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Existence of unbounded solutions for some

quasilinear elliptic problems

N. GRENON

Riassunto: In questo lavoro si prova l’esistenza di soluzioni per una classe di
equazioni quasilineari con crescita quadratica nel gradiente. Si suppone che esistano
una sotto soluzione e una sopra soluzione non limitate. La soluzione che si trova
non è una soluzione debole in senso classico, ma una soluzione “rinormalizzata”. Si
costruiscono problemi approssimanti e si ottengono stime sulle troncate delle rispettive
soluzioni usando particolari funzioni test.

Abstract: We study the existence of a solution of some quasilinear elliptic equa-
tion with quadratic growth in the gradient, assuming the existence of a pair of sub and
super solutions which are not bounded. The solution we obtain is not a classical weak
solution, but a ”renormalized” solution. We define approximated problems, and we ob-
tain estimates on the truncates of the corresponding solutions, by using appropriate test
functions.

1 – Introduction and hypotheses

Let ≠ be a bounded open set of IRN with N ≥ 1. We consider the

following hypotheses:

(1.1) a(x, s) is a Caratheodory function from ≠× IR → IRN×N ,

Key Words and Phrases: Sub and super unbounded solutions – Quasilinear elliptic
problems.
A.M.S. Classification: 35D05 – 35J60.
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(1.2)
∀ i, j, 1 ≤ i, j ≤ n, ∃ c ≥ 0, such that,

|ai,j(x, s)| ≤ c a.e. x ∈ ≠, ∀ s ∈ IR,

(1.3)
nX

i,j=1

ai,j(x, s)ξiξj ≥ α|ξ|2 a.e.x ∈ ≠,∀ s ∈ IR,

(1.4) g(x, s, ξ) is a Caratheodory function from ≠× IR × IRN → IR,

(1.5) |g(x, s, ξ)| ≤ b(|s|)(|ξ|2 + f(x)),

where f is a function of L1(≠), and b is a function which is defined

everywhere in IR+, and bounded on bounded intervals of IR+.

We denote by a(x, u) the matrix (ai,j(x, u)), and we study the fol-

lowing problem:

(1.6)

(
−div[a(x, u)∇u] + g(x, u,∇u) = h,

u = 0 on @≠,

with h ∈ H−1(≠).

We know that for this type of problems, the existence of a pair

of bounded ordered sub and super solutions implies the existence of a

bounded weak solution (see [3], [4]). Our goal in the present paper is

to study the problem of the existence of a solution (in a sense which

has to be precised) if we assume the existence of unbounded sub and su-

per solutions. Some existence results for unbounded solutions are proved

in [1], [2], [6], [8] for instance. In this work, the solutions we obtain are

not classical, but “renormalized” solutions, so that we shall be interested

in “renormalized” solutions studied in [7] and [8] and especially in the

uniqueness of such solutions. That is why we shall be first interested in

following basic problem:

(1.7)

(
−div[a(x)∇u] = f in ≠,

u = 0 on @≠,

where f lies in L1(≠) and a(x) lies in L1(≠) with a(x) ≥ α > 0. In [7],

the following definition of a “renormalized” solution is given:
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Definition 1.1. We say that u is a “renormalized” solution of (1.7) if:

(1.8)





u ∈ L0(≠) (espace des fonctions mesurables

finies presque partout sur ≠),

Tk(u) ∈ H1
0 (≠), ∀ k ∈ IN,

lim
n→+1

1

n

Z

n≤|u|≤2n

|∇u|2dx → 0,

and if:

(1.9)

Z

≠

a(x)∇u∇vh(u)dx +

Z

≠

a(x)∇u∇uvh0(u)dx =

Z

≠

f(x)h(u)vdx

∀ v ∈ H1
0 (≠) ∩ L1(≠),∀h ∈ W 1,1

comp(IR),

where W 1,1
comp(IR) is the set of functions of W 1,1(IR) with compact sup-

port.

In [7], it is showed that f lies in L1(≠), then there exists a unique

renormalized solution of (1.7). In the proof of the uniqueness, the as-

sumption:

(1.10) lim
n→+1

1

n

Z

{n≤|u|≤2n}
|∇u|2dx → 0

is essential, but it can be modified in the following way:

Theorem 1.1. Let w1 and w2 be two functions of L0(≠) such that:

w1 ≤ w2 a.e. in ≠(1.11)

Tk(wi) ∈ H1(≠) for i = 1, 2 and ∀ k ∈ IN(1.12)

lim
n→+1

1

n

Z

n≤|wi|≤2n

|∇wi|2dx → 0 for i = 1, 2.(1.13)

Then there exists no more than one solution of (1.7), which satisfies:

(1.14)





u ∈ L0(≠) with w1 ≤ u ≤ w2 a.e. in ≠,

Tk(u) ∈ H1
0 (≠) ∀ k ∈ IN,Z

≠

a(x)∇u∇vdx =

Z

≠

f(x)vdx,

∀ v ∈ H1
0 (≠)∩L1(≠) such that there exists M, with v = 0 in {|u| ≥ M}.
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Theorem 1.1 shows that the solutions we shall obtain are solutions

in a suitable sense.

Proof of Theorem 1.1. We take v = θn(u)T1(u
+) in (1.14), where

θn(s) is the function defined as follows:

(1.15) θn(s) =

(
s sgn(s) − n if |s| ≤ n,

0 if |s| ≥ n.

Then we obtain (C designates different constants which are independent

of n),

Z

{0≤u≤1}
a(x)∇u∇uθn(u)dx +

Z

{0≤u≤n}
a(x)∇u∇uT1(u

+)dx =

=

Z

≠

f(x)T1(u
+)θn(u)dx.

As,

Z

{0≤u≤1}
a(x)∇u∇uT1(u

+)dx ≥ 0,

we have,

α

Z

{1≤u≤n}
|∇u|2dx ≤

Z

≠

f(x)T1(u
+)θn(u)dx + C

Z

{0≤u≤1}
|∇u|2|θn(u)|dx,

that is to say, since T1(u) belongs to H1
0 (≠),

Z

{1≤u≤n}
|∇u|2dx ≤ Cn

and, Z

{0≤u≤1}
|∇u|2dx =

Z

≠

|∇T1(u)|2dx

and so,
1

n

Z

{0≤u≤n}
|∇u|2dx ≤ C.

We can show likewise:

1

n

Z

{−n≤u≤0}
|∇u|2dx ≤ C
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and so,

(1.16)
1

n

Z

{0≤|u|≤n}
|∇u|2 ≤ C.

We suppose now that there exist two solutions u1 and u2 of (1.14). In the

equations corresponding to u1 and u2, we take v = hn(w1)hn(w2)Tk(u1 −
u2), where hn(s) is the function defined as follows:

hn(s) =





1 if |s| ≤ n

− s

n
sgn(s) + 2 if n ≤ |s| ≤ 2n

0 if 2n ≤ |s|.

One can check, recalling that w1 ≤ u1 ≤ w2, that v equals zero in the set

{|u1| ≥ 2n} and in the set {|u2| ≥ 2n}. We set En = {|u1| ≤ 2n}∩{|u2| ≤
2n}.

We subtract the equation corresponding to u2 from the one corre-

sponding to u1. That leads to the following equality:

Z

{|u1−u2|≤k}∩En

a(x)∇(u1 − u2)∇(u1 − u2)hn(w1)hn(w2)dx+

+

Z

{n≤|w1|≤2n}∩En

1

n
a(x)∇u1∇w1Tk(u1 − u2)hn(w2)dx+

−
Z

{n≤|w1|≤2n}∩En

1

n
a(x)∇u2∇w1Tk(u1 − u2)hn(w2)dx+

+

Z

{n≤|w2|≤2n}∩En

1

n
a(x)∇u1∇w2Tk(u1 − u2)hn(w1)dx+

−
Z

{n≤|w2|≤2n}∩En

1

n
a(x)∇u2∇w2Tk(u1 − u2)hn(w1)dx = 0.

The four lastest terms tend to zero when n tends to infinity, since for

instance:

ØØØ
Z

{n≤|w1|≤2n}∩En

1

n
a(x)∇u1∇w1Tk(u1 − u2)hn(w2)dx

ØØØ ≤

≤ Ck
≥ 1

n

Z

{0≤|u1|≤2n}
|∇u1|2dx

¥1/2≥ 1

n

Z

{n≤|w1|≤2n}
|∇w1|2dx

¥1/2

.
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Formula (1.16), together with the assumptions on w1, imply that the

right hand side tends to zero, as n tends to infinity. So, we have that:

0≤ lim inf

Z

{|u1−u2|≤k}∩En

a(x)∇(u1 − u2)∇(u1 − u2)hn(w1)hn(w2)dx≤

≤ lim sup

Z

{|u1−u2|≤k}∩En

a(x)∇(u1 − u2)∇(u1 − u2)hn(w1)hn(w2)dx≤0

and thus,

lim
n→+1

Z

{|u1−u2|≤k}∩En

a(x)∇(u1 − u2)∇(u1 − u2)hn(w1)hn(w2)dx = 0.

This proves Theorem 1.1.

We call “renormalized” sub solution of (1.7), a function ϕ such that:





ϕ ∈ L0(≠),

Tk(ϕ) ∈ H1(≠), ∀ k ∈ IN,

ϕ is bounded and nonpositive on @≠,

lim
n→1

1

n

Z

n≤|ϕ|≤2n

|∇ϕ|2dx = 0,

Z

≠

a(x,ϕ)∇ϕ∇vdx +

Z

≠

g(x,ϕ,∇ϕ)vdx ≤ hh, vi,

∀ v ∈ H1
0 (≠)∩L1(≠), such that there exists M such that v = 0 in {|ϕ| ≥

M}. We define likewise a super solution, exchanging “≤” with “≥”.

Notation.

Tk(s) =





s if − k ≤ s ≤ k,

k if s ≥ k,

−k if s ≤ −k.

If ϕ and √ are two functions such that ϕ ≤ √, we define:

Tϕ√(u) =





u in {ϕ ≤ u ≤ √},
√ in {√ ≤ u},
ϕ in {u ≤ ϕ},

gk(x, u,∇u) =





g(x, u,∇u) in {Tk(ϕ) ≤ u ≤ Tk(√)},
g(x, Tk(√),∇Tk(√)) in {Tk(√) ≤ u},
g(x, Tk(ϕ), ∇Tk(ϕ)) in {u ≤ Tk(ϕ)},
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ak(x, u) =





a(x, u) in {Tk(ϕ) ≤ u ≤ Tk(√)},
a(x, Tk(√)) in {Tk(√) ≤ u},
a(x, Tk(ϕ)) in {u ≤ Tk(ϕ)}.

2 – Existence theorem

Theorem 2.1. We assume (1.1), (1.2), (1.3), (1.4). We assume in

addition, that there exists a renormalized subsolution ϕ and a renormal-

ized supersolution √ such that:

ϕ ≤ √ a.e. in ≠,(2.1)

∃M1,M2 ≥ 0 such that ϕ ≤ M1 and √ ≥ −M2 a.e. in ≠(2.2)

ϕ and √ are bounded on @≠,(2.3)

∃M0 ≥ 0 such that {ϕ ≥ −M0} ∪ {√ ≤ M0} = ≠.(2.4)

Then there exists u ∈ L1(≠) such that:





ϕ ≤ u ≤ √ a.e. in ≠

TM(u) ∈ H1
0 (≠) ∀M ≥ 0Z

≠

a(x, u)∇u∇vdx +

Z

≠

g(x, u,∇u)vdx = hh, vi
for every v ∈ H1

0 ∩ L1(≠), such that there exists M,

such that v = 0 in {|u| ≥ M}

Remarks 2.1.

• If either ϕ or √ is a function of L1(≠), hypothesis (2.4)) is always

verified. In fact, hypothesis (2.4) means that, if ϕ and √ have singu-

larities, they are not in the same place.

• If u is bounded, {|u| > kuk1} = ∅ and then, for every v ∈ H1
0 (≠) ∩

L1(≠), we can consider that v = 0 in {|u| ≥ kuk1}, that is to say,

u is an ordinary weak solution. Thus, the existence result of [4] in

which the sub and the super solution are bounded, is a particular

case of Theorem 2.1.
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• If we suppose in addition that:

lim
n→+1

1

n

Z

{n≤|ϕ|≤2n}
|∇ϕ|2dx = 0,

and,

lim
n→+1

1

n

Z

{n≤|√|≤2n}
|∇√|2dx = 0,

we have seen in the first part that for linear problems the solution is

unique.

Proof of Theorem 2.1.

1st step: construction of a sequence of approaching solutions:

Let k ≥ sup(M1,M2) where M1,M2 are given by (2.2), then there

exists uk ∈ Hk = {v ∈ H1
0 (≠), Tk(ϕ) − 1 ≤ v ≤ Tk(√) + 1} satisfying:

(2.5)

Z

≠

ak+2(x, uk)∇uk∇(v − uk)dx +

Z

≠

gk+2(x, uk,∇uk)(v − uk)dx ≥
≥ hh, v − uki ∀ v ∈ Hk.

That can be proved with standard arguments, approaching gk+2 by

gk+2/(1 + ≤|gk+2|). Indeed there is no difficulty to pass to the limit, as

Hk is bounded in L1(≠) (see for instance [5]).

Lemma 2.1. Under assumptions (1.1) to (1.5), let uk be a solution

of (2.5). Then, we have:

ϕ ≤ uk ≤ √ a.e. in ≠,

and it verifies in fact:

(2.6)

Z

≠

a(x, uk)∇uk∇(v − uk)dx +

Z

≠

g(x, uk,∇uk)(v − uk)dx ≥
≥ hh, v − uki ∀ v ∈ Hk.
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Proof of Lemma 2.1. We know that uk ≥ −k − 1 then ϕ −
uk ≤ M1 + k + 1 and so (ϕ − uk)

+ ∈ L1(≠). One can verify also that

(ϕ − uk)
+ ∈ H1

0 (≠). Moreover (ϕ − uk)
+ = 0 in {ϕ ≤ −k − 2} and as

soon as k + 2 > M1, {ϕ ≥ k + 2} = ∅ . Thus we can take (ϕ − uk)
+ as

test function in the inequality satisfied by ϕ, and so,

(2.7)

Z

≠

a(x,ϕ)∇ϕ∇(ϕ− uk)
+dx +

Z

≠

g(x,ϕ,∇ϕ)(ϕ− uk)
+dx ≤

≤ hh, (ϕ− uk)
+i .

On the other hand, one can verify that uk + (ϕ − uk)
+ is in Hk and so,

taking uk + (ϕ− uk)
+ as test function in (2.5):

(2.8)

Z

≠

ak+2(x, uk)∇uk∇(ϕ− uk)
+dx+

+

Z

≠

gk+2(x, uk,∇uk)(ϕ− uk)
+dx ≥

≥ hh, (ϕ− uk)
+i .

If we subtract (2.8) from (2.7), we obtain:

(2.9)

Z

≠

a(x,ϕ)∇(ϕ− uk)
+∇(ϕ− uk)

+dx+

+

Z

≠

(a(x,ϕ) − ak+2(x, uk))∇uk∇(ϕ− uk)
+dx+

+

Z

≠

(g(x,ϕ,∇ϕ) − gk+2(x, uk,∇uk))(ϕ− uk)
+dx ≤ 0.

As anyway, uk ≥ Tk(ϕ) − 1, then, in the set {ϕ ≥ uk}, we have the

following properties:

ϕ ≥ −k − 1

ak+2(x, uk) = a(x, Tk+2(ϕ)) = a(x,ϕ)

gk+2(x, uk,∇uk) = g(x, Tk+2(ϕ),∇Tk+2(ϕ)) = g(x,ϕ,∇ϕ).

Thus the two last terms in (2.9) are equal to zero, and therefore:

Z

≠

a(x,ϕ)∇(ϕ− uk)
+∇(ϕ− uk)

+dx ≤ 0.
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Consequently, from (1.2):

k∇(ϕ− uk)
+k2 ≤ 0

that is to say, ϕ ≤ uk a.e. in ≠. But, uk ≥ −(k+2) so that, uk ≥ Tk+2(ϕ).

In the same way, we can show that:

uk ≤ Tk+2(√)

and then,
ak+2(x, uk) = a(x, uk)

gk+2(x, uk,∇uk) = g(x, uk,∇uk).

That proves Lemma 2.1.

2nd step: estimate for the gradient.

Lemma 2.2. Under assumptions (1.1) to (1.5), let uk be a solution

of (2.5). Then, there exists a constant CM which depends on M, but not

on k, such that: Z

≠

|∇(TM(uk))|2dx ≤ CM .

Proof of Lemma 2.2. We denote by T rϕ and T r√ the value of

ϕ and √ on the boundary of ≠. Let M be such that, M ≥ sup(M1,M2,

kT rϕkL1(@≠) + 2, kT r√kL1(@≠) + 2) and k ≥ M . We set θ = T1((ϕ+

M + 1)+), then, 



0 ≤ θ ≤ 1

θ = 0 in {ϕ ≤ −M − 1}
θ = 1 in {ϕ ≥ −M}.

We set τ = sup(T1(((√ − kT r√kL1(@≠))
+), T1(((−kT rϕkL1(@≠) − ϕ)+)),

then τ ∈ H1
0 (≠) and 0 ≤ τ ≤ 1. Now we set, w = τ(θTM(√) + (1 − θ)ϕ)

and z = uk − δϕ∏(−(uk − w)−), where ϕ∏(s) = se∏s2
and where δ and ∏

are constants which will be precised in the following. Remark: a priori,

θTM(√) + (1− θ)ϕ is not equal to zero on the boundary of ≠, that’s why

we use the function τ . If ϕ and √ are equal to zero on the boundary, we

can take τ = 1.)
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One can verify that:

−1 − M − τTM(√) ≤ −(uk − w)− ≤ 0

so (uk−w)− ∈ L1(≠). Then, we can choose δ (independent of k) so that:

δ ≤ 1

k exp(∏(−(uk − w)−)2)k1
which implies z ∈ Hk, and z ≥ uk ≥ Tk(ϕ) − 1.

On another hand,

w ≤ τTM(√) ≤ Tk(√) + 1 if k ≥ M

thus, in the set {(uk − w)− 6= 0}, we have,

z = (1 − δ exp(∏(−(uk − w)−))2)uk + δ exp(∏(−(uk − w)−)2)w ≤
≤ w ≤ Tk(√) + 1

and in the set { (uk − w)− = 0}, we have,

z = uk ≤ Tk(√) + 1.

One can verify too, that z ∈ H1
0 (≠), and so z ∈ Hk, and we can take z

as test function in (2.6), that leads to:
Z

≠

− a(x, uk)∇uk∇(uk − w)−ϕ0
∏(−(uk − w)−)dx+

+

Z

≠

g(x, uk,∇uk)ϕ∏(−(uk − w)−)dx ≤ hh,ϕ∏(−(uk − w)−)i.

Then,
Z

{uk≤w}
a(x, uk)∇uk∇ukϕ

0
∏(−(uk − w)−)dx+

−
Z

{uk≤w}
a(x, uk)∇uk∇wϕ0

∏(−(uk − w)−)dx ≤

≤
Z

{uk≤w}
b(|uk|)|∇uk|2|ϕ∏(−(uk − w)−)|dx+

+

Z

{uk≤w}
f(x)b(|uk|)|ϕ∏(−(uk − w)−)|dx+

+ CkhkH−1

≥ Z

{uk≤w}
|∇ϕ∏(−(uk − w)−)|2dx

¥1/2

.
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In the set {uk ≤ w}, we have, uk ≤ w ≤ τTM(√) ≤ M and, ϕ ≥ −M − 1

and therefore, uk ≥ −M − 1. So, b(|uk|) ≤ CM . For ∏ large enough

(independent of k), we have, αϕ0
∏ − CM |ϕ∏| ≥ α

2
and thus, we obtain,

α

2

Z

{uk≤w}
|∇uk|2dx ≤ CM

≥ Z

{uk≤w}
|∇uk|2dx

¥1/2

+ CM .

So, Z

{uk≤w}
|∇uk|2dx ≤ CM

and then, Z

EM

|∇uk|2dx ≤ CM

where EM = {uk ≤ w} ∩ {ϕ ≥ −M} ∩ {τ = 1}.
But, in the set {ϕ ≥ −M} ∩ {τ = 1}, we have w = TM(√) and

therefore uk ≤ w is equivalent to uk ≤ M . That leads to,

Z

E0
M

|∇uk|2dx ≤ CM

where E0
M = {uk ≤ M} ∩ {ϕ ≥ −M} ∩ {τ = 1}.

In the same way, if we replace θ by θ0 = T1((M + 1 − √)+), we can

show that, Z

F 0
M

|∇uk|2dx ≤ CM

where F 0
M = {uk ≥ −M} ∩ {√ ≤ M} ∩ {τ = 1}.

Consequently,

(2.10)

Z

E0
M

∪F 0
M

|∇uk|2dx ≤ CM .

We are going to show that,

Z

{τ<1}
|∇uk|2dx ≤ C.

Let ω ∈ H1(≠) ∩ L1(≠) such that 0 ≤ ω ≤ 1, with ω = 1 in the set

{τ < 1}, ω = 0 in {√(x) ≥ M}∪{ϕ(x) ≤ −M} (we can take for instance:
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ω = 1− sup(T1((√ − kT r√kL1(@≠) − 1)+), T1((kT rϕkL1(@≠) − 1− ϕ)+)).

Let v = uk − δωϕ∏(uk), then v ∈ Hk, because in the set {√ ≥ M}∪ {ϕ ≤
−M}, we have, −M ≤ uk ≤ M , and thus Tk(ϕ) ≤ TM(ϕ) ≤ uk ≤
TM(√) ≤ Tk(√). So , if we choose δ such that: δkωϕ∏(uk)k1 ≤ 1, then,

Tk(ϕ) − 1 ≤ v ≤ Tk(√) + 1. With such a choice of δ, v is in Hk, and

we can take v as test function in (2.6), and if we take (1.3) into account,

that leads to:

Z

≠

a(x, uk)∇uk∇ukωϕ
0
∏(uk)dx +

Z

≠

a(x, uk)∇uk∇ωϕ∏(uk)dx ≤

≤
Z

≠

CM |ϕ∏(uk)|ωdx + CM

Z

≠

f(x)|ϕ∏(uk)|ωdx + hh,ϕ∏(uk)ωi.

For ∏ large enough, we obtain:

α

2

Z

≠

|∇uk|2ωdx ≤ −
Z

≠

a(x, uk)∇uk∇ωϕ∏(uk)dx+

+ CM +

Z

≠

h2∇ukϕ
0
∏(uk)ωdx.

Then,

α

2

Z

{τ<1}
|∇uk|2ωdx ≤ CM −

Z

{τ<1}
a(x, uk)∇uk∇ωϕ∏(uk)dx+

−
Z

{τ=1}
a(x, uk)∇uk∇ωϕ∏(uk)dx +

Z

{τ<1}
h2∇ukϕ

0
∏(uk)ωdx+

+

Z

{τ=1}
h2∇ukϕ

0
∏(uk)ωdx.

From (2.10) and the properties of τ , we deduce that,

α

2

Z

{τ<1}
|∇uk|2ωdx ≤ CM + CM

≥ Z

{τ<1}
|∇uk|2dx

¥1/2

and as ω = 1 in the set {τ < 1},
α

2

Z

{τ<1}
|∇uk|2dx ≤ CM + CM

α

2

≥ Z

{τ<1}
|∇uk|2dx

¥1/2

and so,

(2.11)
α

2

Z

{τ<1}
|∇uk|2dx ≤ CM .
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On another hand, if M ≥ M0 (where M0 is given by (2.4)),

({uk ≥ −M} ∩ {√ ≤ M}) ∪ ({uk ≤ M} ∩ {ϕ ≥ −M}) =

= {−M ≤ uk ≤ M} ∪ ({√ ≤ M} ∪ {ϕ ≥ −M}) = {−M ≤ uk ≤ M}

because if M ≥ M0, then {√ ≤ M} ∪ {ϕ ≥ −M} = ≠. Then finally,

regrouping (2.10), (2.11) and (2.12), we obtain that,
Z

{−M≤uk≤M}
|∇uk|2dx ≤ CM ,

so that Lemma 2.2 is proved.

3rd step: convergence of the sequence (uk).

Lemma 2.3. Under assumptions (1.1) to (1.5), let uk be a solution

of (2.5). Then there exists u ∈ L0(≠) such that:

uk → u a.e. in ≠,

∇TM(uk) → ∇TM(u) in L2(≠) weak .

Proof of Lemma 2.3. After extraction of a diagonal subsequence

relatively to k, we can suppose that,

TM(uk) → uM in H1
0 (≠) weak, L2(≠) strong and a.e. in ≠.

Moreover, one can verify that there exists a function u of L0(≠) such that

TM(u) = uM , so the lemma is proved.

Lemma 2.4. Under the assumptions (1.1) to (1.5), let uk be a

solution of (2.5). We have,

∇TM(uk) → ∇TM(u) in L2(≠) strong .

Proof of Lemma 2.4. Let vk = TM(uk) − TM(sup(u, uk)) and

wk = ϕ∏vk(ϕ+M0 +1)+ then wk ∈ H1
0 (≠)∩L1(≠), and we can choose δ

such that δkwkk1 ≤ 1. We are going to verify that uk − δwk belongs to

Hk: as wk is negative , uk − δwk ≥ uk. Then we have only to show that

uk − δwk ≤ Tk(√) + 1. Let us choose k ≥ M .

• In the set {uk ≥ M}, we have wk = 0 so uk − δwk = uk ≤ Tk(√) + 1.
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• In the set {uk ≤ M}, we have uk ≤ √ and −δwk ≤ 1, therefore

uk − δwk ≤ √ + 1, and as uk ≤ M , then uk − δw ≤ M + 1 ≤ k + 1,

which gives, uk − δwk ≤ Tk(√) + 1.

We now take uk − δwk as test function in (2.6), then from (1.3):

Z

≠

a(x, uk)∇uk∇(TM(uk) − TM(sup(u, uk)))ϕ
0
∏(vk)(ϕ+ M0 + 1)+dx+

+

Z

≠

a(x, uk)∇uk∇(ϕ+ M0 + 1)+ϕ∏(vk)dx ≤

≤
Z

≠

b(|uk|)|∇uk|2|ϕ∏(vk)|(ϕ+ M0 + 1)+dx+

+

Z

≠

b(|uk|)f(x)|ϕ∏(vk)|(ϕ+ M0+1)+dx +hh,ϕ∏(vk)(ϕ+ M0+1)+i

We choose M > M0 + 1. Then,

• in the set {uk ≤ −M}, wk = 0.

• in the set {uk ≥ M} we have wk = 0 too.

• in the set {uk ≥ u}, we have wk = 0 too.

Then,
Z

{uk≤u}
a(x, uk)∇(TM(uk) − TM(u))∇(TM(uk)+

− TM(u))ϕ0
∏(vk)(ϕ+ M0 + 1)+dx+

+

Z

{uk≤u}
a(x, uk)∇TM(u)∇(TM(uk)−TM(u))ϕ0

∏(vk)(ϕ+M0+1)+dx ≤

≤ CM

Z

{uk≤u}
|∇(TM(uk) − TM(u))|2|ϕ∏(vk)|(ϕ+ M0 + 1)+dx+

+ CM

Z

{uk≤u}
|∇TM(u)|2|ϕ∏(vk)|(ϕ+ M0 + 1)+dx+

+ CM

Z

≠

f(x)|ϕ∏(vk)|(ϕ+ M0 + 1)+dx + hh,ϕ∏(vk)(ϕ+ M0 + 1)+i+

−
Z

≠

a(x, uk)∇TM(uk)∇(ϕ+ M0 + 1)+ϕ∏(vk)dx.
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For ∏ large enough, we obtain,

α

2

Z

{uk≤u}
∇(TM(uk)−TM(u))∇(TM(uk) − TM(u))(ϕ+M0+1)+dx≤

≤−
Z

{uk≤u}
a(x, uk)∇TM(u)∇(TM(uk)−TM(u))ϕ0

∏(vk)(ϕ+M0+1)+dx+

(2.13) −
Z

{uk≤u}
a(x, uk)∇TM(uk)∇(ϕ+ M0 + 1)+ϕ∏(vk)dx+

+ CM

Z

{uk≤u}
|∇TM(u)|2|ϕ∏(vk)|(ϕ+ M0 + 1)+dx+

+CM

Z

{uk≤u}
f(x)|ϕ∏(vk)|(ϕ+M0+1)+dx +hh,ϕ∏(vk)(ϕ+M0+1)+i.

But,

(2.14)
α

2

Z

{uk≤u}
∇(TM(uk)−TM(u))∇(TM(uk)−TM(u))(ϕ+M0+1)+dx ≥

≥ α

2

Z

{uk≤u}∩{ϕ≥−M0}
∇(TM(uk)−TM(u))∇(TM(uk)−TM(u))(ϕ+ M0 + 1)+dx ≥

≥ α

2

Z

{uk≤u}∩{ϕ≥−M0}
∇(TM(uk) − TM(u))∇(TM(uk) − TM(u))dx.

Moreover, as,

• TM(uk) → TM(u) weakly in H1
0 (≠)

• TM(uk) → TM(u) in L1(≠) weak? and a.e. in ≠

• wk → 0 in H1
0 (≠) weak,L1(≠) weak ? and a.e. in ≠,

we can show that the right hand side of (2.13), tends to zero as k tends

to infinity. From (2.13) and (2.14), we can deduce that,

(2.15) lim
k→+1

Z

{uk≤u}∩{ϕ≥−M0}
∇(TM(uk) −TM(u))∇(TM(uk) −TM(u))dx = 0.

We now choose as test functions: vk,l = TM(ul) − TM(sup(uk, ul)) and

wk,l = ϕ∏(vk,l)(ϕ + M0 + 1)+, where uk and ul are two elements of the

sequence (uk)k∈IN. Choosing l ≥ M , we can take ul−δwk,l, as test function
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in the equation (2.6) corresponding to l, and we obtain:

Z

{ul≤uk}
a(x, ul)∇ul∇(TM(ul) −TM(sup(uk, ul)))ϕ

0
∏(vk,l)(ϕ+M0+1)+dx+

+

Z

{ul≤uk}
a(x, ul)∇ul∇(ϕ+ M0 + 1)+ϕ∏(vk,l)dx ≤

≤
Z

{ul≤uk}
b(|ul|)|∇ul|2|ϕ∏(vk,l)|(ϕ+ M0 + 1)+dx+

+

Z

{ul≤uk}
!b(|ul|)f(x)|ϕ∏(vk,l)|(ϕ+M0+1)+dx +hh,ϕ∏(vk,l)(ϕ+M0+1)+i.

So,

Z

{ul≤uk}
a(x, ul)∇(TM(ul) − TM(uk))∇(TM(ul)+

− TM(uk))ϕ
0
∏(vk,l)(ϕ+ M0 + 1)+dx+

+

Z

{ul≤uk}
a(x, ul)∇TM(uk)∇(TM(ul)+

− TM(uk))ϕ
0
∏(vk,l)(ϕ+ M0 + 1)+dx ≤

≤ CM

Z

{ul≤uk}
|∇(TM(ul) − TM(uk))|2|ϕ∏(vk,l)|(ϕ+ M0 + 1)+dx+

+ CM

Z

{ul≤uk}
|∇TM(uk)|2|ϕ∏(vk,l)|(ϕ+ M0 + 1)+dx+

+ CM

Z

{ul≤uk}
f(x)|ϕ∏(vk,l)|(ϕ+ M0 + 1)+dx+

−
Z

{ul≤uk}
a(x, ul)∇TM(ul)∇(ϕ+ M0 + 1)+ϕ∏(vk,l)dx+

+ hh,ϕ∏(vk,l)(ϕ+ M0 + 1)+i.
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For ∏ large enough, we have,

(2.16)

α

2

Z

{ul≤uk}
∇(TM(ul) −TM(uk))∇(TM(ul) −TM(uk))(ϕ+M0+1)+dx ≤

≤ −
Z

{ul≤uk}
a(x, ul)∇TM(uk)∇(TM(ul)+

− TM(uk))ϕ
0
∏(vk,l)(ϕ+ M0 + 1)+dx+

+ CM

Z

{ul≤uk}
|∇TM(uk)|2|ϕ∏(vk,l)|(ϕ+ M0 + 1)+dx+

+ CM

Z

{ul≤uk}
f(x)|ϕ∏(vk,l|(ϕ+ M0 + 1)+dx+

−
Z

{ul≤uk}
a(x, ul)∇TM(ul)∇(ϕ+ M0 + 1)+ϕ∏(vk,l)dx+

+ hh,ϕ∏(vk,l)(ϕ+ M0 + 1)+i

but,

(2.17)
α

2

Z

{ul≤uk}
∇(TM(ul)−TM(uk))∇(TM(ul)−TM(uk))(ϕ+M0+1)+dx ≤

≥ α

2

Z

{ul≤uk}∩{ϕ≥−M0}
∇(TM(u) − TM(uk))∇(TM(u) − TM(uk))dx+

+ α

Z

{ul≤uk}∩{ϕ≥−M0}
∇(TM(u) − TM(uk))∇(TM(ul) − TM(u))dx .

Letting l tend to +1, we have

TM(ul) → TM(u) weakly in H1
0 (≠)
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χ{ul≤uk} → χ{u≤uk} in L1(≠) weak ?, and a.e. in ≠,

thus the right hand side of (2.17) tends to,

α

2

Z

{u≤uk}∩{ϕ≥−M0}
∇(TM(u) − TM(uk))∇(TM(u) − TM(uk))dx.

Moreover,

a(x, ul)∇TMukϕ
0
∏(vk,l)χ{ul≤uk}(ϕ+ M0 + 1)+

→ a(x, u)∇TMukϕ
0
∏(TM(u) − TM(uk))χ{u≤uk}(ϕ+M0+1)+

in L2(≠) strong

(ϕ+ M0 + 1)+|ϕ∏(vk,l)|χ{ul≤uk} →

→ (ϕ+ M0 + 1)+|ϕ∏(TMu − TMuk)|χ{u≤uk}

in L1(≠) weak ? .

Assuming h = h1 − divh2, where h1 and h2 are in L2(≠), one can also

verify that,

hh,ϕ∏(vk,l)(ϕ+ M0 + 1)+i →

→
Z

{u≤uk}
h1ϕ∏(TM(u) − TM(uk))(ϕ+ M0 + 1)+dx+

+

Z

{u≤uk}
h2∇(TM(u) − TM(uk))ϕ

0
∏(TM(u) − TM(uk))(ϕ+ M0 + 1)+dx+

+

Z

{u≤uk}
h2∇(ϕ+ M0 + 1)+ϕ∏(TM(u) − TM(uk))dx.
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Regrouping (2.16) and (2.17), and if l tends to infinity, we obtain that,

(2.18)
α

2

Z

{u≤uk}∩{ϕ≥−M0}
∇(TM(u) − TM(uk))∇(TM(u) − TM(uk))dx

−
Z

{u≤uk}
a(x, u)∇TM(uk)∇(TM(u)+

− TM(uk))ϕ
0
∏(TM(u) − TM(uk))(ϕ+ M0 + 1)+dx+

+ CM

Z

{u≤uk}
|∇TM(uk)|2|ϕ∏(TM(u) − TM(uk))|(ϕ+ M0 + 1)+dx+

+ CM

Z

{u≤uk}
f(x)|ϕ∏(TM(u) − TM(uk))|(ϕ+ M0 + 1)+dx+

+

Z

{u≤uk}
h1ϕ∏(TM(u) − TM(uk))(ϕ+ M0 + 1)+dx+

+

Z

{u≤uk}
h2∇(TM(u) − TM(uk))ϕ

0
∏(TM(u) − TM(uk))(ϕ+ M0 + 1)+dx+

+

Z

{u≤uk}
h2∇(ϕ+ M0 + 1)+ϕ∏(TM(u) − TM(uk))dx.

But from Lemma 2.2,

−
Z

{u≤uk}
a(x, uk)∇TM(uk)∇(TM(u) − TM(uk))ϕ

0
∏(TM(u)+

− TM(uk))(ϕ+ M0 + 1)+dx =

=

Z

{u≤uk}
a(x, uk)∇TM(uk)∇TM(uk)ϕ

0
∏(TM(u)+

− TM(uk))(ϕ+ M0 + 1)+dx+

−
Z

{u≤uk}
a(x, uk)∇TM(uk)∇TM(uk)ϕ

0
∏(TM(u)+

− TM(uk))(ϕ+ M0 + 1)+dx ≤
≤ CM

Z

{u≤uk}
|ϕ0

∏(TM(u) − TM(uk))(ϕ+ M0 + 1)+|dx+

−
Z

{u≤uk}
a(x, u)∇TM(uk)∇TM(u)ϕ0

∏(TM(u) − TM(uk))(ϕ+ M0 + 1)+dx
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similarly,

Z

{u≤uk}
|∇TM(uk)|2|ϕ∏(TM(u) − TM(uk))|(ϕ+ m0 + 1)+dx ≤

≤ CM

Z

{u≤uk}
|ϕ∏(TM(u) − TM(uk))|(ϕ+ M0 + 1)+dx

so, we can show as before, that the second member of (2.18) tends to zero

as k tends to infinity and finally,

(2.19)
lim

k→+1

Z

{u≤uk}∩{ϕ≥−M0}
∇(TM(u)+

− TM(uk))∇(TM(u) − TM(uk))dx = 0.

From (2.15) and (2.19), we deduce that,

lim
k→+1

Z

{ϕ≥−M0}
∇(TM(u) − TM(uk))∇(TM(u) − TM(uk))dx = 0,

and similarly, if we replace (ϕ+M0 +1)+ by (M0 +1−√)+, we can prove

that,

lim
k→+1

Z

{√≤M0}
∇(TM(u) − TM(uk))∇(TM(u) − TM(uk))dx = 0

and then finally,

lim
k→+1

Z

≠

∇(TM(u) − TM(uk))∇(TM(u) − TM(uk)dx = 0.

This is the end of the proof of Lemma 2.4.

4th step: passage to the limit in the equation.

We consider the function β defined by:





1 if − M ≤ s ≤ M

0 if s ≥ M + 1 or s ≤ −M − 1

−s + M + 1 if M ≤ s ≤ M + 1

s + M + 1 if − M − 1 ≤ s ≤ −M.
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Let Φ ∈ H1
0 (≠) ∩ L1(≠) be such that: ∃M ≥ 0 such that Φ = 0 in

{|u| ≥ M}. We consider v = uk + δΦβ(uk), then v ∈ Hk if k ≥ M +1 and

0 ≤ δ ≤ 1
kΦk1

. Thus we can take v as test function in (2.6), similarly we

can take w = uk − δΦβ(uk), which finally gives,

(2.20)

Z

≠

a(x, uk)∇uk∇(Φβ(uk))dx+

+

Z

≠

g(x, uk,∇uk)Φβ(uk)dx = hh,Φβ(uk)i.

We now study the convergence of the term Φβ(uk). We have

Z

≠

|∇(Φβ(uk)) −∇Φ|2dx =

Z

≠

|∇Φ|2(1 − β(uk))
2dx+

− 2

Z

≠

∇Φ∇ukβ
0(uk)Φ(1− β(uk))dx +

Z

≠

|∇uk|2|Φ|2(β0(uk))
2dx =

=

Z

≠

|∇Φ|2(1 − β(uk))
2dx − 2

Z

{M≤|uk|≤M+1}
∇Φ∇ukΦ(1 − β(uk))dx+

+

Z

{M≤|uk|≤M+1}
|∇uk|2|Φ|2dx.

Observe that

Z

≠

|∇Φ|2(1 − β(uk))
2dx →

Z

≠

|∇Φ|2(1 − β(u))2dx = 0 ,

− 2

Z

{M≤|uk|≤M+1}
∇Φ∇ukΦ(1 − β(uk))dx →

→ −2

Z

{M≤|u|≤M+1}
∇Φ∇Φ(1 − β(u))dx = 0 ,

Z

{M≤|uk|≤M+1}
|∇uk|2|Φ|2dx →

Z

{M≤|u|≤M+1}
|∇u|2|Φ|2dx = 0.

Therefore Φβ(uk) → Φ in H1
0 (≠), and thus,

Z

≠

a(x, uk)∇uk∇(Φβ(uk))dx =

=

Z

≠

a(x, uk)∇(TMuk)∇(Φβ(uk))dx →
Z

≠

a(x, u)∇u∇Φdx
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and, as g(uk,∇uk)Φβ(uk) is equiintegrable,

Z

≠

g(uk,∇uk)Φβ(uk)dx →
Z

≠

g(x, u,∇u)Φdx.

On another hand,

hh,Φβ(uk)i → hh,Φi
then, we can pass to the limit in (2.20), and we obtain,

Z

≠

a(x, u)∇u∇Φdx +

Z

≠

g(x, u,∇u)Φdx = hh,Φi

and Theorem 2.1 is proved.

3 – An application

We suppose that,

g(x, s, ξ) = g1(x, s, ξ) − f

where,

g1(x, s, ξ) ≥ 0(3.1)

g1(x, 0, 0) = 0(3.2)

f ∈ L1(≠), f ≥ 0.(3.3)

We consider the problem:

(3.4)

(
−div(a(x, u)∇u) + g1(x, u,∇u) = f

u = 0 on @≠

This type of problem is studied in [1]. From hypothesis (3.2) and because

f is positive, we verify that ϕ = 0 is a subsolution of (3.4). On another

hand (see [2]), we know that there exists a function √ such that:

√ ∈ W 1,q
0 (≠) for every q <

N

N − 1

Tk(√) ∈ H1
0 (≠) for every k ∈ IN
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which is a solution in the sense of distribution of,

−div(a(x,√)∇√) = f.

Moreover, if we multipy (3.4) by −Tk(√), we easily show that √ ≥ 0,

so that √ is a renormalized super solution of (3.4). Then we can apply

Theorem 2.1 to problem (3.4), thus obtaining the existence of a solution.
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