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A remark on optimal temporal decay estimates for

systems of multidimensional parabolic conservation laws

A. JEFFREY – H. ZHAO

In memory of a good friend and a fine mathematician

Riassunto: Il lavoro concerne le stime di decadimento temporale per le soluzioni
del problema di Cauchy di un sistema di leggi di conservazione paraboliche a più dimen-
sioni. I risultati ottenuti migliorano quelli ottenuti dagli autori in un lavoro precedente.

Abstract: This paper is concerned with optimal temporal decay estimates for
solutions of the Cauchy problem of a systems of multidimensional parabolic conservation
laws. The results obtained in this paper supplement the results obtained in our previous
paper.

1 – Introduction and statement of the main results

This paper is concerned with optimal temporal decay estimates for

solutions of the following multidimensional parabolic conservation laws

(1.1) ut +
NX

j=1

fj(u)xj
= D∆u, x ∈ RN , t > 0 ,

Key Words and Phrases: Multidimensional parabolic conservation laws – Optimal
temporal decay estimates – Asymptotic profile.
A.M.S. Classification: 35 – 35K15 – 35K57



2 A. JEFFREY – H. ZHAO [2]

with initial data

(1.2) u(t, x)|t=0 = u0(x), x ∈ RN , N > 1, n > 1 .

Here u(t, x) = (u1(t, x), · · · , un(t, x))t is the unknown vector, fj(u) =°
fj1(u), · · · , fjn(u)

¢t
(j = 1, 2, · · · , N) are arbitrary n× 1 smooth vector-

valued flux functions defined in Br(0), a closed ball of radius r cen-

tered at u = 0, and D is a constant, diagonalizable matrix with posi-

tive eigenvalues (Without loss of generality, we can always assume D =

diag(d11, · · · , dnn) with dii > 0, i = 1, 2, · · · , n, in what follows.)

The Cauchy problem (1.1), (1.2) has been studied by many authors

so in this paper we will not review the former results one by one, but only

state the results which are closely related to the theme of this paper. The

interested reader is referred to [2]-[4] and the references cited therein for

more information, For the corresponding work on the multidimensional

diffusion wave for the Navier-Stokes equations of compressible flow, see

D. Hoff and K. Zumbrun [11], [12] and the references cited therein.

For general N > 1, n > 1, the results obtained in [3] show that if for

each r > 0, the smooth nonlinear flux functions fj(u)(j = 1, 2, · · · , N)

satisfy

(1.3)
fj(u)

|u|s ∈ L1(B(0), Rn), j = 1, 2, · · · , N ,

then for u0(x)∈L1∩L1(RN,Rn) with ku0(x)kL1(RN ,Rn) <r, ku0(x)kL1(RN ,Rn)

sufficiently small, one can get the follwing results

i) If s ≥ 1 + 1
N

, the Cauchy problem (1.1), (1.2) admits a unique

globally smooth solution u(t, x). Furthermore there exists a constant

τ ∈ (0, 1) such that for all k ∈ Z+, u(t, x) satisfies

(1.4) ku(t, x)kL1(R+×RN ,Rn) ≤ r ,

(1.5)
sup
[0,1)

{ku(t, x)kL1(RN ,Rn) + t
N

2(N+1) ku(t, x)k
L

N+1
N (RN ,Rn)

} ≤

≤ C(r)ku0(x)kL1(RN ,Rn) ,
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and

(1.6)





k∆k
2 u(t, x)kL1([τ,1)×RN ,Rn) ≤ Mk(r, τ) ,

sup
[τ,1)

{k∆k
2 u(t, x)kL2(RN ,Rn)} ≤ Mk(r, τ) ,

k∆k
2 u(τ, x)kL1(RN ,Rn) ≤ Nk(r, τ) .

Here Mk,Mk, Nk are positive constants independent of t, and throughout

this paper the symbol C(·) will be used to denote a generic positive

constant which depends only on the quantities stated in the parenthesis

but may vary from time to time.

ii) If s > 2 + 1
N

, the globally smooth solution u(t, x) obtained in i)

satisfies the following optimal temporal decay estimates: For each k ∈
Z+, 0 < τ ≤ t, one can deduce that

(1.7) k∆k
2 u(t, x)kL2(RN ,Rn) ≤ C(r, τ)(1 + t)−

N+2k
4 .

From the above results, one can easily deduce that to obtain the op-

timal temporal decay estimates (1.7), the sufficient conditions that must

be imposed on the nonlinear flux functions fj(u)(j = 1, 2, · · · , N) are

fj(u) = O(|u|3)(j = 1, 2, · · · , N) as |u| → 0, which are stronger than

the corresponding sufficient conditions to guarantee the global existence

results. Such a fact is also noticed by the authors in [3], and in fact the

authors point out in the second remark following immediately after The-

orem 1 of [3] that if the system (1.1) admits a strictly convex quadratic

entropy function η(u) which is strongly consistent with the viscous ma-

trix D, then the optimal temporal decay estimate (1.7) can still be ob-

tained, but only under the conditions fj(u) = O(|u|2)(j = 1, 2, · · · , N)

as |u| → 0. However, as pointed out in [3], for n > 2, the correspond-

ing entropy equation is overdetermined and the existence of a nontrivial

entropy maybe attributed only to a fortunate coincidence. Hence for gen-

eral systems of type (1.1), it is of some interests to see if the sufficient

conditions imposed on the nonlinear flux functions fj(u)(j = 1, 2, · · · , N)

to guarantee the global existence results are also sufficient to deduce the

optimal temporal decay estimate (1.7). One of our main contributions of

this paper is to give a positive answer to the above problem and, in this

sense, our present paper is a supplement to our previous one [3].
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The above mentioned result can be stated as follows.

Theorem 1.1. Suppose that for each fixed r > 0, the smooth

nonlinear flux functions fj(u)(j = 1, 2, · · · , N) satisfy

(1.8)
fj(u)

|u|2 ∈ L1(B(0), Rn) , j = 1, 2, · · · , N ,

then for u0(x)∈L1∩L1(RN , Rn) withku0(x)kL1(RN ,Rn) < r,ku0(x)kL1(RN ,Rn)

sufficiently small, the unique globally smooth solution u(t, x) obtained in

Theorem 1 of [3] satisfies the optimal temporal decay estimates (1.7).

From Theorem 1.1 and the standard interpolation technique, we can

deduce that for each multiindex α = (α1, · · · , αN) with |α| =
PN

i=1 αi =

k ∈ Z+, 2 ≤ p ≤ 1, t ≥ τ > 0, the following estimates hold

(1.9)
∞∞∞ @

k

@xα
u(t, x)

∞∞∞
Lp(RN ,Rn)

≤ C(r, τ)(1 + t)−
N
2 (1− 1

p )−k
2 .

Our next result in this paper is concerned with the case 1 ≤ p < 2.

For result in this direction, we have

Theorem 1.2. Under the conditions of Theorem 1.1, we have

that the estimates (1.9) hold for each multiindex α = (α1, · · · , αN) with

|α| =
PN

i=1 αi = k ∈ Z+, 1 ≤ p ≤ 1, t ≥ τ > 0.

Our final goal in this paper is concerned with the asymptotic profile

of the globally smooth solution u(t, x) obtained in [3]. To state our result

in this direction precisely, we first introduce some notations.

First, we use φ(t, x) to denote the unique globally smooth solution

to the following Cauchy problem

(1.10)

(
φt = D∆φ, x ∈ RN , N > 1, t > 0 ,

φ(t, x)|t=0 = u0(x), x ∈ RN .

It is easy to see that φ(t, x) has the following explicit expression

(1.11)





φ(t, x) = (φ1(t, x), · · · , φn(t, x))t ,

φj(t, x) :=

Z

RN
(4πdjjt)

−N
2 exp

≥
− |x− y|2

4djjt

¥
u0(y)dy,

j = 1, 2, · · · , n ,
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and for each multiindex α = (α1, · · · , αN), |α| = k, 1 ≤ p ≤ 1, φ(t, x)

satisfies

(1.12)
∞∞∞ @

k

@xα
(φ(t, x)− φ(t, x))

∞∞∞
Lp(RN ,Rn)

≤ C(r, τ)(1 + t)−
N
2 (1− 1

p )−k+1
2

provided that u0(x) satisfies the additional assumption
Z

RN
|x||u0(x)|dx < 1 .

Here φ(t, x) solves the following Cauchy problem

(1.13)

(
φt = D∆φ ,

φ(t, x)|t=0 = (φ01(x), · · · , φ0n(x))t ,

with 



φ0j(x) = δj(4πdjj)
−N

2 exp
≥
− |x|2

4djj

),

δj :=

Z

RN
u0j(x)dx, j = 1, 2, · · · , n .

Consequently

(1.14)





φ(t, x) = (φ1(t, x), · · · , φn(t, x)) ,

φj(t, x) := δj(4πdjj(t + 1))−
N
2 exp

≥
− |x|2

4djj(t + 1)

¥
,

j = 1, · · · , n .

Under the above notations and based on the results obtained in The-

orem 1.1 and Theorem 1.2, we have the following result on the asymptotic

profile of the globally smooth solution u(t, x) obtained in [3]

Theorem 1.3 (Asymptotic profile). Let the assumptions stated in

Theorem 1.1 are satisfied, then for each multiindex α = (α1, · · · , αN),

|α| = k, 1 ≤ p ≤ 1, k ≥ 0, t ≥ τ > 0, we have that

(1.15)
∞∞∞ @

k

@xα
(u(t, x)−φ(t, x))

∞∞∞
Lp(RN ,Rn)

≤ C(r, τ)p(t)(1+t)−
N
2 (1− 1

p )−k+1
2 .

Here

(1.16) p(t) =

(
ln (1 + t), if N = 2 ,

1, if N > 2 .
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Remark 1.1. Since when δj 6= 0, j ∈ {1, · · · , n}, there exists a posi-

tive constant C > 0 such that for each multiindex α = (α1, · · · , αN), |α| =

k, k ≥ 0, 1 ≤ p ≤ 1

(1.17)
1

C
(1+ t)−

N
2 (1− 1

p )−k
2 ≤

∞∞∞ @
k

@xα
φ(t, x)

∞∞∞
Lp(RN ,Rn)

≤ C(1+ t)−
N
2 (1− 1

p )−k
2 ,

we can easily deduce from (1.9), (1.15), and (1.17) that in the case of

δj 6= 0, j ∈ {1, · · · , n}, the decay estimates (1.9) are optimal and that

φ(t, x) is precisely the asymptotic profile of u(t, x).

When δj = 0, j = 1, · · · , n, from (1.15) we can get the following

improved decay estimates for u(t, x)

(1.18)
∞∞∞ @

|α|

@xα
u(t, x)

∞∞∞
Lp(RN ,Rn)

≤ C(r, τ)p(t)(1 + t)−
N
2 (1− 1

p )− |α|+1
2 .

Such an estimate is not optimal and in fact we can get the following

improved decay estimates

Theorem 1.4. Let the assumptions stated in Theorem 1.1 are sat-

isfied, if δj = 0, j = 1, 2, · · · , n, then the globally smooth solution u(t, x)

obtained in [3] satisfies the following decay estimates

(1.19)

∞∞∞ @
|α|

@xα
u(t, x)

∞∞∞
Lp(RN ,Rn)

≤

≤ C(r, τ)(1 + t)−
N
2 (1− 1

p )− |α|+1
2 , 1 ≤ p ≤ 1, t ≥ τ .

Generally speaking, the decay estimates (1.19) can not be improved

even if
R

RN xm
j u0(x)dx = 0 for j = 1, 2, · · · , n and some m ≥ 1. Such a

result is the content of our final theorem in this paper

Theorem 1.5. In addition to the assumptions stated in Theo-

rem 1.4, we assume further that

(1.20)

Z

RN
|x||u0(x)|dx < 1,

Z

RN
|x|2|u0(x)|dx < 1 ,

and that there exists a time-independent constant L1 > 0 such that for
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some j̄ ∈ {1, 2, · · · , N}, k̄ ∈ {1, 2, · · · , n}, t ≥ T1 > 1

(1.21)
ØØØ
Z

RN
xj̄u0k̄(x)dx +

Z t

0

Z

RN
fj̄k̄(u(s, x))dx ds

ØØØ ≥ L1 > 0 ,

where T1 > 1 is an arbitrarily fixed constant.

Then we can find a positive constant, which depends only on T1 and

τ , such that for t ≥ τ > 0

(1.22)
∞∞∞ @

|α|

@xα
u(t, x)

∞∞∞
L2(RN ,Rn)

≥ L2(T1, τ)(1 + t)−
N+2(|α|+1)

4 .

Remark 1.2. Theorem 1.5 means that even if the initial data u0(x)

satisfies
Z

RN
xm

j u0(x)dx = 0 for j = 1, 2, · · · , N andsome m ≥ 1 ,

the estimates (1.19) can not be improved any longer. Such a result is

quite different to the corresponding decay estimates to the Cauchy prob-

lem (1.10) with its corresponding initial data u0(x) satisfying the assump-

tions stated in Theorem 1.5. Such a phenomenon, which was first studied

by M. Schonbek and S. Rajopadhye in [5] for the multidimensional

KdV-Burgers system, shows that long waves, which are due to the non-

linear flux functions fj(u)(j = 1, 2, · · · , N), can be created also for the

solutions to the multidimensional parabolic conservation laws (1.1).

Remark 1.3. When
R

RN xj̄u0k̄(x)dx=0, if we assume that fj̄k̄(u)≥0

and fj̄k̄(u) = 0 if and only if u = 0, then the assumption (1.21) is easily

seen to be satisfied and in this case the constant L1 can be chosen asR 1

0

R
RN fj̄k̄(u(s, x))dxds > 0.

Remark 1.4. From the proof of Theorem 1.5, one can easily give

other similar assumptions to replace (1.21) while the same result of The-

orem 1.5 still holds.

Remark 1.5. In Theorem 1.5, we can only get the lower bounds of

the decay rates for solutions to multidimensional parabolic conservation

laws in the L2(RN , Rn) setting. It would be of some interest to get the

corresponding results in the Lp(RN , Rn)(1 ≤ p ≤ 1) setting and we hope

that we can come back to tackle such a problem in the near future.
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Remark 1.6. Although when δj = 0(j = 1, 2, · · · , n), we can get the

optimal decay estimates for u(t, x) but how to describe its asymptotic

profile remains an open question. Such a problem will be our research in

the future.

Remark 1.7. It is our pleasure to point out that our Theorem 1.5 is

motivated by the work of M. Schonbek and S. Rajopadhye [5] on the

large time behaviour of solutions to the multidimensional KdV-Burgers

system. Compared with that of [5], the assumptions we imposed on the

initial data and the nonlinear flux functions fj(u)(j = 1, 2, · · · , N) are

weaker. Such an improvement is due to our sharp decay estimates ob-

tained in Theorem 1.1-Theorem 1.4 which are our main contributions

in the study of the decay estimates of solutions to multidimensional

parabolic conservation laws.

This paper is arranged as follows: After this introduction and the

statement of the main results, which constitutes Section 1, we prove

Theorem 1.1, Theorem 1.2, and Theorem 1.3-Theorem 1.5 in Section 2,

Section 3, and Section 4 respectively. Some remarks concerning the large

time behaviour of solutions to multidimensional parabolic conservation

laws with large initial data will be given in Section 5.

2 – The proof of Theorem 1.1

This section is devoted to proving Theorem 1.1.

Let K(t, x) be the fundamental solution associated with the operator
@
@t
−D

PN
j=1

@2

@x2
j
. That is, K(t, x) is an n-vector whose j-th component is

(2.1) kj(t, x) = t(4πdjjt)
−N

2 exp
≥
− |x|2

4djjt

¥
.

Then, the solution u(t, x) of the Cauchy problem (1.1), (1.2) satisfies

the integral representation

(2.2) u(t, x) = K(t, x) ∗ u0(x) +
NX

j=1

Z t

0

Kxj
(t− s, x) ∗ fj(u(s, x))ds ,

where ∗ denotes convolution in space, taken componentwise.
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For later use, we first record the following fundamental results

Lemma 2.1 (Gronwall’s Inequality). Suppose that the nonnegative

continuous functions g(t), h(t) satisfy

(2.3)
g(t) ≤ N1(1 + t− τ)−α + N2

Z t

τ

(1 + t− s)−αg(s)h(s)ds,

t ≥ s ≥ τ > 0 ,

and

(2.4)

Z 1

τ

h(s)ds < 1 ,

where N1, N2, and α are nonnegative constants.

Then

(2.5)
g(t) ≤ N1(1 + t− τ)−α exp

≥
N3(τ)N2

Z t

τ

h(s)ds
¥
≤

≤ C(τ)(1 + t)−α, t ≥ τ > 0 ,

where

(2.6) N3(τ) = sup
τ≤s≤t

nh 1 + t− τ
(1 + t− s)(1 + s− τ)

iαo
.

The proof is trivial and so will be omitted.

Lemma 2.2. For each t > s ≥ 0, we have

(2.7)
k∇K(t− s, x)∗u(s, x)kL2(RN ,Rn) ≤ C(1 + t− s)−

N+2
4 ×

× (ku(s, x)kL1(RN ,Rn) + k∇u(s, x)kL2(RN ,Rn)) ,

and

(2.8)
kK(t− s, x)∗u(s, x)kL2(RN ,Rn) ≤ C(1 + t− s)−

N
4 ×

× (|u(s, x)kL1(RN ,Rn) + ku(s, x)kL2(RN ,Rn)) .
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Proof. We only prove (2.7). The proof of (2.8) is similar and so will

be omitted

First, from the Hausdorff-Young’s inequality, we have

(2.9)

k∇K(t− s, x) ∗ u(s, x)kL2(RN ,Rn) ≤
≤ Ck∇K(t− s, x)kL2(RN ,Rn)ku(s, x)kL1(RN ,Rn) ≤

≤ C(t− s)−
N+2

4 ku(s, x)kL1(RN ,Rn) .

On the other hand

(2.10)

k∇K(t− s, x) ∗ u(s, x)kL2(RN ,Rn) =

= kK(t− s, x) ∗ ∇u(s, x)kL2(RN ,Rn) ≤
≤ CkK(t− s, x)kL1(RN ,Rn)k∇u(s, x)kL2(RN ,Rn) ≤
≤ Ck∇u(s, x)kL2(RN ,Rn) .

Combining (2.9) with (2.10), we can immediately get (2.7). This

completes the proof of Lemma 2.2.

Lemma 2.3. Suppose that u(t, x) is the globally smooth solution

obtained in [3] and that the fj(u)(j = 1, 2, · · · , N) satisfy the assump-

tion (1.8), then

(2.11)

ku(t, x)kL2(RN ,Rn) ≤ C(r, τ)
n
(1 + t− τ)−N

4 +

+

Z t

τ

(1 + t− s)−
N+2

4 (ku(s, x)kL2(RN ,Rn)+

+ k∇u(s, x)kL1(RN ,Rn))ku(s, x)kL2(RN ,Rn)ds
o
, t ≥ τ > 0 .

Proof. From (2.2), we have

(2.12)

u(t, x) = K(t− τ, x) ∗ u(τ, x)+

+
NX

j=1

Z t

τ

Kxj
(t− s, x) ∗ fj(u(s, x))ds, t ≥ τ > 0 .



[11] A remark on optimal temporal decay estimates for etc. 11

Thus we deduce from (1.5) and Lemma 2.2 that

(2.13)

ku(t, x)kL2(RN ,Rn) ≤ C(1 + t− τ)−N
4 ×

× (ku(τ, x)kL1(RN ,Rn) + ku(τ, x)kL2(RN ,Rn))+

+ C
NX

j=1

Z t

τ

(1 + t− s)−
N+2

4 ×

×(kfj(u(s, x))kL1(RN ,Rn)+kfj(u(s, x))xj
kL2(RN ,Rn))ds≤

≤ C(r, τ)
n
(1 + t− τ)−N

4 +

+

Z t

τ

(1 + t− s)−
N+2

4 (ku(s, x)kL2(RN ,Rn)+

+ k∇u(s, x)kL1(RN ,Rn))ku(s, x)kL2(RN ,Rn)ds
o
,

t ≥ τ > 0 .

This is (2.11) and consequently the proof of Lemma 2.3 is complete.

Lemma 2.4 (Nirenberg’s inequality). If we assume thatu∈Lq(RN,Rn)

and ∆
m
2 u ∈ Lr(RN , Rn) with 1 ≤ q, r ≤ +1 then, for any integer j such

that 0 ≤ j ≤ m, we have

(2.14) k∆ j
2 ukLp(RN ,Rn) ≤ Ck∆m

2 ukαLr(RN ,Rn)kuk1−α
Lq(RN ,Rn)

,

where p is determined by

(2.15)
1

p
=

j

N
+ α

≥1

r
− m

N

¥
+ (1− α)

1

q
,

j

m
≤ α ≤ 1 .

A direct corollary of Lemma 2.4 is

Corollary 2.1. If u(t, x) satisfies (1.4), (1.6) and

(2.16) ku(t, x)kL2(RN ,Rn) ≤ C(r, τ)(1 + t− τ)−β+≤, t ≥ τ > 0 ,

then for each j ∈ Z+, we have

(2.17) k∆ j
2 u(t, x)kL1(RN ,Rn) ≤ C(r, τ)(1 + t− τ)−β+≤, t ≥ τ > 0 .

Here and in what follows ≤ will always be used to denote a sufficiently

small generic positive constant which may vary from time to time.
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Lemma 2.5. Suppose that 0 < τ < 1, then

(2.18)

Z t

τ

(1 + t− s)r−1(1 + s− τ)−rds ≤ B(1− r, r), 0 < r < 1 ,

and

(2.19)

Z t

τ

(1 + s− τ)−rds ≤ 1

r − 1
, r > 1 .

Using the above results, we have:

Theorem 2.1. Under the assumptions of Theroem 1.1, the results

of Theorem 1.1 are true for N > 2.

Proof. From the remark after Corollary 3.9 of [3], we only need to

get the L2 (RN , Rn)-norm optimal temporal decay estimate, i.e., we need

to show that (1.7) with k = 0 is true.

From (1.5), (1.6), and Corollary 2.1, we deduce that

(2.20)

( ku(t, x)kL2(RN ,Rn)≤C(r, τ)(1+t− τ)−
N

2(N+1)
+≤

, t≥τ >0 ,

k∇u(t, x)kL1(RN ,Rn)≤C(r, τ)(1+t− τ)−
N

2(N+1)
+≤

, t≥τ >0 .

Substituting (2.20) into (2.11) gives

(2.21)

ku(t, x)kL2(RN ,Rn) ≤ C(r, τ)(1 + t− τ)−N
4 +

+ C(r, τ)

Z t

τ

(1 + t− s)−
N+2

4 (1 + s− τ)−
N

2(N+1)
+≤×

× ku(s, x)kL2(RN ,Rn)ds ≤

≤ C(r, τ)(1 + t− τ)−N
4 + C(r, τ)

Z t

τ

(1 + t− s)
−N2+N−2

4(N+1)
+≤×

× (1 + t− s)
− N+2

2(N+1)
−≤

(1 + s− τ)−
N

2(N+1)
+≤×

× ku(s, x)kL2(RN ,Rn)ds .

Let h(s) = (1+ t−s)
− N+2

2(N+1)
−≤

(1+s− τ)−
N

2(N+1)
+≤

, α = N2+N−2
4(N+1)

− ≤ ∈
( N

2(N+1)
, N

4
), we have from Gronwall’s inequality that

(2.22) ku(t, x)kL2(RN ,Rn) ≤ C(r, τ)(1 + t− τ)−
N2+N−2
4(N+1)

+≤
, t ≥ τ > 0 .
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From (2.22) and Corollary 2.1, we arrive at

(2.23) k∇u(t, x)kL1(RN ,Rn) ≤ C(r, τ)(1+ t− τ)−
N2+N−2
4(N+1)

+≤
, t ≥ τ > 0 .

Substituting (2.22), (2.23) into (2.11) again, we have

(2.24)

ku(t, x)kL2(RN ,Rn) ≤ C(r, τ)(1 + t− τ)−N
4 +

+ C(r, τ)

Z t

τ

(1 + t− s)−
N+2

4 (1 + s− τ)−
N2+N−2
4(N+1)

+≤×
× ku(s, x)kL2(RN ,Rn)ds .

If N ≥ 5, we can choose ≤ > 0 sufficiently small such that

(2.25)
N2 + N − 2

4(N + 1)
− ≤ > 1 ,

and consequently if we let h(s) = (1 + s− τ)−
N2+N−2
4(N+1)

+≤
, then from Gron-

wall’s inequality, we have

(2.26)
ku(t, x)kL2(RN ,Rn) ≤ C(r, τ)(1 + t− τ)−N

4 ≤ C(r, τ)(1 + t)−
N
4 ,

t ≥ τ > 0 .

Thus Theorem 2.1 follows immediately.

Otherwise, if 2 < N < 5, we have

(2.27) 0 <
N2 + N − 2

4(N + 1)
− ≤ < 1 ,

and in this case (2.24) can be rewritten as

(2.28)

ku(t, x)kL2(RN ,Rn) ≤ C(r, τ)(1 + t− τ)−N
4 +

+ C(r, τ)

Z t

τ

(1 + t− s)
− N2−2

2(N+1)
+≤×

× (1 + s− τ)−
N2+N−2
4(N+1)

+≤
(1 + t− s)

N2−3N−6
4(N+1)

−≤×
× ku(s, x)kL2(RN ,Rn)ds .
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Setting h(s) = (1+t−s)
N2−3N−6

4(N+1)
−≤

(1+s−τ)−
N2+N−2
4(N+1)

+≤
, and noticing

that

(2.29)
N2 − 2

2(N + 1)
>

N

4
, N = 3, 4 ,

we find from Gronwall’s inequality that (2.26) also holds. Hence the proof

of Theorem 2.1 is complete.

To complete the proof of Theorem 1.1, we only need to treat the case

N = 2. For results in this direction, we have:

Theorem 2.2. Under the assumptions of Theorem 1.1, the results

of Theorem 1.1 also hold for N = 2.

Before proving Theorem 2.2, we give the following preliminary re-

sults:

First, from (1.5), (1.6) and Corollary 2.1, we have

Lemma 2.6. When N = 2, the globally smooth solution u(t, x)

obtained in [3] satisfies

(2.30)

( ku(t, x)kL2(R2,Rn) ≤ C(r, τ)(1 + t)−
1
3+≤, t ≥ τ > 0 ,

ku(t, x)kL1(R2,Rn) ≤ C(r, τ)(1 + t)−
1
3+≤, t ≥ τ > 0 .

As N = 2, from Nirenberg’s inequality we can deduce:

Lemma 2.7. Suppose that u(t, x) is the globally smooth solution

obtained in [3], then we have

(2.31)
k∆ j

2 u(t, x)kL1(R2,Rn) ≤ Ck∆ j+2
2 u(t, x)k

1
2
L2(R2,Rn)

×

× k∆ j
2 u(t, x)k

1
2
L2(R2,Rn)

, j ≥ 0 ,

and

(2.32)
k∆ j

2 u(t, x)kL2(R2,Rn) ≤ Ck∆ j+1
2 u(t, x)k

1
2
L2(R2,Rn)

×

× k∆ j−1
2 u(t, x)k

1
2
L2(R2,Rn)

, j ≥ 1 .
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The following lemma, essentially due to M.E. Schonbek [4], plays

an important role in the following analysis.

Lemma 2.8. If u(t, x) satisfies the following differential integral

inequality

(2.33)

d

dt

Z

R2
|∆k

2 u(t, x)|2dx+N4

Z

R2
|∆k+1

2 u(t, x)|2dx≤N5(r, τ)(1+t)−q,

t ≥ τ > 0 ,
and

(2.34) |û(t, ξ)| ≤ C ,

then we have

(2.35)

Z

R2
|∆k

2 u(t, x)|2dx ≤ C(r, τ)(1 + t)−min{1+k,q−1}, t ≥ τ > 0 .

Here N4 > 0, N5(r, τ) ≥ 0, q > 1.

The above results can be proved by employing M.E. Schonbek’s

Fourier splitting method [4], the details of which are omitted.

From the above results, we have:

Lemma 2.9. If N = 2 and u(t, x) is the globally smooth solution

obtained in [3], then under the assumption (1.8), we have

Z

R2
|∇u(t, x)|2dx ≤ C(r, τ)(1 + t)−1+≤, t ≥ τ > 0 ,(2.36)

and
Z

R2
|∆u(t, x)|2dx ≤ C(r, τ)(1 + t)−2+≤, t ≥ τ > 0 .(2.37)

Consequently

ku(t, x)kL1(R2,Rn) ≤ C(r, τ)(1 + t)−
2
3+≤, t ≥ τ > 0 .(2.38)

Proof. We first prove (2.36). To this end, multiplying (1.1) by

2∆u(t, x)t and integrating the results over R2, after some integrations by
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parts, we obtain from Lemma 2.7 that

(2.39)

d

dt

Z

R2
|∇u|2dx + 2d

Z

R2
|∆u|2dx ≤

≤
2X

j=1

Z

R2
|∆u||fj(u)xj

|dx ≤

≤ C(r)kukL1(R2,Rn)k∆ukL2(R2,Rn)k∇ukL2(R2,Rn) ≤
≤ C(r)kukL1(R2,Rn)kuk

1
2
L2(R2,Rn)

k∆uk
3
2
L2(R2,Rn)

≤

≤ d

Z

R2
|∆u|2dx + C(r)kuk4

L1(R2,Rn)kuk2
L2(R2,Rn) ,

thus

(2.40)
d

dt

Z

R2
|∇u|2dx + d

Z

R2
|∆u|2dx ≤ C(r)kuk4

L1(R2,Rn)kuk2
L2(R2,Rn) .

Here d = min{d11, d22, · · · , dnn} > 0.

Substituting (2.30) into (2.40), we deduce that

(2.41)
d

dt

Z

R2
|∇u|2dx+d

Z

R2
|∆u|2dx ≤ C(r, τ)(1+ t)−2+≤, t ≥ τ > 0 .

Thus Lemma 2.8 and (2.41) implies that (2.36) is true.

Now we prove (2.37). Similar to the proof of (2.39), we have

(2.42)

d

dt

Z

R2
|∆u|2dx + d

Z

R2
|∆ 3

2 u|2dx ≤

≤ C(r, τ)kuk2
L1(R2,Rn)

Z

R2
|∆u|2dx+

+ C(r)k∇uk2
L1(R2,Rn)

Z

R2
|∇u|2dx ≤

≤ C(r, τ)kukL2(R2,Rn)k∆uk3
L2(R2,Rn)+

+ C(r, τ)k∆ 3
2 ukL2(R2,Rn)k∇uk3

L2(R2,Rn) ≤

≤ C(r, τ)k∆ 3
2 uk

3
2
L2(R2,Rn)

k∇uk
3
2
L2(R2,Rn)

(kukL2(R2,Rn) + 1) ≤

≤ d

2

Z

R2
|∆ 3

2 u|2dx + C(r, τ)(1 + t)−3+≤, t ≥ τ > 0 .
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Having obtained (2.42), by employing Lemma 2.8 again, we imme-

diately obtain (2.37). (2.38) is a direct corollary of (2.30)1 and (2.37).

Thus the proof of Lemma 2.9 is complete.

Now we prove Theorem 2.2.

First, we have the following differential integral inequality

(2.43)
d

dt

Z

R2
|u|2dx + d

Z

R2
|∇u|2dx ≤ C(r, τ)kuk2

L1(R2,Rn)kuk2
L2(R2,Rn) .

Inserting (2.30)1, (2.38) into (2.43), we deduce that

(2.44)
d

dt

Z

R2
|u|2dx + d

Z

R2
|∇u|2dx ≤ C(r, τ)(1 + t)−2+≤, t ≥ τ > 0 ,

and consequently that

(2.45)

Z

R2
|u|2dx ≤ C(r, τ)(1 + t)−1+≤, t ≥ τ > 0 .

Substituting once more (2.45), (2.38) into (2.43), we get

(2.46)
d

dt

Z

R2
|u|2dx + d

Z

R2
|∇u|2dx ≤ C(r, τ)(1 + t)−

7
3+≤, t ≥ τ > 0 .

Thus

(2.47)

Z

R2
|u|2dx ≤ C(r, τ)(1 + t)−1, t ≥ τ > 0 .

This completes the proof of Theorem 2.2.

Having obtained Theorem 2.1, Theorem 2.2, Theorem 1.1 follows

immediately.

3 – The proof of Theorem 1.2

Before proving Theorem 1.2, we first give the following results:

Lemma 3.1. Under the conditions of Theorem 1.1, we have for each

k ∈ Z+, j = 1, · · · , N that

(3.1) kDkfj(u)kL1(RN ,Rn) ≤ C(r, τ)(1 + t)−
N+k

2 , t ≥ τ > 0 .
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Here we have used the following notation

(3.2) kDku(t, x)kL1(RN ,Rn) :=
X

|α|=k

∞∞∞ @
k

@xα
u(t, x)

∞∞∞
L1(RN ,Rn)

.

Proof. Since for each multiindex α = (α1, · · · , αN) with |α| =PN
i=1 αi = k ∈ Z+, we have

(3.3)
@k

@xα
fj(u) = f 0

j(u)
@ku

@xα
+

kX

l=2

Cβ
@lfj(u)

@uβ

≥ @u
@x∞1

¥l1 · · ·
≥ @ku

@x∞k

¥lk
.

Here

(3.4)





|∞s| = s, s = 1, · · · , k ,

l1 + l2 + · · · + lk = l, l1 6= 0 ,

1l1 + 2l2 + · · · + klk = k .

Thus from the assumption (1.8) and the estimate (1.7), we have

kDkfj(u)kL1(RN ,Rn) ≤ C(r, τ)kukL2(RN ,Rn)kDkukL2(RN ,Rn)+

+ C(r, τ)
kX

l=2

kY

i=3

kDiukli
L1(RN ,Rn)

kDukl1−1

L1(RN ,Rn)
kD2ukl2−1

L1(RN ,Rn)
×

× kDukL2(RN ,Rn)kD2ukL2(RN .Rn) ≤

≤ C(r, τ)(1 + t)−
N+k

2 + C(r, τ)
kX

l=2

(1 + t)−
N
2 (l−1)−k

2 ≤

≤ C(r, τ)(1 + t)−
N+k

2 .

This is (3.1) and the proof of Lemma 3.1 is complete.

Lemma 3.2. Let α, β, and ∞ be positive numbers, 0 < τ < 1, t ≥ 2τ .

Then

(3.5)

Z t
2

τ

(1 + t− s)−β(1 + s)−∞ds = O(1 + t)−α
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if α ≤ β, α ≤ β + ∞ − 1, ∞ 6= 1, or if α < β, α ≤ β + ∞ − 1, ∞ = 1,

(3.6)

Z t

t
2

(1 + t− s)−β(1 + s)−∞ds = O(1 + t)−α

if α ≤ ∞, α ≤ β + ∞ − 1, β 6= 1, or if α < ∞, α ≤ β + ∞ − 1, β = 1.

Now we prove Theorem 1.2. To this end, we first have the following

claim:

Claim. Under the conditions of Theorem 1.1, for each k ∈ Z+, we

have that (1.9) with p = 1 is true.

Toward a proof of the above claim, we have similar to that of Lemma 2.3

that

(3.7)

kDku(t)kL1(RN ,Rn) ≤ C(r, τ)(1 + t)−
k
2 (ku(τ)kL1(RN ,Rn)+

+ kDku(τ)kL1(RN ,Rn))+

+ C(r, τ)
NX

j=1

Z t
2

τ

(1 + t− s)−
k+1
2 (kfj(u)kL1(RN ,Rn)+

+ kDk+1fj(u)kL1(RN ,Rn))ds+

+ C(r, τ)
NX

j=1

Z t

t
2

(1 + t− s)−
1
2 (kDkfj(u)kL1(RN ,Rn)+

+ kDk+1fj(u)kL1(RN ,Rn))ds .

Substituting (3.1) into (3.7), we have from (1.6), (3.5), (3.6) that

(3.8)

kDku(t, x)kL1(RN ,Rn) ≤ C(r, τ)(1 + t)−
k
2 +

+ C(r, τ)

Z t
2

τ

(1 + t− s)−
k+1
2 (1 + s)−

N
2 ds+

+ C(r, τ)

Z t

t
2

(1 + t− s)−
1
2 (1 + s)−

N+k
2 ds ≤

≤ C(r, τ)(1 + t)−
k
2 .

This proves the claim.

Having obtained the above result, Theorem 1.2 can be easily obtained

by employing the standard interpolation technique and so we omit the

details.



20 A. JEFFREY – H. ZHAO [20]

Remark 3.1. From the above proofs and the results obtained in [2],

we can easily deduce that (1.9) also holds for N = 1 provided that the

corresponding inviscid system is hyperbolic at u = 0 and the initial data

belongs to L1 ∩L1(RN , Rn) with its L1(RN , Rn)-norm sufficiently small.

4 – The proof of Theorem 1.3, Theorem 1.4, and Theorem 1.5

In this section, we prove Theorem 1.3, Theorem 1.4, and Theorem 1.5.

First, we prove Theorem 1.3. To this end, from (1.12), we only need

to prove the following estimates: For each multiindex α = (α1, · · · , αn),

|α| = k, 1 ≤ p ≤ 1

(4.1)
∞∞∞ @

k

@xα
(u(t, x)−φ(t, x))

∞∞∞
Lp(RN ,Rn)

≤ C(r, τ)p(t)(1+t)−
N
2 (1− 1

p )−k+1
2 .

To show this, we first get from the integral representation (2.2) that

(4.2)

@k

@xα
(u(t, x)− φ(t, x)) =

NX

j=1

Z t
2

0

@k

@xα
Kxj

(t− s, x) ∗ fj(u(s, x))ds+

+
NX

j=1

Z t

t
2

Kxj
(t− s, x) ∗ @

k

@xα
fj(u(s, x))ds .

Consequently

(4.3)

∞∞∞ @
k

@xα
(u(t, x)− φ(t, x))

∞∞∞
Lp(RN ,Rn)

≤

≤
NX

j=1

Z t
2

0

∞∞∞ @
k

@xα
Kxj

(t− s, x) ∗ fj(u(s, x))
∞∞∞

Lp(RN ,Rn)
ds+

+
NX

j=1

Z t

t
2

kKxj
(t− s, x)kL1(RN ,Rn)×

×
∞∞∞ @

k

@xα
fj(u(s, x))

∞∞∞
Lp(RN ,Rn)

ds :=

:= I1 + I2 .
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Similar to the proof of Lemma 3.1, for t ≥ τ > 0 we have from the

assumption (1.8) and the decay estimates (1.9) that

(4.4)

∞∞∞ @
k

@xα
fj(u(s, x))

∞∞∞
Lp(RN ,Rn)

≤ C(r, τ)(1 + s)−
N
2 (1− 1

p )−N+k
2 ,

j = 1, 2, · · · , N .

Consequently we have

(4.5)

I2 ≤ C(r, τ)

Z t

t
2

(t− s)−
1
2 (1 + s)−

N
2 (1− 1

p )−N+k
2 ds ≤

≤ C(r, τ)(1 + t)−
N
2 (1− 1

p )−k+1
2

Z t

t
2

(t− s)−
1
2 (1 + s)−

N−1
2 ds ≤

≤ C(r, τ)p(t)(1 + t)−
N
2 (1− 1

p )−k+1
2 .

As to I1, we have from Hausdorff-Young’s inequality that

(4.6)

|I1| ≤ C(r)
NX

j=1

Z t
2

0

(t− s)−
N
2 (1− 1

p )−k+1
2 kfj(u(s, x))kL1(RN ,Rn)ds ≤

≤ C(r)t
−N

2

≥
1− 1

p

¥
−k+1

2

Z t
2

0

ku(s, x)k2
L2(RN ,Rn)ds ≤

≤ C(r, τ)(1 + t)
−N

2

≥
1− 1

p

¥
−k+1

2

Z t
2

0

ku(s, x)k2
L2(RN ,Rn)ds .

Since

ku(t, x)kL1∩L1(RN ,Rn) ≤ C(r) ,

we have from (4.4) that

(4.7)

Z t
2

0

ku(s, x)k2
L2(RN ,Rn)ds ≤

≥ Z τ
2

0

+

Z t
2

τ
2

¥
ku(s, x)k2

L2(RN ,Rn)ds ≤

≤ C(r)

Z τ
2

0

ku(s, x)kL1(RN ,Rn)ds + C(r, τ)

Z t
2

τ
2

(1 + s)−
N
2 ds ≤

≤ C(r, τ)p(t) .

Combining (4.6) and (4.7), we arrive at

(4.8) I1 ≤ C(r, τ)p(t)(1 + t)−
N
2 (1− 1

p )−k+1
2 , t ≥ τ > 0 ,
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and (1.15) follows from (4.6) and (4.8). This completes the proof of

Theorem 1.3.

The proof of Theorem 1.4 follows essentially the same way as in the

proof of Theorem 1.3. Thus we will only give a sketch in the following.

First notice that in the case of δj = 0(j = 1, 2, · · · , n), we can get for

t ≥ τ > 0 that

(4.9)
∞∞∞ @

|α|

@xα
φ(t, x)

∞∞∞
Lp(RN ,Rn)

≤ C(r, τ)(1 + t)−
N
2 (1− 1

p )− |α|+1
2 .

Combining (4.9) with (4.1) deduce that for t ≥ τ > 0

(4.10)
∞∞∞ @

|α|

@xα
u(t, x)

∞∞∞
Lp(RN ,Rn)

≤ C(r, τ)p(t)(1 + t)−
N
2 (1− 1

p )− |α|+1
2 .

With (4.10) in hand, similar to the proof of Lemma 3.1, we have from

the assumption (1.8) that for each j = 1, 2, · · · , N, t ≥ τ > 0

(4.11)
∞∞∞ @

|α|

@xα
fj(u(s, x))

∞∞∞
Lp(RN ,Rn)

≤C(r, τ)p(s)2(1 + s)−
N
2 (1− 1

p )−N+|α|+2
2 .

Having obtained (4.11), Theorem 1.4 can be proved by repeating the

techniques used in the proof of Theorem 1.3. The details are omitted.

This completes the proof of Theorem 1.4.

At last, we prove Theorem 1.5. For this purpose, we first cite the

following result which is essentially due to M. Schonbek [5]

Lemma 4.1. Let φ0(T1, x) ∈ L2(RN , Rn), T1 > 1 be a sufficiently

large fixed constant, and φ(t, x) be the unique smooth solution to the

Cauchy problem (1.10) with initial data u0(x) ≡ φ0(T1, x). Suppose that

there exist a vector-valued function h(T1, ξ) := (h1(T1, ξ), · · · , hn(T1, ξ))
t

and a matrix-valued function l(T1, ξ) := (lij(T1, ξ))n×N such that the

Fourier transform of φ0(T1, x) for |ξ| ≤ δ, δ > 0 admits the represen-

tation

(4.12) φ̂0(T1, ξ) = l(T1, ξ) · ξ + h(T1, ξ) ,

where l(T1, ξ) and h(T1, ξ) satisfy the following conditions:
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(i) |h(T1, ξ)| ≤ L3|ξ|2
√

1 + T1 for some T1-independent constant L3 > 0;

(ii) l(T1, ξ) is homogeneous of degree zero; and

(iii) L4 :=
R

|ω|=1 |l(T1, ω) · ω|2dω is a positive constant independent of T1.

Then if L5 := sup|y|=1 |l(T1, y)| is independent of T1, we have that

(4.13)
∞∞∞ @

|α|

@xα
φ(t, x)

∞∞∞
L2(RN ,Rn)

≥ L6(1 + t)−
N+2(|α|+1)

4 , t ≥ T1 > 1 .

Here

(4.14) L6 :=

s
ωNL4

2(N + 2(|α| + 1))

≥√2L4

8L3L5

¥N+2(|α|+1)
2

exp
≥
− L2

4

16L2
3L

2
5

¥
,

and ωN denotes the volume of the N-dimensional unit sphere.

Remark 4.1. It is easy to see that L6 is independent of T1. Such a

property will play an important role in our subsequent analyses.

To exploit Lemma 4.1 to prove our Theorem 1.5, we need the follow-

ing results on some weighted L1(RN , Rn)-norm estimates of the globally

smooth solution u(t, x) to the Cauchy problem (1.1), (1.2)

Lemma 4.2 (Some weighted L1(RN , Rn)-norm estimates). If the

assumptions stated in Theorem 1.5 are satisfied, we can deduce that

(4.15)

Z

RN
|x||u(t, x)|dx ≤ C(r, τ)ln(1 + t) ,

and

(4.16)

Z

RN
|x|2|u(t, x)|dx ≤ C(r, τ)(1 + t)

1
2 .
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Proof. We only prove (4.15). (4.16) can be treated similarly.

To prove (4.15), for the standard mollifier ρ(x), if we set

(4.17) (sgnu(t, x))≤ :=
1

≤




Z

R

ρ
≥u1 − v

≤

¥
sgn vdv

Z

R

ρ
≥u2 − v

≤

¥
sgn vdv

. . . . . . . . . . . . . . . . . . . .Z

R

ρ
≥un − v

≤

¥
sgn vdv




,

then multiplying (1.1) by |x|((sgn u(t, x))≤)t and integrating the results

with respect to x over RN , one can get

(4.18)

d

dt

n nX

l=1

Z

RN
|x|
Z ul

0

(sgn v)≤dv dx
o
+

+
nX

l=1

NX

j=1

Z

RN
dll|x| d

dul

(sgn ul)
≤[(ul)xj

]2dx =

= −
NX

j=1

Z

RN
|x|(sgn u)≤ · fj(u)xj

dx+

−
NX

j=1

nX

l=1

Z

RN
dll

xj

|x|(sgn ul)
≤(ul)xj

dx .

Since

(4.19)
d

dul

≥
sgn ul

¥≤
=

2

≤
ρ
≥ul

≤

¥
≥ 0 ,

we have from (4.18) that

(4.20)
d

dt

n nX

l=1

Z

RN
|x|
Z ul

0

(sgn v)≤dv dx
o
≤C(r, τ)

Z

RN
(1 + |x||u|)|uxj

|dx .

Letting ≤→ 0+ in (4.20), we have from Theorem 1.4 that

(4.21)

d

dt

Z

RN
|x||u(t, x)|dx ≤ C(r, τ)(1 + t)−1×

×
≥
1 + (1 + t)−

N
2

Z

RN
|x||u(t, x)|dx

¥
,
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and by employing the Grownwall’s inequality, we can deduce from (4.21)

that (4.15) is true. This completes the proof of Lemma 4.2.

The following lemma gives some integral identities for the globally

smooth solution u(t, x) obtained in [3], i.e.

Lemma 4.3. Under the assumptions of Theorem 1.5, we have

(4.22)

Z

RN
u(t, x)dx =

Z

RN
u0(x) = 0 ,

and for each j = 1, 2, · · · , N, k = 1, 2, · · · , n

(4.23)

Z

RN
xjuk(t, x)dx =

Z

RN
xju0k(x)dx +

Z t

0

Z

RN
fjk(u(s, x))dx ds .

From Lemma 4.2 and Lemma 4.3, for each k = 1, 2, · · · , n, we can

easily deduce that ûk(t, ξ) are differentiable up to the second order. Con-

sequently, we have from the Taylor expansion formula that

(4.24)

ûk(t, ξ) = ûk(t, 0)+
NX

j=1

ξj
@ûk(t, 0)

@ξj
+

1

2

NX

i,j=1

ξiξj
@2ûk(t, ξ̄)

@ξi@ξj
=

= −i
NX

j=1

ξj
h Z

RN
xju0k(x)dx+

Z t

0

Z

RN
fjk(u(s, x))dx ds

i
+

+
1

2

NX

i,j=1

ξiξj
@2ûk(t, ξ̄)

@ξi@ξj
.

So

(4.25) û(t, ξ) = l(t, ξ) · ξ + h(t, ξ)

with

(4.26) l(t, ξ) :=




l11(t, ξ) l12(t, ξ) · · · l1N(t, ξ)

l21(t, ξ) l22(t, ξ) · · · l2N(t, ξ)

· · · · · · · · · · · ·
ln1(t, ξ) ln2(t, ξ) · · · lnN(t, ξ)




,
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and

(4.27) h(t, ξ) = (h1(t, ξ), h2(t, ξ), · · · , hn(t, ξ))t .

Here

(4.28)





llk(t, ξ) :=

Z

RN
xku0l(x)dx +

Z t

0

Z

RN
fkl(u(s, x))dx ds ,

hl(t, ξ) :=
1

2

NX

i,j=1

ξiξj
@2ûl(t, ξ̄)

@ξi@ξj
,

k = 1, 2, · · · , N, l = 1, 2, · · · , n .

It is easy to see from Lemma 4.2 that

(4.29) |h(t, ξ)| ≤ C(r, τ)|ξ|2
Z

RN
|x|2|u(t, x)|dx ≤ d1(r, τ)(1 + t)

1
2 |ξ|2 .

Now we show that, under the assumption of (1.21) and for each fixed

t > 1, there is a time-indepent constant L7 > 0 such that

(4.30)

Z

|ω|=1

|l(t, ω) · ω|2dω ≥ L7 > 0 .

In fact, under the assumption of (1.21), if we let ξ0 = ek̄, we can

conclude that

(4.31) |l(t, ξ0) · ξ0| =
≥ NX

l=1

|lk̄l(t, ξ0)|2
¥ 1

2 ≥ |lk̄j̄(t, ξ0)| ≥ L1 .

Next we show that we can choose a time-independent neighborhood

B∞(ξ0) of ξ0 such that for each ξ ∈ B∞(ξ0)

(4.32) |l(t, ξ) · ξ| ≥ L1

2
> 0 .

Indeed, since for each j = 1, 2, · · · , N, k = 1, 2, · · · , n,

(4.33)

ØØØ
Z t

0

Z

RN
fjk(u(s, x))dx ds

ØØØ ≤ C(r, τ)

Z t

0

ku(s, x)k2
L2(RN ,Rn)ds ≤

≤ C(r, τ)

Z t

0

(1 + s)−
N+2

2 ds ≤ C(r, τ) ,
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and noticing that l(t, ξ) is independent of ξ, we have for each ξ ∈ B∞(ξ0)

that

(4.34)
|l(t, ξ) · ξ| ≥ |l(t, ξ0) · ξ0| − |l(t, ξ) · (ξ − ξ0)| ≥

≥ L1 − C(r, τ)∞ ≥ L1

2

provided that ∞ > 0 is sufficiently small such that

∞ ≤ L1

2C(r, τ)
.

Having obtained (4.34), we can easily deduce that

(4.35)

Z

|ω|=1

|l(t, ω) · ω|2dω ≥
Z

{ω:|ω|=1,ω∈B∞(ξ0)}
|l(t, ω) · ω|2dω ≥

≥ L2
1

4
meas{ω : |ω| = 1, ω ∈ B∞(ξ0)} :=

:= L7.

This proves (4.30).

On the other hand, we can get that

(4.36)

sup
y∈RN

|l(t, y)| ≤ C(N)
≥ Z

RN
|x||u0(x)|dx+

+
NX

j=1

Z t

0

Z

RN
|fj(u(s, x))t|dx ds

¥
≤

≤ C(N, r, τ)
≥ Z

RN
|x||u0(x)|dx +

Z t

0

(1 + s)−
N+2

2 ds
¥
≤

≤ C(N, r, τ)
≥ Z

RN
|x||u0(x)|dx + 1

¥
:=

:= L8 .

Thus for arbitrarily fixed T1 > 1, if we let v(t, x) be the solution

of the Cauchy problem (1.10) with initial data v(0, x) = u(T1, x), where

u(t, x) is the globally smooth solution to the Cauchy problem (1.1), (1.2)

obtained in [3], then we have from Lemma 4.1 and (4.25)-(4.30), (4.36)

that

(4.37)
∞∞∞ @

|α|

@xα
v(t, x)

∞∞∞
L2(RN ,Rn)

≥ L9(1 + t)−
N+2(|α|+1)

4 , t ≥ T1 .
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Here, again from Lemma 4.1, L9 is independent of T1.

Now let

w(t, x) := u(t + T1, x)− v(t, x) ,

we can easily deduce that w(t, x) satisfies the following Cauchy problem

(4.38)





wt = D∆w −
NX

j=1

fj(u(t + T1, x))xj
,

w(0, x) = u(T1, x)− v(0, x) = 0 .

and consequently

(4.39) w(t, x) = −
NX

j=1

Z t

0

Kxj
(t− s, x) ∗ fj(u(s + T1, x))ds .

From (4.39), we can deduce that

(4.40)

∞∞∞ @
|α|

@xα
w(t, x)

∞∞∞
L2(RN ,Rn)

≤

≤
NX

j=1

Z t
2

0

∞∞∞ @
|α|

@xα
Kxj

(t− s, x)
∞∞∞

L2(RN ,Rn)
×

× kfj(u(T1 + s, x))kL1(RN ,Rn)ds+

+
NX

j=1

Z t

t
2

∞∞∞ @
|α|

@xα
fj(u(T1 + s, x))

∞∞∞
L2(RN ,Rn)

×

× kKxj
(t− s, x)kL1(RN ,Rn)ds :=

:= J1 + J2 .

Similar to the proof of Lemma 3.1, we have from Theorem 1.4 that

(4.41)





kfj(u(T1 + s, x))kL1(RN ,Rn) ≤ L10(T1 + s + 1)−
N+2

2 ,
∞∞∞ @

|α|

@xα
fj(u(T1 + s, x))

∞∞∞
L2(RN ,Rn)

≤ L11(T1 + s + 1)−
3N+2(|α|+2)

4 .

Consequently

(4.42)
J1 ≤ C(r, τ)

Z t
2

0

(t− s)−
N+2(|α|+1)

4 (1 + T1 + s)−
N+2

2 ds ≤

≤ L12

2
√

1 + T1

(1 + t)−
N+2(|α|+1)

4 ,
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and

(4.43)

J2 ≤ C(r, τ)

Z t

t
2

(t− s)−
1
2 (1 + T1 + s)−

3N+2(|α|+2)
4 ds ≤

≤ L12

2
√

1 + T1

(1 + t)−
N+2(|α|+1)

4 .

Substituting (4.42) and (4.43) into (4.40), we arrive at

(4.44)
∞∞∞ @

|α|

@xα
w(t, x)

∞∞∞
L2(RN ,Rn)

≤ L12

2
√

1 + T1

(1 + t)−
N+2(|α|+1)

4 , t ≥ 0 .

Here L12 is independent of t and T1.

Taking T1 sufficiently large such that

(4.45)
L12√
1 + T1

≤ L9

2
,

we have from (4.37), (4.44), and (4.45) that for t ≥ T1

(4.46)

∞∞∞ @
|α|

@xα
u(t + T1, x)

∞∞∞
L2(RN ,Rn)

≥

≥
∞∞∞ @

|α|

@xα
v(t, x)

∞∞∞
L2(RN ,Rn)

−
∞∞∞ @

|α|

@xα
w(t, x)

∞∞∞
L2(RN ,Rn)

≥

≥ L9

2
(1 + t)−

N+2(|α|+1)
4 ≥

≥ L9

2
(1 + t + T1)

−N+2(|α|+1)
4 .

Since u(t, x) 6≡ 0 and T1 is a fixed constant, we have for τ ≤ t ≤ 2T1

that

(4.47)

∞∞∞ @
|α|

@xα
u(t, x)

∞∞∞
L2(RN ,Rn)

≥ min
[τ,2T1]

∞∞∞ @
|α|

@xα
u(t, x)

∞∞∞
L2(RN ,Rn)

:=

:= L13(T1, τ) ≥ L13(T1, τ)(1 + t)−
N+2(|α|+1)

4 .

Thus if we let

L14(T1, τ) := min
n
L13(T1, τ),

1

2
L9

o
,
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we can get from (4.46) and (4.47) that for t ≥ τ > 0

(4.48)
∞∞∞ @

|α|

@xα
u(t, x)

∞∞∞
L2(RN ,Rn)

≥ L14(T1, τ)(1 + t)−
N+2(|α|+1)

4 .

This is (1.22) and hence completes the proof of Theorem 1.5.

5 – Concluding remarks

For general multidimensional parabolic conservation laws, the results

on the global existence and optimal temporal decay estimates to solutions

of the corresponding Cauchy problem obtained in this paper and [2], [3],

in some sense, are quite complete. But in all these results, some smallness

conditions must be imposed on the initial data. However, the techniques

used in the above papers, especially those used in this paper, can also

be used to discuss the optimal temporal decay estimates of solutions to

certain multidimensional parabolic conservation laws with large initial

data. For example, for the following Cauchy problem (for simplicity of

the presentation of the result, we let D = εI in (1.1))

(5.1) ut +
NX

j=1

fj(u)xj
= ε∆u, x ∈ RN , t > 0 .

with initial data

(5.2) u(t, x)|t=0 = u0(x), x ∈ RN ,

if we assume that

(H1) (5.1) admits a strictly convex quadratic entropy η(u) such that

(5.3)

(
C−1|u|2 ≤ η(u) ≤ C|u|2, u ∈ B∞(0) ,

η00(u) ≥ dI, d > 0, u ∈ B∞(0) ,

(H2) The solution u(t, x) to the Cauchy problem (5.1), (5.2) satisfies the

following time independent L1(R+ ×RN , Rn) a priori estimate

(5.4) ku(t, x)kL1(R+×RN ,Rn) ≤ ∞ ,

and
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(H3) The flux functions fj(u)(j = 1, · · · , N) satisfies

(
f(u) = O(|u|3) as |u| → 0 when N = 1,

fj(u) = O(|u|2) as |u| → 0 when N ≥ 2 ,

then we can get the following result

Theorem 5.1. Suppose (H1)-(H3) hold, then for u0(x) ∈ L1 ∩
L1(RN , Rn), the Cauchy problem (5.1), (5.2) admits a unique globally

smooth solution u(t, x) and u(t, x) satisfies the optimal temporal decay

estimate (1.9). Moreover, u(t, x) satisfies the estimates (1.15) and in this

case,

p(t) =

(
ln (1 + t), N = 1, 2 ,

1, N ≥ 3 .

Furthermore, similar results parallel to Theorem 1.4 and Theorem 1.5

also hold.

We just give an outline of the proof of Theorem 5.1.

The first step. Global existence result.

Such a result follows easily from the standard local existence result

and hypothesis (H2).

The second step. Estimates of (1.6) type.

To get such estimates, we first get from the integral representation for

u(t, x) and hypothesis (H2) that for each k ∈ Z+, there exists a τ ∈ (0, 1)

such that

(5.5) k∆k
2 u(τ, x)kL2∩L1(RN ,Rn) ≤ Ck(∞, τ) .

Having obtained (5.5), we can deduce from hypothesis (H1) and the

standard energy estimate that the estimate of type (1.6)2 hold and con-

sequently from Nirenberg’s inequality, (1.6)1 follows.

The third step. Optimal temporal decay estimates (1.9).

With the results obtained in the above two steps in hand and by

employing the techniques used in this paper, to get (1.9), we only need

to get the optimal temporal L2(RN , Rn)-norm decay estimate. Under the

hypothesis (H3), the cases N = 1, 2 can be done similar to that of [6], [7]
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and the case N ≥ 3 can be treated similar to that of Theorem 2.1. The

only difference in this case is that we first choose h(s) = (1 + t− s)−1−ε

to obtain

(5.6) ku(t, x)kL2(RN ,Rn) ≤ C(∞, τ)(1 + t)−
N−2

4 +ε, t ≥ τ > 0 ,

and then the iteration technique gives the desired optimal temporalL2(RN,

Rn)-norm decay estimate.

The forth step. Asymptotic profile of u(t, x) and the results par-

allel to Theorem 1.4 and Theorem 1.5.

Having obtained (1.9), the desired results in this step can be ob-

tained by mimicing the arguments used in the proof of Theorem 1.3,

Theorem 1.4, and Theorem 1.5.

Remark 5.1. Although hypothesis (H1) is quite restrictive, some

physical systems are indeed equipped with such an entropy.

Remark 5.2. For some concrete parabolic conservation laws, the

time independent L1(R+ × RN , Rn) a priori estimate, i.e., hypothesis

(H2), can be obtained through K. Chueh, C. Conley, and J. Smoller’s

theory of positively invariant regions [1] or the method of energy estimates

as in [4].

Remark 5.3. For the viscous solution to the system of nonlinear

elasticity

(5.7)





vt − ux = εvxx,

ut − σ(v)x = εuxx,

vσ00(v) > 0 for v 6= 0, σ0(v) > 0 ,

with initial data

(5.8) (v(t, x), u(t, x))|t=0 = (v0(x), u0(x)) ,

we can easily verify that the hypotheses (H1)-(H3) are satisfied and hence

Theorem 5.1 can be applied to this case.
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