δi) by (3.6), and assume that

δn+1δn+2 . . . < ε1ε2 . . . whenever δn = 1,(3.7)

εn+1εn+2 . . . < ε1ε2 . . . whenever εn = 1 and n > m,(3.8)

δn+1δn+2 · · · < ε1ε2 . . . whenever δn = 0 and n > m.(3.9)

Then for this q there are exactly two different expansions: those given by

(3.2) and (3.5).
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Proof. The sequence (εi) is infinite: otherwise (3.7) is not satisfied

for the last δn = 1. Hence q > 1. Applying Theorem 1.2 and Proposi-

tion 2.1 we deduce from (3.1) and (3.7) that (3.2) and (3.5) are the greedy

and lazy expansions of 1.

It remains to verify that if a sequence (ρi) of zeroes and ones satisfies

the strict inequalities

(δi) < (ρi) < (εi),

then

(3.10)
1X

i=1

ρiq
−i 6= 1.

Fix such a sequence (ρi), then ρi = δi = εi = 1 for all i < m. Since

δm = 0 and εm = 1, we have either ρm = δm or ρm = εm. We distinguish

two cases.

First case: ρm = 0. Then there is an integer n > m such that

ρi = δi for all i < n and δn = 0 < 1 = ρn. Using (3.9) and applying

Lemma 1.5 with (ei) = (εi) and (ai) = (δn+i), we obtain that

1X

i=1

δn+iq
−i < 1.

Therefore

≥ 1X

i=1

ρiq
−i
¥
− 1 =

≥ 1X

i=1

ρiq
−i
¥
−
≥ 1X

i=1

δiq
−i
¥

=

= q−n +
1X

i=n+1

(ρi − δi)q−i ≥ q−n −
1X

i=n+1

δiq
−i =

= q−n
≥
1 −

1X

i=1

δn+iq
−i
¥

> 0,

proving (3.10).

Second case: ρm = 1. Then there is an integer n > m such that

ρi = εi for all i < n and ρn = 0 < 1 = εn. Using (3.8) and applying

Lemma 1.5 with (ei) = (εi) and (ai) = (εn+i), we obtain that

1X

i=1

εn+iq
−i < 1.
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Hence

≥ 1X

i=1

ρiq
−i
¥
− 1 =

≥ 1X

i=1

ρiq
−i
¥
−
≥ 1X

i=1

εiq
−i
¥

=

= −q−n +
1X

i=n+1

(ρi − εi)q
−i ≤ −q−n +

1X

i=n+1

εiq
−i =

= −q−n
≥
1 −

1X

i=1

εn+iq
−i
¥

< 0,

implying (3.10) again.

4 – Small numbers with exactly two expansions

A sequence (εi) satisfying the conditions of Theorem 3.1 is called

admissible, and the corresponding unique positive solution of the equation

1X

n=1

εnq−n = 1

is also called admissible. By Theorem 3.1 for admissible q’s there are

exactly two different expansions. In this section we are looking for the

smallest admissible q’s.

Let us consider the sequence (ε0n) given by

111 001 001 001 · · · = 111 001;

the symbol s will be used here and in the sequel to denote the period s

of a periodic sequence. (Note that this sequence is not admissible but

1-admissible; hence it has the uniqueness property.) Denoting the unique

positive solution of the equation

1X

n=1

εnq−n = 1

by q0, we have q0 ≈ 1.871349313.

We shall prove the

Theorem 4.1. All admissible numbers are greater than q0. On the

other hand, q0 is an accumulation point of the set of admissible numbers.
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First we note that the sequence (ε0n) satisfies (3.1) (with ε0i instead of

εi), so that it corresponds to the greedy expansion of 1 for q0, but (3.3)

and (3.4) cannot be satisfied simultaneously for any m, so that q0 is not

admissible.

Now choose an arbitrarily large positive integer k and insert between

the kth and (k+1)th block 001 a block 100 . . . 0 formed by one followed by

3k+4 zeroes. Then we obtain an admissible sequence ε with m = 3k+4.

For example, for k = 1 we have m = 7 and

ε = 111001 10000000 001 001 001 001 001 001 . . .

δ = 111001 01110011 001 001 001 101 101 101 . . . ;

for k = 2 we obtain m = 10 and

ε = 111001001 10000000000 001 001 001 001 001 001 001 . . .

δ = 111001001 01110010011 001 001 001 001 101 101 101 . . . .

One can readily verify that the corresponding numbers q tend to q0 as

k → 1.

In order to complete the proof of the theorem, it remains to establish

the inequality q ≥ q0 for every admissible number q. Equivalently, it

suffices to prove the inequality

(εn) ≥ (ε0n)

(in the lexicographic order) for every admissible sequence (εn). We may

assume without loss of generality that

(4.1) ε1 . . . ε5 ≤ 11100.

in the lexicographic order. (The above examples show that such sequences

exist.) We need a series of lemmas.

Lemma 4.2. Every admissible sequence ε contains infinitely many

one digits and infinitely many zero digits.

Proof. If ε had a last one digit εj = 1, then δ would also have a last

one digit δj+m = 1, and then (3.7) would not hold for n = j + m. The

other property follows at once from (3.4).
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It follows in particular from this lemma that there exists a first one

digit εk = 1 in the subsequence εm+1εm+2 . . . .

Lemma 4.3. For every admissible sequence ε the sequence δ contains

infinitely many zero digits.

Proof. Assume on the contrary that δ has a last zero digit δn = 0.

Since δm = 0, we have necessarily n ≥ m. If n > m, then (3.9) is not

satisfied. Hence we have necessarily n = m, so that δi = 1 for all i > m.

Now we deduce from (3.6) that

εm+1 . . . ε2m = ε1 . . . εm,

and then by induction that ε is 2m-periodic. However, this contra-

dicts (3.1).

It follows from this lemma that there exists a first zero digit δl = 0

in the subsequence δm+1δm+2 . . . .

Lemma 4.4. Every admissible sequence ε begins with 111.

Proof. Let ε be an admissible sequence. Then ε1 = 1 by (3.1).

Next we claim that ε2 = 1. Indeed, assume on the contrary that

(εi) begins with 10. Then ε cannot contain 11 by (3.1). Therefore ε ≤
1010 . . . . Next we deduce from (3.8) that the subsequence εk+1εk+2 . . .

does not contain 00 either. Hence εnεn+1 · · · = 0101 . . . for some n > m

and then εn+1εn+2 · · · ≥ ε1ε2 . . . , contradicting (3.1).

Now we prove that ε3 = 1. Assume on the contrary that ε begins

with 110. Then ε cannot contain 111 by (3.1) and hence ε ≤ 110110 . . . .

Next we deduce from (3.8) that the subsequence εk+1εk+2 . . . does not

contain 000 either. Using (3.6) it follows that out of three consecutive

elements of the subsequence δk+m+1εk+m+2 . . . at most one can be zero.

Using also the preceding lemma, there exists n > m + k + 1 with δn = 0

and δn+1δn+2 ≥ 110110 . . . . But this contradicts (3.9).
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Until now we did not use (4.1). From now on we shall need it. Thanks

to Lemma 4.4 all these sequences begin with 11100. Hence m ≥ 3, and

it follows from (3.3), (3.4) and (3.6) that

εm = 1, εm+1 = εm+2 = εm+3 = ε2m = 0,

δm = 0, δm+1 = δm+2 = δm+3 = δ2m = 1.

Hence k, l ≥ m + 4.

Lemma 4.5. There is no 0000 in the subsequence εk+1εk+2 . . . .

Proof. Since εk = 1, otherwise ε would contain 10000 beginning

with εn = 1 for some n ≥ k > m, contradicting (3.9).

Lemma 4.6. There is no 1111 in the subsequence δl+1δl+2 . . . .

Proof. Since δl = 0, otherwise δ would contain 01111 beginning

with δn = 1 for some n ≥ l > m, contradicting (3.9).

Lemma 4.7. There is no 11 in the subsequence

εKεK+1 . . . , K = max{k − m + 2, l − m + 2}.

Proof. Assume on the contrary that εn = εn+1 = 1 for some n ≥ K.

Then δm+n = δm+n+1 = 1 by (3.6) and εm+n = εm+n+1 = 0 by (3.4). We

distinguish four cases according to the values of εm+n−1 and εm+n+2:

First case: εm+n−1 = εm+n+2 = 0. This is impossible by Lemma 4.5

because m + n − 1 ≥ k + 1. (See the figure below.)

ε : 0 0 0 0

1 1

δ : 1 1

Second case: εm+n−1 = εm+n+2 = 1. Then δm+n−1 = δm+n =

δm+n+1 = δm+n+2 = 1 by (3.6). But this is impossible by Lemma 4.6

because m + n − 1 ≥ l + 1.

ε : 1 0 0 1

1 1

δ : 1 1 1 1
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Third case: εm+n−1 = 0 and εm+n+2 = 1. Then εm+n+3 = 1 because

(3.8) implies that εm+n−1 = εm+n = εm+n+1 = 0 must be followed by

εm+n+2 = εm+n+3 = 1. (We use again the relation m + n − 1 ≥ k + 1.)

But then δm+n = δm+n+1 = δm+n+2 = δm+n+3 = 1, contradicting Lemma

4.6 again (because m + n ≥ l + 1).

ε : 0 0 0 1 1

1 1

δ : 1 1 1 1

Fourth case: εm+n−1 = 1 and εm+n+2 = 0. Then δm+n−1 = δm+n =

δm+n+1 = 1, and applying (3.9) we conclude that δm+n+2 = δm+n+3 = 0.

(To apply (3.9) we need again the relation m+n−1 ≥ l+1.) This implies

by (3.6) that εm+n = εm+n+1 = εm+n+2 = εm+n+3 = 0, contradicting

Lemma 4.5 because m + n ≥ k + 1.

ε : 1 0 0 0 0

1 1

δ : 1 1 1 0 0

Lemma 4.8. There is no 000 in the subsequence

εLεL+1 . . . , L = max{k + 1, l − m − 1}.

Proof. Assume on the contrary that εn = εn+1 = εn+2 = 0 for some

n ≥ L. Then εn+3 = εn+4 = 1 by (3.8) (because n ≥ k +1), contradicting

the preceding lemma (because n + 3 ≥ K).

Lemma 4.9. There is no 101 in the subsequence

εMεM+1 . . . , M = max{m + k + 1, l + 1}.
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Proof. (See the figure below.) Assume on the contrary that

εnεn+1εn+2 = 101 for some n ≥ M . Then we have δn = δn+2 = 1 and

εn−m = εn+2−m = 0 by (3.6). Then εn+1−m = 1 by Lemma 4.8 (because

n−m ≥ L), and then δn+1 = 1 by (3.6). Since δn = δn+1 = δn+2 = 1 and

n ≥ l + 1, (3.9) implies that δn+3 = δn+4 = 0, and therefore εn+3−m =

εn+4−m = 0 by (3.6). But then εn+2−m = εn+3−m = εn+4−m = 0, contra-

dicting the preceding lemma (because n + 2 − m ≥ L).

ε : 0 1 0 0 0 . . . 1 0 1

δ : . . . 1 1 1 0 0

Now we can prove the crucial

Proposition 4.10. Every admissible sequence ε satisfying (4.1) be-

gins in fact with 11100 and is eventually periodic with period 100. More-

over, denoting by εk the first one digit in the subsequence εm+1εm+2 . . .

and by δl the first zero digit in the subsequence δm+1δm+2 . . . , the subse-

quence

εNεN+1 . . . , N = max{m + k + 1, l + 1}

is already periodic with one of the three periods 100, 010 or 001.

Proof. By Lemma 4.4 every admissible sequence satisfying (4.1)

begins in fact with 11100.

Next we note that N = max{K,L,M}. Therefore the three pre-

ceding lemmas imply that the subsequence εMεM+1 . . . does not contain

three consecutive zeroes and every one digit is followed by at least two ze-

roes. Hence this subsequence is periodic with one of the periods 100, 010

or 001.

Before proceeding to the proof of Theorem 4.1, let us note two im-

portant corollaries of the above proposition.

Remark.

• There are only countably many admissible sequences satisfying (4.1).

• If ε is an admissible sequence beginning with 11100, then m cannot be

a multiple of 3. Indeed, otherwise (3.6) would lead to an eventually

periodic sequence δ with period 200.



632 V. KOMORNIK – P. LORETI [18]

Proof of Theorem 4.1. It remains to prove that every admissible

sequence (εn) satisfies the inequality

(εn) ≥ 111 001 001 001 . . .

We already know that (εn) begins with 111. Assume on the contrary that

for some k ≥ 1 the sequence (εn) begins with

(4.2) 111|{z}
1

001|{z}
2

. . . 001|{z}
k

000.

By (3.4) we cannot have m = 1 or m = 2, and by the last remark

above m cannot be a multiple of 3. Since εm = 1 by (3.3), we must have

m ≥ 3k + 4.

Then the sequence (δn) also begins with (4.2). Applying (3.7) we

conclude that the following three digits of (δn) are 111. Therefore m ≥
3k+7 (because δm = 0), so that the following three digits of (εn) are also

111, and then by (3.1) it must be followed by 000. In particular, we must

have m ≥ 3k + 10.

Repeating these arguments we obtain that m must be bigger than

any integer, which is impossible.

5 – Algebraic properties of q-expansions

We have the

Theorem 5.1. If ε is an eventually periodic sequence, then 1 <

q < 2 given by (3.2) is irrational.

Proof. Assume first that ε is periodic from the beginning with a

period of length m. Then setting x = 1/q we have

1 = (ε1x
1 + · · · + εmxm)(1 + xm + x2m + . . . ) =

= (ε1x
1 + · · · + εmxm)/(1 − xm),

whence

1 − xm = ε1x
1 + · · · + εmxm
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or

(1 + εm)xm + εm−1x
m−1 + · · · + ε1x − 1 = 0.

Assuming on the contrary that q is rational, we may write x = a/b with

two relative prime integers a and b. Since 0.5 < x < 1, we have a ≥ 2.

Rewriting the equation in the form

(1 + εm)am + εm−1a
m−1b + · · · + ε1abm−1 − bm = 0,

we see that all terms but the last are divisible by a. (We need here the

fact that a ≥ 2.) Hence the equality cannot hold.

Now assume that ε is periodic with a period of length m, but not

from the beginning. Then there is a positive integer n such that the

subsequence εn+1εn+2 . . . is periodic with a period of length m, but εn 6=
εn+m. Setting again x = 1/q, we have

1 = ε1x + · · · + εnxn+(εn+1x
n+1+ · · · + εn+mxn+m)(1 + xm+x2m +...)=

= ε1x + · · · + εnxn + (εn+1x
n+1 + · · · + εn+mxn+m)/(1 − xm)

whence

1 − xm = (ε1x + · · · + εnxn)(1 − xm) + (εn+1x
n+1 + · · · + εn+mxn+m).

Since εn 6= εn+m, this is an equation of order n + m with integer coef-

ficients and with principal coefficient εn − εn+m = ±1. Now we recall

the elementary result from algebra that if a real number x satisfies an

equation xn + c1x
n−1 + · · · + cn with integral coefficients, then x is either

an integer or an irrational number. (The proof is analogous to the usual

proof of the irrationality of
√

2, see, e.g., [9], p. 15.)

Since in our case x = 1/q satisfies 0 < x < 1, it cannot be an integer;

applying this theorem we conclude that x is irrational.

REFERENCES

[1] J.-P. Allouche – M. Cosnard: Non-integer bases, iteration of continuous func-
tions, and an arithmetical self-similar set , to appear.
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