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Existence of unbounded solutions for some

quasilinear elliptic problems

N. GRENON

Ri1ASSUNTO: In questo lavoro si prova l’esistenza di soluzioni per una classe di
equazioni quasilineari con crescita quadratica nel gradiente. Si suppone che esistano
una sotto soluzione e una sopra soluzione mon limitate. La soluzione che si trova
non € una soluzione debole in senso classico, ma una soluzione “rinormalizzata”. Si
costruiscono problemi approssimanti e si ottengono stime sulle troncate delle rispettive
soluzioni usando particolari funzioni test.

ABSTRACT: We study the ezistence of a solution of some quasilinear elliptic equa-
tion with quadratic growth in the gradient, assuming the existence of a pair of sub and
super solutions which are not bounded. The solution we obtain is not a classical weak
solution, but a "renormalized” solution. We define approximated problems, and we ob-
tain estimates on the truncates of the corresponding solutions, by using appropriate test
functions.

1 — Introduction and hypotheses

Let Q be a bounded open set of R with N > 1. We consider the
following hypotheses:

(1.1) a(z,s) is a Caratheodory function from Q x R — RY*",

KEY WORDS AND PHRASES: Sub and super unbounded solutions — Quasilinear elliptic
problems.
A.M.S. CLASSIFICATION: 35D05 — 35J60.
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\V/i,j, 1 SZ,] S?’L, EICZO, such that,

1.2
(1.2) la; j(z,s)] < cae x€Q, Vs e,

(1.3) Z a; ;(z,8)&& > alé]? aexr € Q,Vs € R,

1,j=1

1.4 z,s,&) is a Caratheodory function from Q x R x RY — R
(14)  g(z,s,¢) y :

(1.5) l9(2,5,6) < b(IsD (€] + (),

where f is a function of L'(Q), and b is a function which is defined
everywhere in IR", and bounded on bounded intervals of IR™.

We denote by a(z,u) the matrix (a; ;(z,u)), and we study the fol-
lowing problem:

1.6
(16) u =0 on 01,

{ —div[a(z,u)Vu] + g(z,u, Vu) = h,
with h € H~1(Q).

We know that for this type of problems, the existence of a pair
of bounded ordered sub and super solutions implies the existence of a
bounded weak solution (see [3], [4]). Our goal in the present paper is
to study the problem of the existence of a solution (in a sense which
has to be precised) if we assume the existence of unbounded sub and su-
per solutions. Some existence results for unbounded solutions are proved
in [1], [2], [6], [8] for instance. In this work, the solutions we obtain are
not classical, but “renormalized” solutions, so that we shall be interested
in “renormalized” solutions studied in [7] and [8] and especially in the
uniqueness of such solutions. That is why we shall be first interested in
following basic problem:
) { divija(z)Vu] = f in Q,

u =0 on 012,

where f lies in L'(Q) and a(z) lies in L*>°(2) with a(z) > « > 0. In [7],
the following definition of a “renormalized” solution is given:
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DEFINITION 1.1. We say that uis a “renormalized” solution of (1.7) if:

u € L(Q) (espace des fonctions mesurables
finies presque partout sur 2),

(1.8) Ty(u) € HY(S), Vk € N,
1

lim 7/ |Vul|*dz — 0,
N N n<|u|<2n
and if:
/ a(x)VuVoh(u)dz +/ a(z)VuVuvh'(u)dz = / f(z)h(u)vdz
Q Q Q
Vv e Hy(Q)NL®(Q),Yh e WL (R),

comp

(1.9)

where W (IR) is the set of functions of W">*(IR) with compact sup-
port.

In [7], it is showed that f lies in L'(Q2), then there exists a unique
renormalized solution of (1.7). In the proof of the uniqueness, the as-
sumption:

1
(1.10) lim —/ |Vul?dz — 0
{n<|ul<2n}

n—+oo n,
is essential, but it can be modified in the following way:

THEOREM 1.1. Let wy and wy be two functions of L°(QY) such that:

(1.11) w; < wq a.e. in )
(1.12) Tw(w;) € HY(Q) fori=1,2 and Vk € N
1
(1.13) lim —/ |Vw; |*dz — 0 fori=1,2.
=+ N Jn<lw|<2n

Then there exists no more than one solution of (1.7), which satisfies:

u € LO°(Q) with w; < u < wsy a.e. in £,
(1.14) Tk(u) € H&(Q) Vk e N,

/ a(x)VuVudr = / f(x)vdz,
Q Q
Vo e Hy ()N L>®(Q) such that there exists M, with v =0 in {ju] > M}.
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Theorem 1.1 shows that the solutions we shall obtain are solutions
in a suitable sense.

PROOF OF THEOREM 1.1. We take v = 0,,(u)T;(u") in (1.14), where
0,,(s) is the function defined as follows:

s sgn(s) —n if |s| < n,
0 if |s| > n.

(1.15) 0,(s) = {

Then we obtain (C' designates different constants which are independent
of n),

/ a(z)VuVub,, (u)dz + / a(z)VuVuT;(uh)dx =
{0<u<1}

{0<u<n}

_ Af(x)Tl(u+)9n(u)dx.

As, / a(z)VuVuT;(ut)dx > 0,
{0<u<1})
we have,

a/ Vul?dz < / F(@) Ty ()0 (w)dz + C IV ul?(0, (u)|da,
{1<u<n} Q

{0<u<1}

that is to say, since T} (u) belongs to H;} (),

/ |Vul?dr < Cn
{(1<u<n}

and,
/ \vu|2dx:/ VT (u)|?dz
{0<u<1} Q

1
—/ |Vul?dz < C.
n J{o<u<n}

and so,

We can show likewise:

1
- / Vul?dz < C
N J{—n<u<0}
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and so,

1

(1.16) f/ Vul? < C.
T J{0<|u|<n}

We suppose now that there exist two solutions u; and uy of (1.14). In the
equations corresponding to u; and ug, we take v = h,, (wy)h, (ws) Ty (u; —
ug), where h,(s) is the function defined as follows:

1 if |s] <n
hn(s) = —%sgn(s)+2 ifn <|s| <2n
0 if 2n < |s|.

One can check, recalling that w; < u; < w,, that v equals zero in the set
{Jui| > 2n} and in the set {Juz| > 2n}. We set E,, = {|u1| < 2n}n{|us| <
2n}.

We subtract the equation corresponding to u, from the one corre-
sponding to u;. That leads to the following equality:

/ (@)Y (ur — 12)V (ur — t1z) o (w1 ) o (13 dar+
{lu1—uz|<k}NER

1
+ —a(x)Vu, Vw, Ty (uy — ug)hy, (ws)dx+

{n<|wy|<2n}INE, TV

1
—/ —a(x)VuaVw Ty (uy — ug)h, (wy)dz+
{n<|wy|<2n}INE, TV

1
+/ —a(x)Vmeng(ul — u2)hn(w1)da?+
{n<Jwa|<2n}NER

n

1
- / —a(x)Vus Vws Ty, (ur — uz)hy, (wy)dx = 0.
{n<|ws|<2n}NE, T

The four lastest terms tend to zero when n tends to infinity, since for

instance:

1
)/ —a(z)Vu, Vw Ty (uy — u2>hn(w2)d$‘ <
{n<jwy|<2n}NE, T

1 1/2 /1 1/2
< C’k:(—/ \Vu1|2dm) (—/ ]Vw1]2daz) .
T J{0<|u1|<2n} N J{n<|wi|<2n}
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Formula (1.16), together with the assumptions on w;, imply that the
right hand side tends to zero, as n tends to infinity. So, we have that:

0<liminf a(x)V(uy — ug)V(uy — uz)hy, (wr)hy, (wa)de <
{lur—ug|<k}NER
<lim sup/ a(x)V(uy — uz)V(ug — ug)hy, (wi)hy, (we)dz <0
{lur—uz|<k}NER
and thus,
lim a(x)V(uy — ug)V(uy — uz)hy, (wy)hy, (wa)dz = 0.

40 lug —uz| <k}NER
This proves Theorem 1.1.
We call “renormalized” sub solution of (1.7), a function ¢ such that:
p € L),
Ti(p) € HY(Q), Vk € IN,

¢ is bounded and nonpositive on 052,
1
lim —/ |Vo|?dx = 0,
O T In<|pl<2n
/ a(z, ¢)VeVudr + / 9(@, 0, Vo)vdz < (h,v),
Q Q

Vv e Hi(Q)NL>*(Q), such that there exists M such that v = 0 in {|p| >
M}. We define likewise a super solution, exchanging “<” with “>”.

NOTATION. )
s if —k<s<k,

Ti(s) =< k if s>k,
—k if s < —k.
If ¢ and 1 are two functions such that ¢ <, we define:

u in{p <u<yl,
Toy(u) =1 ¢ in{¢ <u},
¢ in{u<ep}
g(x,u, Vu) in {Ty(p) <
gr(z,u, Vu) = 9(x, Ti(¥), VI (¥))  in {T(y) <
9(z, Ti(), VIi(p)) in{u < Ti(p)

)
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<
ap(z,u) = § a(z, Tp(¢)) n{Tx(¥) <

2 — Existence theorem

THEOREM 2.1. We assume (1.1), (1.2), (1.3), (1.4). We assume in
addition, that there exists a renormalized subsolution ¢ and a renormal-
ized supersolution v such that:

(2.1) o <1 a.e. in,

(2.2)  3IM;, My > 0 such that ¢ < My and ¥ > —M; a.e. in 2
(2.3) w and v are bounded on OS2,

(2.4) I My > 0 such that {¢ > —My} U {yp < My} = .

Then there exists u € L*(Q) such that:

p<u<P ae ind

Thr(u) € HY(Q) VM >0

/a(x,u)Vqudx—i—/g(m,u, Vu)vdz = (h,v)
Q Q

for every v € Hy N L>®(R), such that there exists M,
such that v=0 in {|u| > M}

REMARKS 2.1.

o If either ¢ or 1 is a function of L>°(Q2), hypothesis (2.4)) is always
verified. In fact, hypothesis (2.4) means that, if ¢ and ¢ have singu-
larities, they are not in the same place.

e If uis bounded, {|u| > ||ul/»} = 0 and then, for every v € Hj(Q2) N
L>(), we can consider that v = 0 in {|u| > ||u||~}, that is to say,
u is an ordinary weak solution. Thus, the existence result of [4] in
which the sub and the super solution are bounded, is a particular
case of Theorem 2.1.
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e If we suppose in addition that:

1
lim —/ |Vp|*dz = 0,
O N S n<p|<2n}

and,

1
lim —/ [V|*da =0,
n=+oo N Jn<iy|<an}

we have seen in the first part that for linear problems the solution is
unique.

PROOF OF THEOREM 2.1.

15! step: construction of a sequence of approaching solutions:
Let k > sup(Mi, M,) where M, M, are given by (2.2), then there
exists uy, € Hy = {v € H}(Q), Ti.(¢) — 1 < v < Ty () + 1} satisfying:

[ arsalw ) V¥ (0 = w)da + [ guala, un, V) (0 = ug)da >
> (h,v—ug) Vvé€ Hy.

(2.5)

That can be proved with standard arguments, approaching gy, by
Gr+2/(1 + €|grra]). Indeed there is no difficulty to pass to the limit, as
Hj is bounded in L>(Q) (see for instance [5]).

LEMMA 2.1. Under assumptions (1.1) to (1.5), let us, be a solution
of (2.5). Then, we have:

v <u, <P a.e. in €,

and it verifies in fact:

/a(x,uk)VukV(v — uy)dz + / g(x, ug, Vug) (v — ug)dz >
Q Q
Z<h,v_uk> VUGH]C.

(2.6)



[9] Existence of unbounded solutions for some etc. 643

Proor or LEMMA 2.1. We know that uy > —k — 1 then ¢ —
up < My +k+1and so (¢ —u)t € L>®(Q). One can verify also that
(p —ug)™ € Hi(R2). Moreover (¢ —ui)t = 0in {¢ < —k — 2} and as
soon as k+2 > My, {¢ > k+2} =0 . Thus we can take (¢ — uy)* as
test function in the inequality satisfied by ¢, and so,

(La@mwv¢v@%—UMHM4:ég@mmV¢X¢—uw+¢vS
< <h7 (90 - uk)+> .

(2.7)

On the other hand, one can verify that uy + (¢ — uz)" is in Hy and so,
taking uy, + (¢ — uy)™* as test function in (2.5):

/ak+2(337 ug) Vup V(e — uk)+da:+
Q

(2.8) + /ng+2($7uka V) (p — up) tdr >
> (b, (o —u)™) -

If we subtract (2.8) from (2.7), we obtain:

[ al@. o)V (e —u) Vi - w) do+
(2.9) + /Q(a(l‘, ©) — apro(x,up))Vur V(e — up) Tdo+

+ / (9(2, 2,V 0) — Gura(s we, Vi) ) (i — we) *da < 0.

As anyway, uy > Ti(¢) — 1, then, in the set {¢ > ux}, we have the
following properties:

po>—k—1
g2 (2, ur) = a(z, Trga(p)) = alx, @)
9k+2($,uk7vuk) = 9($7Tk+2(90)7 VTk+2(90 ) = g(xa%VSO)-

Thus the two last terms in (2.9) are equal to zero, and therefore:

/Qa(ac, ©)V(p —up) V(e —up)Tdr <0.
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Consequently, from (1.2):
IV (e —u)"ll2 <0

that is to say, ¢ < uy a.e. in Q. But, u;, > —(k+2) so that, u, > Ti2(p).
In the same way, we can show that:

u < Thia(v)

and then,
arr2(T, ug) (z,u)

=a
Gro (@, u, Vug) = g(@, ug, Vug).
That proves Lemma 2.1.

274 step: estimate for the gradient.

LEMMA 2.2.  Under assumptions (1.1) to (1.5), let uy, be a solution
of (2.5). Then, there exists a constant Cy which depends on M, but not
on k, such that:

/Q|V(TM(UI~:))|2d$ <Cu.

PrOOF OF LEMMA 2.2. We denote by Tre and Triy the value of
¢ and 1 on the boundary of . Let M be such that, M > sup(M;, M,
| Trollo@a) + 2, | TrY| o) + 2) and k > M. We set 0 = T ((p+
M +1)*), then,
0<6<1
0=0in{p<-M -1}
f=1in{p > —-M}.

We set 7 = sup(T3 (6 — [ T7ll (o) ), Ta (<[ Trlleom) — #)*)),
then 7 € H}(2) and 0 < 7 < 1. Now we set, w = 7(0Tw(¢) + (1 — 6)p)
and z = uy, — dpx(—(ur — w) ™), where py(s) = se*s” and where § and A
are constants which will be precised in the following. Remark: a priori,
0T (¢) + (1 — 0)¢p is not equal to zero on the boundary of €2, that’s why
we use the function 7. If ¢ and 1 are equal to zero on the boundary, we
can take 7 =1.)
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One can verify that:
—1-M—71Ty () < —(up —w)” <0
50 (ur —w)~ € L>(92). Then, we can choose ¢ (independent of k) so that:

1
* = TexpO((ar — w) )

which implies z € Hy, and z > u;, > Ti(p) — 1.
On another hand,

w< tTyW) < Th@W) +1if k> M
thus, in the set {(ux —w)~ # 0}, we have,

z=(1—-3dexp(A(—(ur —w)7))?)ug + 6 exp(A(—(ur — w)")Hw <
<w < Ti(y) +1

and in the set { (ux —w)~ = 0}, we have,
z=u, < Ti(¢) + 1.

One can verify too, that z € Hj(Q2), and so z € Hy, and we can take z
as test function in (2.6), that leads to:

/Q — a(z, ur) Vur V(up — w)~ @\ (—(up, — w) ™ )dz+
+ [ gl un, Vur)oa(—(un = w) )de < (hyoa(—(un = w))).
Then,
/ a(x, ug) Vur Vugph (—(u, — w) ™ )dz+
{up<w}
— /{u o) a(x, uy) Vur Vwp) (—(u, — w) ™ )dz <
S R P e O

+ F(@)b(lur])[or(—(ur, — w)™)|dx+

{u<w}

il (

Vior(~(uy —w) )Pdz)

up<w}
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In the set {uy < w}, we have, u, < w < 7Ty () < M and, ¢ > —M — 1
and therefore, uy, > —M — 1. So, b(Jug|) < Cy. For A large enough

(independent of k), we have, ay) — Cylps| > § and thus, we obtain,

o 9 9 1/2
{up<w} {up<w}

So,
/ ]Vuk|2dx S CM
{ug<w}

and then,
/ |Vu;€|2dx < C]\/[
Enp

where Ey = {ur <w}n{e >-M}n{r =1}
But, in the set {¢ > —M} N {7 = 1}, we have w = Ty (1)) and
therefore u;, < w is equivalent to u;, < M. That leads to,

/ Vuw|2dz < Car

E M

where B, = {u, < M}Nn{p>-M}n{r=1}
In the same way, if we replace 6 by 0’ = T1((M + 1 —)T), we can
show that,
/ Vuy|de < C
Fiy
where F, ={u, > -M}n{y < M}n{r=1}.
Consequently,

(2.10) / IV |*de < Co.
E)UF},

We are going to show that,
/ |Vuy|*dz < C.
{r<1}

Sw<
<

1, with w = 1 in the set
— M} (we can take for instance:

Let w € H'Y(Q2) N L*>(Q) such that 0
{r <1}, w=0in{¢(x) > M}U{p(z)
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w = 1= sup(Ty (6 — [ Trblom — 1)) T (ITreloecom — 1 — )1)):
Let v = uy, — dwey (ur,), then v € Hy, because in the set {1 > M} U{p <
—M}, we have, —M < w, < M, and thus Ti(¢) < Tu(e) < up <
Ty (v) < Ti(v). So , if we choose 0 such that: 0|lwes(ur)||e < 1, then,
Ti(p) —1 < v < Tp(yp) + 1. With such a choice of d, v is in Hy, and
we can take v as test function in (2.6), and if we take (1.3) into account,
that leads to:

/a(x,uk)VukVukwcp’/\(uk)dx+/a(az,uk)VukagoA(uk)d:L‘ <
Q Q

< [ Culeatun)lds + Car [ F(@)loalun)oda + (b o (wn)e).

For X\ large enough, we obtain:

%/ |Vuy *wdz < —/ a(x, ur) Vur Vwes (ug ) dz+
Q Q

+Cu +/ ho V) (uy )wdz.
Q
Then,

g/ |V Pwdz < Cyy —/ a(x, ug) Vup Vwo, (uy ) dz+
2 Jir<ty {r<1}

—/ a(z, up) Vup Vwey (ug)dz + ha Vo (ug )wdz+
{r=1}

{r<1}

+ ho V@) (uy )wdz.
{r=1}

From (2.10) and the properties of 7, we deduce that,

1/2
a \Vuy|*wdz < Cyy + CM(/ ]Vuk|2dx>

5 {r<1} {r<1}

and as w =1 in the set {7 < 1},

(0%

a 1/2
f/ \Vuy,[2dz < Chy + CM—</ |vuk\2dx)
2 Jir<1y 2\ Jr<1y

and so,

a

(2.11) (Vu|*de < Cy.

5 {r<1}
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On another hand, if M > M, (where M, is given by (2.4)),

{ur = =M} {y < M} U{ue < Mpn{p = -M}) =
={-M<u, < MUy <Mju{p>-M})={-M<u, <M}

because if M > M, then {p < M} U{p > —M} = Q. Then finally,
regrouping (2.10), (2.11) and (2.12), we obtain that,

/ |Vug|?dr < Chy,
{~M<up<M}

so that Lemma 2.2 is proved.
374 step: convergence of the sequence (uy).

LEMMA 2.3.  Under assumptions (1.1) to (1.5), let uy, be a solution
of (2.5). Then there exists u € L°() such that:

U — u a.e. in ),
VT (up) = VT (u) in L*(Q) weak.

PrRoOOF OF LEMMA 2.3. After extraction of a diagonal subsequence
relatively to k, we can suppose that,

Tar(ug) — upr in H)(Q) weak, L?(Q) strong and a.e. in Q.

Moreover, one can verify that there exists a function u of L°(Q) such that
Ty (u) = upy, so the lemma is proved.

LEMMA 2.4. Under the assumptions (1.1) to (1.5), let uy be a
solution of (2.5). We have,

VT (uy) — VT (u) in L* () strong .

Proor OF LEMMA 2.4. Let vy, = Ty(ur) — Thr(sup(u,ux)) and
wi = Eavp(p+ Mo+ 1)T then wy, € Hy(2) NL>®(Q2), and we can choose §
such that d||wk||. < 1. We are going to verify that u;, — dwy belongs to
H,: as wy is negative , uy — dwy > u,. Then we have only to show that
up — dwy, < Tp(v) + 1. Let us choose k > M.

e In the set {u;, > M}, we have wy = 0 so u — dwy, = u, < Ti(¥)) + 1.
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e In the set {u, < M}, we have uy < ¢ and —dw, < 1, therefore
up — 0w, <Y+ 1, and as up, < M, then up, —ow < M +1<k+1,
which gives, uy, — dwy, < Ty () + 1.

We now take uj, — dwy, as test function in (2.6), then from (1.3):
/QCL(SU» we) Ve V(T (ur,) — Tar (sup(u, ug))) @ (vr) (@ + Mo + 1) " dz+
+ /Q a(z,u)Vur V(e + My + 1) op(vp)da <
< [ bl VunPlior(o)l(p + Mo + 1)*da+
+/Qb(\ukf)f($)|%(vk)\(<ﬁ + My+1)"dx +(h, pa(vp) (@ + Mo+1)7)

We choose M > M, + 1. Then,
e in the set {uy < —M}, wy, = 0.
e in the set {uy > M} we have wy = 0 too.
e in the set {u; > u}, we have w; = 0 too.
Then,
[ el ) D Taslu) = T ()9 (L) +
up<u
— Tar () (vr) (0 + Mo + 1) " d+
4 /{ ) VT )V (T ()~ Tar() 4 (1) +-Mo+1) o <
U SU
< CM/{ o [V (Tar (ur) — Taa ()P loa (v3) [ (@ + Mo + 1) " d+
U SU
O [ IVTu(Ples (o)l Mo+ 1) dos
U SU

+Cor [ J@leal(p+ Mo + 1) do+ (hpa(vn) (o + Mo+ 1))+

_ /Q a(z, ux) VT (ur) V(0 + My + 1) i (vy) .
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For A large enough, we obtain
o
> /{ 3 }V(TM(Uk)—TM(U))V(TM(Uk) — T (w))(p +Mo+1)"dz <
up<u

e
{up<u}

(2, ur ) VTas (w) V(T (wr) = Tor (0)) 05 (01) (@ + Mo +1) " da+-
(2.13) —/{u <u?(x,uk)VTM(uk)V(

+Cu

@+ M(J + 1)+(,0)\(’Uk)d$+

e LVTM(U)\Q’%(W)\(@ + My + 1) da+

UL SU

+CM/{ <f§x)!<m(vk)l(<ﬁ +Mo+1)"dx +(h, o (vi) (@ +Mo+1)7)
UpSU

But,
(2.14)

«

2 )i <UV}(TM(Uk)—TM(U))V(TM(Uk)—TM(U))(SO +Mo+1)"de >

/
> —
2 {

> ) <U}ﬂ§£?]]\\4/[§?k)_TN[(U))V(TM(UIC)—Tju(u))(go + My +1)*dz >

5 V(T (ug) — Tar(w))V (T (ur) — Tar(w))de.
{up<uln{p>—Mo}

Moreover, as,

o Th(uy) — Thr(u) weakly in Hj ()

)
o Ty(ug) = Th(u) in L=(2) weak* and a.e. in

e w;, — 0 in H}(Q) weak,L>(Q) weak x and a.e. in

we can show that the right hand side of (2.13), tends to zero as k tends
to infinity. From (2.13) and (2.14), we can deduce that

(2.15) kl_l)rfoo V(Tor(ug) —Tar(w))V(Tar(uy)

{up<u}n{e>-Mop}

—Ty(u))dr = 0.

We now choose as test functions: vy, = Tas(w;) — Tar(sup(ug, w;)) and
Wi = oa(ve) (@ + Mo + 1)*

)", where u;, and wu,; are two elements of the
sequence (uy)ren. Choosingl > M, we can take u;—dwy, ;, as test function
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in the equation (2.6) corresponding to [, and we obtain:

/{ a(z, u))Vu,V (Thr(u) —Tar(sup(ug, )P\ (k) (@ +Mo+1)Tda+

up<ug}

+ a(z,w)VuV(p + My + 1) or(vg,)dr <

{w<u}

< /{ () Va2 (0| (0 + Mo + 1)* dar+

uy<up}

+ \ <!b(|fll|)f($)|%(vk,l)|(90 +Mo+1)"dx +(h, ox(ves) (@ +Mo+1)F).

So,

/{u . }a(x,uz)V(TM(ul) — Tog (ug))V(Tag () +
— T (ur)) oy (Vi) (@ + Mo + 1) " da+

+ a(z, w) VT (up)V (Ths (w)+

{w<ug}

— Tas () ) (Vi a) (@ + Mo + 1) Tda <

< Cy /{ | IV T) = () Ploa(oa) (o + My + 1) dot
USug

+CM |VTM(U]€)|2‘Q0,\(1)1§,1)|((,0+Mo + 1)+d(L'+

{ug<ug}

+Cu F@)lpa(vrn) (0 + Mo + 1) da+

{u;<ug}

—/{ ) }a(x,ul)VTM(ul)V(gwMﬁ1)+%(vk,l)dx+
U Sug

+ (s oa(ve) (p + My +1)7).
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For A large enough, we have,

a/ V(T (wr) —Tos (ur))V(Tos (w) —=Tas (ur))( +Mo+1)dx <
2 {w<ug}

< —/{ a(@, ur) VT (ug) V(T (ur)+

up<up}

= Tor (ur)) ) (vea) (@ + Mo + 1) "dz+

(2.16) +Cu |VTas (u) [*[ox (ve) [ (0 + Mo + 1) " da+

{w<up}

+Cy f(@)]oa(vral (@ + Mo+ 1) da+

{w<ug}
- /{ < ag”% u) VT (u) V(e + Mo + 1) " pa(ve)do+
up<uy

+ (s oa(ven) (@ + Mo +1)7)

but,
(2.17)
% {Ulguk}V(TM(ul)—TM(Uk-))V(TM(Ul)—wa(uk))(80+Mo+1)+d$S
> % V(Tar (w) — Tog (ur))V(Tos () — T () )dart
{wLugn{p>-Mop}

+a/ V(Tas (1) = Tar ()Y (Tar () — Tt (u))da: .
{ur<ugIn{e=>—Mo}
Letting [ tend to 400, we have

Tar(w) — Tas(u) weakly in Hy ()
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X{u<upt = X{u<u} i L2(Q) weak , and a.e. in €,

thus the right hand side of (2.17) tends to,

- Y (Tas () — To (w))V (Tas () — g () ).

2 J{u<up}n{e=—Mo}

Moreover,

a(@, u) VI uep (Vi) X fuy<uy (0 + Mo + 1) 7
— a(x, u) VT uepy (Tar (w) — Tog(Ue)) X fu<upy (9 +Mo+1)*

in L*(Q) strong

(@ + Mo + 1) ox (Vi) X uy<ugy —
= (¢ + Mo + )" [ox(Thrv — Tartin)| X fu<ug}
in L>(Q) weak % .

Assuming h = h; — divhy, where h; and hy are in L?(2), one can also
verify that,

(hyox(ve) (@ + My +1)7) —

— h1<P,\(TM(U) - TM(“k))(‘P + My + 1)+d1’+

{u<ur}

+ hoV (Tas(w) — Tag (ur)) @\ (Tas (w) — Tas (ur) ) (@ + Mo + 1) T da+

{u<uy}

+ haV (g + Mo + 1) o (Tar(u) — Tar(ug))dz.

{u<uy}
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Regrouping (2.16) and (2.17), and if [ tends to infinity, we obtain that,
(2.18)
«

5 {uupin{p>—Mop}
[ @) VT ) V(T (w)+
{uug}
— Tag(ur)) O\ (Tar(w) — Tar(ur)) (9 + Mo + 1) da+

+Cu [V Tos () P loa (Tar (u) — Tor (un)) | (0 + Mo + 1) " da+-

{u<uy}

+Cu F @)l (Tar (w) = Tar (ur))| (9 + Mo + 1) " dar+

{u<uy}

+ hiox(Tar(w) — Tag(ur)) (@ + Mo 4+ 1) da+

{u<uy}

+ hoV (Tar () — Tar (un )\ (Tar (u) — Tar (ur)) (@ + Mo + 1) do+

{u<uy}

+ haV (o + Mo + 1) " ox(Tar (u) — Tas(uy))dx.

{u<uy}

But from Lemma 2.2,

= a(x, ug) VT (ug) VT (ug) o\ (Thr (uw

{u<uy}

_ /{u<u }a(l’,Uk)VTI\/I(Uk)VTM(uk)Sp/)\(TM(u)_‘_
— To(ur)) (9 + My +1)dx <
< Cu PN (Tar () = Tar (ur)) (@ + Mo + 1) F |daz+

{u<uy}

_ /{u<u }a(a?,U)VTI\/I('UJ]@)VTM(U)QOS\(TIV[(’LL) — Tos(up)) (@ + My + 1) *da
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similarly,

/{u<uk} IV T (i) 12| (Tar (1) — Tor(ui)) (@ + mo + 1) Tdr <

< Cy /{ . loa(Tauw) = Tl + My + 1)
USUE

so, we can show as before, that the second member of (2.18) tends to zero
as k tends to infinity and finally,

lim V(Ths () +

(2.19) k=400 J{u<up}n{p>—Mo}

— T (ur))V(Tar(w) — Thy(ug))dx = 0.

From (2.15) and (2.19), we deduce that,

lim V(Th(uw) — Tas(ur))V(Tar(w) — Thy(ug))dx = 0,

k=400 J{p>— My}

and similarly, if we replace (¢ + My+1)" by (My+1—1)", we can prove
that,

lim V(Th(uw) — Tas(ur))V(Tar(w) — Thy(ug))de =0

k=00 J{p< iy}

and then finally,

k—+4o00 Q

This is the end of the proof of Lemma 2.4.

4th step: passage to the limit in the equation.
We consider the function £ defined by:

1 if —M<s<M

0 fs>M+1lors<—-M-—1
—s+M+1 ifM<s<M+1
s+M+1 if —M-1<s<-—-M.



656 N. GRENON [22]

Let ® € Hy(Q) N L>*(2) be such that: 3M > 0 such that ® = 0 in
{Ju| > M}. We consider v = uy, + 3PS (uy,), then v € Hy, if K > M+ 1 and
0<6< ﬁm. Thus we can take v as test function in (2.6), similarly we
can take w = uy — 0P S (uy), which finally gives,

/a(w,uk)VukV(@ﬁ(uk))da:—l—
(2.20) &

+ Lg(x,uk,Vuk>@B<uk>dw = (b, ().

We now study the convergence of the term ®5(uy). We have

/ IV (®B(uy)) — VO 2da :/ IVO2(1 — B(uy)) da+
Q Q
~2 [ VOV ()1~ Bl + [ [Fun |85 o) =
Q Q
. / VO2(1 — Bluy))2d — 2 VOVud(1 — Bluy))do+
Q {M<|ug|<M+1}
+ Vs || B de

{M<ug[<M+1}

Observe that

/Q IVO(1 — Bluy))2dx — /Q IVO(1 — B(u))*dz =0,

-2 VOVu,®(1 — puy))de —
(M < ug | <M+1}
— =2 VOV (1 — B(u))dx =0,
{M<|u|l<M+1}
/ V|| B de — Vul?|®[2dz = 0.
{(M<ug| <M+1} {M<[ul<M+1}

Therefore ®3(uy) — ® in H; (), and thus,

/Q a(x,u)Vup V(®6(uy))dx =

:/Qa(x,uk)V(TMuk)V(CDﬁ(uk))dx—>Aa(x,u)VuV@dx
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and, as g(uy, Vug)®S(uy) is equiintegrable,

/g(uk7vuk)¢5(uk)dﬂc—>/g(a:,u,Vu)d)dx.
Q Q

On another hand,
(h, ®B(ur)) = (h, ®)

then, we can pass to the limit in (2.20), and we obtain,
/a(m,u)Vqu)d:U—l—/g(a:,u,Vu)CDd:U = (h, D)
Q Q

and Theorem 2.1 is proved.

3 — An application
We suppose that,

g(x,s,{) = 91(56,8,@ - f

where,

(31) gl(xvsvg) ZO
(3.2) 91(x,0,0) =0
(3.3) felL'(), f=0.

We consider the problem:

(3.4) { —div(a(z,u)Vu) + g1 (v, u, Vu) = f

u =0 on 0N
This type of problem is studied in [1]. From hypothesis (3.2) and because

f is positive, we verify that ¢ = 0 is a subsolution of (3.4). On another
hand (see [2]), we know that there exists a function v such that:

Wy (9) f
e Wy (Q) or every ¢ < s

T (v) € Hy(Q) for every k € IN
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which is a solution in the sense of distribution of,

—div(a(z, $)V¥) = f.

Moreover, if we multipy (3.4) by —Tx(¢), we easily show that ¢ > 0,
so that 1 is a renormalized super solution of (3.4). Then we can apply
Theorem 2.1 to problem (3.4), thus obtaining the existence of a solution.

(1]
2l

(9]
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