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Maximum and minimum free energies and

the concept of a minimal state

M. FABRIZIO – J. M. GOLDEN

Riassunto: Vengono presentati alcuni risultati riguardanti l’energia libera dei ma-
teriali con memoria sia nel caso generale sia in quello della teoria lineare della visco-
elasticità. Viene sviluppato un nuovo metodo variazionale nel dominio del tempo o
in quello della frequenza. In quest’ultimo caso viene assegnata una famiglia di forme
esplicite per l’energia libera asspociata a un dato stato di un materiale viscoelastico a
spettro discreto. Tale famiglia comprende l’energia libera massima e quella minima.

Abstract: Certain results about free energies of materials with memory are pre-
sented, both in the general case and within the theory of linear viscoelasticity. A new
variational method is developed in both the time and frequency domains. In the latter
case, explicit forms of a family of free energies, associated with a given state of a dis-
crete spectrum viscoelastic material, are given, including both maximum and minimum
free energies.

1 – Introduction

The objective of this paper is to summarize recent work [1] on isother-

mal free energies of viscoelastic materials, highlighting the main results

but omitting most detailed proofs. Certain results about free energies

of materials with memory are presented, both for the abstract develop-

ment of thermodynamics and for its formulation within the theory of
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linear viscoelasticity. These developments build on results of Fabrizio,

Giorgi and Morro [4]. Also, explicit forms of a family of free energies

associated with a given state (in the sense of [2]) of a linear viscoelastic

material are given on the frequency domain, based on a generalisation of

the variational approach of Golden [5], who derived a general expression

for the isothermal minimum free energy of a linear viscoelastic material

in the case of a scalar constitutive relation. A generalization of the devel-

opments reported in [5] to the full tensorial case has been given recently

by Deseri, Gentili and Golden [6], the results of which are also useful

in the present work. The paper is in two parts, A and B.

In Part A, following the point of view of Fichera [7], [8], [9], [10], a

definition of a fading memory material, without the use of any topology, is

proposed. Then a general definition of the minimum free energy is given,

using the concept of maximum recoverable work (see also Day [11], [12]).

The concept of a minimal state is introduced, which coincides with the

definition of a state in Noll’s theory [2], see also [13], [14]. It is shown that

the minimum free energy is independent of the definition of state, and

in particular can be represented as a functional of the minimal state. A

definition of the maximum free energy is given which depends in general

on the definition of state adopted, though, with appropriate restrictions,

it is a function of the minimal state.

Also, for a linear constitutive relation, the Wiener-Hopf equation [15]

for the strain continuation associated with the maximum recoverable work

from a given state is studied. A uniqueness and existence theorem is

proved for this equation. It is solved directly, using the Wiener-Hopf

technique, leading to an explicit formula for the minimum free energy in

the full tensorial case, which generalises the scalar result in [5] and agrees

with the formula given in [6].

In Part B, a new variational approach is developed in both the time

and frequency domain, the latter being essentially a generalization of the

method of [5]. Explicit expressions are derived for a partially ordered

family of free energies associated with a minimal state, in the case of

discrete spectrum materials (those with a relaxation function given by

a finite sum of decaying exponentials). Included in this family is the

minimum free energy, already known, and the maximum free energy.

The following notation will be used. Vectors are indicated by boldface

characters. Tensors and matrices are denoted by boldface capitals. Sym
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is the set of all symmetric second order tensors. Lin(Sym) is the set of

all linear transformations from Sym to Sym. If L,M ∈ Lin, then L·M
stands for tr(LM). Also, |L|2 = L · L.

The reals are denoted by IR, the non-negative reals by IR+ and the

strictly positive reals by IR++; also IR−, IR−− denote the non-positive and

strictly negative reals.

– Part A: General theorems

2 – Fading Memory

Consider a continuous body B, undergoing deformation such that a

material point at X in the reference configuration, is at position x=p(X,t)

at time t. The deformation of the body is characterized by F(X, t) =

∇Xp(X, t). The tensor field L(X, t) = ∇xṗ(X, t) is the velocity gradient.

The superimposed dot indicates a material time derivative. We have the

identity

Ḟ(X,t) = L(X,t)F(X,t) .

In the context of linear theories, we will use the (symmetric) strain ten-

sor E defined as 2E(X,t) = FT (X,t)F(X,t)−I where I is the unit tensor.

Let us denote by T the Cauchy stress tensor. Our constitutive as-

sumption is that the symmetric tensor T(X,t) is a specified functional on

a suitable set of histories FtX), defined as:

Ft(X, s) = F(X,t− s), s ∈ IR+ .

The stress tensor is given by the functional:

(2.1) T(X,t) = T̂(Ft(X)) .

In order to give a more precise definition of this property of fad-

ing memory at a material point X ∈ B, it is necessary to consider the

set D of the histories which make up the domain of definition of the func-

tional (2.1). We suppose this set D be such that if Ft(X) ∈ D, then the

partly static history Ft
τ , associated with Ft(X), belongs to D , where:

Ft
τ (X, s) =

(
F(X, t) s ∈ [0, τ)

Ft(X, t−s) s ∈ [τ,1) .

Thus τ is the duration of the static part of the history.
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Definition 2.1. A viscoelastic material is characterized by the con-

stitutive equation (2.1), where Ft ∈ D and there exists a constitutive

equation T(X,t) = T̃(F(X,t)) of an elastic material, such that:

lim
τ→1

T̂(Ft
τ (X)) = T̃(F(X, t)) .

Moreover (T̂(Ft
τ (X))−T̃(F(X, t))) belongs to L2(IR+) as a function of τ.

This definition was inspired by the work of Fichera [7], [8], [9], [10].

3 – Simple material systems and dissipation principles

In this section, we consider certain dissipation principles and state

some theorems, adopting for greater generality the axiomatic formulation

of the thermodynamics of simple material systems [2], [3].

A map P :[0, dp) →Lin2, piecewise continuous on the time interval

[0, dp) defined as: P (τ) = L(τ) , τ ∈ [0, dp), is said to be a kinetic process

of duration dp ∈ IR+. The set Π of all accessible processes P satisfies the

following properties:

i) if P ∈ Π, then its restriction P[t1,t2) to the interval [t1, t2) ⊂ [0,1)

belongs to Π

ii) if P1, P2 ∈ Π, then P1 ∗ P2 ∈ Π, where

P1 ∗ P2(τ) =

(
P1(τ) τ ∈ [0, dp1

)

P2(τ − dp1
) τ ∈ [dp1

, dp1
+ dp2

) .

The restriction P[0;t) will be denoted by Pt. The process P0 of zero dura-

tion is referred to as the zero process.

We introduce the notion of state by means of the definition of a simple

material element [2], [3].

Definition 3.1. A simple solid material element at any point is a

set {Π, Σ, Ĉ, ρ̂, Ŵ} such that:

a: Π is the family of all accessible kinetic processes,

b: Σ the state space is the set of states σ of the system,

c: Ĉ: Σ → Lin2 maps any state σ onto the current value of the defor-

mation gradient F,
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d: the map ρ̂ : Σ× Π→ Σ is the evolution function, which transforms

the state σ1, under the process P into σ2 = ρ̂(σ1, P ). Moreover, the

mapping is such that:

(3.1)
ρ̂(σ, P1 ∗ P2) = ρ̂(ρ̂(σ, P1), P2), ∀ P1, P2 ∈ Π σ ∈ Σ

ρ̂(σ, P0) = σ ,

e: the map Ŵ : Σ×Π→IR is the work response, which to each state σ

and process P assigns the corresponding work,

f: finally, there exists a function T̂ : Σ×Π→Sym, the stress response,

in terms of which the work can be written as:(1)

Ŵ (σ, P ) =

Z dp

0

T̂(σ, Pt) · L(t) dt.

For materials with fading memory the state at time t will be defined

as the current value and the past history of the deformation gradient, or

the strain in the linear case.

Now we can introduce an equivalence relation on the space state Σ

by means of the following:

Definition 3.2. Two states σ1, σ2 ∈ Σ are equivalent if

Ĉ1(σ1) = Ĉ2(σ2)

T̂(σ1, P ) = T̂(σ2, P )

for all P ∈ Π.

Definition 3.2 satisfies the requirements for an equivalence relation,

which we denote by R. If the space state Σ of a simple material contains

equivalent states, then it is possible to build a new state space ΣR, for

the given material element, as the quotient of Σ on R. The elements σR

of ΣR will be called minimal states. It is not however necessary to use,

for the given material element, the minimal state space ΣR. It is correct

also to use any notion of state, which satisfies the Definition 3.1. It is

easy to prove:

(1)Strictly, this applies only to incompressible materials since we have omitted the
density. However, this is irrelevant in the linear approximation, which is of primary
interest here.
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Proposition 3.1. If σ1 and σ2 are two equivalent states then

W (σ1, P ) = W (σ2, P ), ∀ P ∈ Π .

The converse is also true if Ĉ1(σ1) = Ĉ2(σ2).

Definition 3.3. A pair (σ, P ) is called a cyclic process if ρ̂(σ, P ) = σ.

In this work, we are interested only in isothermal processes. For such

processes the Second Law of Thermodynamics can be written (see [3]) as:

The Dissipation Principle: For every cyclic process (σ, P ) we have:

(3.2) W (σ, P ) =

Z dp

0

T̂(σ, Pt) · L(t) dt ≥ 0 .

Definition 3.4. A set S ⊂ Σ is invariant under ρ̂, if for every

σ1 ∈ S, and P ∈ Π, the state σ = ρ̂(σ1, P ) ∈ S.

Definition 3.5. A function √ : S√ → IR+ is a free energy if:

i) the domain S√ is invariant under ρ̂,

ii) for any pair σ1,σ2∈S√ and P ∈Π , such that ρ̂(σ1, P )=σ2 we have

(3.3) √(σ2)− √(σ1) ≤ W (σ1, P ) .

In the following, the set of all free energies of the simple material

element under consideration be denoted by ™.

We define

(3.4) W(σ) = {W (σ, P ) ; P ∈ Π} .

The Strong Dissipation Principle: The set W(σ) is bounded below

for all σ ∈ Σ. . Furthermore, there is a state σ†, which we refer to as the

zero state, such that

(3.5) inf W(σ†) = 0 .

Remark 3.1. For a fading memory material, the zero state is σ† =

0†, where 0† is the zero history.
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Definition 3.6. A state σ ∈ Σ is attainable from all of Σ if, for any

initial state σi ∈ Σ, there exists a process P ∈ Π such that ρ̂(σi, P ) = σ. A

simple material system is attainable if any state σ is attainable from every

other state σ0 ∈ Σ.

It is proved in [4] that the Dissipation Principle follows from the

Strong Dissipation Principle; also the converse proposition holds if the

system is attainable. However, for a simple material system with fading

memory not all states are attainable. For this reason, in the following we

adopt the Strong Dissipation Principle.

Let us define the set

(3.6) Φ := {φ : Σ→ IR+;φ(σ) ≤ √(σ) ∀√ ∈ ™, ∀σ ∈ S√;φ(σ†) = 0}

and the function φM : Σ→ IR+ where

(3.7) φM(σ) = sup{φ(σ);φ ∈ Φ} .

Thus φM is the largest functional with the property that it is less than

or equal to any free energy for all states

We define fW(σ) as

(3.8) fW(σ) := {W (σ, P )− φM(ρ̂(σ, P )) ; P ∈ Π} .

4 – Minimum and maximum free energies

Definition 4.1. A functional √m is called the minimum free energy

if:

i) √m is a free energy with domain S√ = Σ.

ii) the zero state σ† ∈ Σ is such that √m(σ†) = 0

iii) for any free energy √ : S√→IR+ such that σ† ∈ S√, and √(σ†) = 0,

we have:

(4.1) √(σ) ≥ √m(σ) ∀ σ ∈ S√ .

Remark 4.1. The minimum free energy (if it exists) is unique. The

proof follows easily from the inequality (4.1).
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Theorem 4.1. The functional

√m(σ) := − inf W(σ)

is the minimum free energy.

The proof of this theorem is given in [4].

Theorem 4.2. The functional

(4.2) √̃m(σ) := − inf fW(σ) = sup{−W (σ, P ) + φM(ρ̂(σ, P ));P ∈ Π}

is a free energy such that √̃m(σ) = √m(σ) ∀ σ ∈ Σ .

This result is proved in [1]. It follows from (4.2) that, given σ ∈ S√,
for every ε > 0, there is a process Pε such that

(4.3) √̃m(σ) < −W (σ, Pε) + φM(ρ̂(σ, Pε)) + ε .

Remark 4.2. A similar result holds for any choice of φ ∈ Φ defined

by (3.6). We can in fact weaken considerably the constraint on the func-

tions φ ∈ Φ that they be less than or equal to all free energies for all

states.

Corollary 4.3. If ∃ ε0 > 0 such that for ε < ε0

(4.4) φM(ρ̂(σ, Pε)) ≤ √(ρ̂(σ, Pε)) ∀ √ ∈ ™, σ ∈ S√

where Pε is defined by (4.3), then Theorem 4.2 holds with fW(σ) defined

by (3.8), though now φM is constrained only by (4.4) rather than by (3.7).

Thus, in fact, the property must hold only for the final states of

processes in the vicinity of the optimal process.

Remark 4.3. It is always possible to represent the minimum free

energy as a function of the minimal state σR. It is clear from the definition

of W(σ), given by (3.4) and from the fact that W (σ, P ) = W (σR, P ) for

all P ∈ Π, that inf W(σ) = inf W(σR). Therefore, if σ ∈ σR

(4.5) √m(σ) = √m(σR) .
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Hence the minimum free energy is independent of the definition of state

that is used.

Let us denote by Σσ the set of all σ0 ∈ Σ attainable from σ, viz.

Σσ = {σ0 ∈ Σ; ∃ P ∈ Π; σ0 = ρ̂(σ, P )} .

For any pair σ0, σ ∈ Σ, such that σ ∈ Σσ0 , we can consider the set:

(4.6) N(σ0,σ) = {W (σ0, P ), ∀ P ∈ Π; ρ̂(σ0, P ) = σ} .

From the Strong Dissipation Principle, this set is bounded below. We

state a further theorem proved in [1]:

Theorem 4.4. For any fixed σi, the functional √σ
i

M : Σσi → IR+

defined by

√σ
i

M (σ) = inf N(σi;σ) + √m(σi)

is a free energy, called a maximal free energy. For any free energy √ :

S√ → IR+, such that S√ ⊃ Σσi , and √(σi) = √m(σi), we have

(4.7) √(σ) ≤ √σi

M (σ), ∀ σ ∈ Σσi .

Remark 4.4. Of course for any σi ∈ Σ we may obtain a different

free energy. Moreover, for a fixed σi ∈ Σ the definition of maximum free

energy may depend on the definition of state. We can however construct

a maximum free energy that is defined on the space of minimal states.

In other words, if we consider the definition of minimal state, then (4.6)

is replaced by

N(σ0R,σR) = {W (σ0R, P ), ∀ P ∈ Π; ρ̂(σ0R, P ) = σR} .

This set is generally larger then N(σ0,σ), if σ0 ∈ σ0R , and σ ∈ σR. For

this reason the maximum free energy defined on ΣR as

√
σi

R
M (σR) = inf N(σi

R;σR) + √m(σi
R)
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satisfies the inequality

√
σi

R
M (σR) ≤ √σi

M (σ) , σi ∈ σi
R, σ ∈ σR .

Relation (4.7) will apply to any free energy √(σR) defined on ΣR

provided √(σi
R) = √m(σi

R). We shall give the form of the maximum free

energy √
σi

R
M (σR) on ΣR for a particular linear model in Section 10.

5 – Linear viscoelasticity.

For the remainder of this paper, we shall be dealing with the case of

a linear viscoelastic solid, characterized by the stress-strain relation

(5.1) T(t) = G0E(t) +

Z 1

0

G0(s)Et(s) ds

where we assume that G0(·) ∈ L1(IR+)∩L2(IR+) and also (G(·)−G1) ∈
L1(IR+) ∩ L2(IR+). The relaxation function:

G(s) = G0 +

Z s

0

G0(t) ds

is well defined. We have G0 = G(0). Also, G1 = G(1) = lims→1 (G0+R s

0 G0(s)ds) is positive and well-defined as a consequence of the fading

memory property [1]. Thermodynamics implies the symmetry of G0

and G1 [12], but not the symmetry of G(s), s ∈ IR++. However, in the

following, we assume that G(s) is a fourth order symmetric tensor. There

is the further property [1] that G0 > G1.

For any f ∈ L2(IR), we denote its Fourier transform by

(5.2)

fF (ω) =

Z 1

−1
f(ξ)e−iωξdξ = f+(ω) + f−(ω)

f+(ω) =

Z 1

0

f(ξ)e−iωξdξ

f−(ω) =

Z 0

−1
f(ξ)e−iωξdξ .
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Only real valued functions f will be considered so that f̄F (ω) = fF (−ω)

where the bar denotes the complex conjugate. Functions defined on IR+

are identified with functions on IR which vanish identically on IR−−. For

such functions, fF = fc − ifs, where fc, fs are respectively the Fourier

cosine and sine transforms. In this notation

G0
F (ω) = G0

c(ω)− i G0
s(ω) .

It is a consequence of the Second Law that [16]

G0
s(ω) < 0 , ∀ω ∈ IR++ .

As a consequence of G0 ∈ L2(IR+) and of Plancherel theorem, the consti-

tutive equation (5.1) can be written as [4]

(5.3) T(t) = G0E(t) +
2

π

Z 1

0

G0
s(ω)Et

s(ω) dω

for any Et ∈ L2(IR+). It is possible to generalize (5.3) so that it holds for

a much larger class of histories [1].

6 – Maximum recoverable work

We denote by G(|s|) the extension of G(s) to an even function on IR.

Also, we suppose any process P ∈ Π is defined over IR+ by means of the

trivial extension

(6.1) P (t) =

(
P (t) , t ∈ [0, dp)

0 , t ∈ [dp,1) .

Now let us evaluate the work W (σ0,P ), where σ0 = E0 is the history

at t = 0. We consider states at t = 0 in this section and the next,

for convenience. There is no loss of generality in doing so. In later

sections, the discussion is based on states at time t, not necessarily zero.

Also, P ∈ Π is a process such that P (t) = Ė(t), t∈[0, dp). We have

Et = ρ̂(E0, Pt) and the stress is given by

T(Et) = G0E(t) +

Z t

0

G0(s)Et(s) ds− I0(t,E
0)
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where

(6.2) I0(t,E
0) = −

Z 1

0

G0(t + τ)E0(τ) dτ, t ≥ 0 .

Moreover, from (6.1) it follows that there exists the limit E(1)= lim
t→+1

E(t).

We have, after some manipulation

(6.3) W (σ, P )=
1

2

Z 1

0

Z 1

0

G(|t− τ |)Ė(τ) · Ė(t)dτdt−
Z 1

0

Ĩ0(t,E
0) · Ė(t)dt

where

(6.4) Ĩ0(t,E
0) = −G(t)E(0) + I0(t,E

0) .

In order to obtain the maximum recoverable work from state σ0 =

E0, we consider the maximum of −W (σ0, P ) with respect to the set of

functions given by

E(t) = E(m)(t) + εe(t) t ∈ IR+

where ε is a real parameter and e is a arbitrary smooth function such

that e(0) = 0. If E(m) is the process from which we obtain the maximum

recoverable work, then differentiating W (σ, P ) with respect to ε and using

the fact that ė(t) is arbitrary, we obtain for t ∈ IR+

(6.5)

Z 1

0

G(|t− τ |)Ė(m)(τ) dτ = Ĩ0(t,E
0) .

Equation (6.5) is an integral equation of the Wiener-Hopf type, the

solution of which gives the process E(m) which yields the maximum re-

coverable work. We have from Theorem 4.1 and relations (6.3), (6.5)

√m(E0) =
1

2

Z 1

0

Z 1

0

G(|t− τ |)Ė(m)(τ) · Ė(m)(t)dτdt

where Ė(m) is now the solution of the Wiener-Hopf equation (6.5).
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It is important to prove the existence and uniqueness of the solution

of (6.5). Let us assume that the kernel G(|t|) is a positive operator. We

denote by G the set

G =
n

Ė :[0,1) → Sym;

Z 1

0

Z 1

0

G(|t− τ |)Ė(t) · Ė(τ)dτdt < 1
o

.

We can introduce an inner product on G by

(6.6) (Ė1, ·Ė2) =

Z 1

0

Z 1

0

G(t− τ |)Ė1(τ) · Ė2(t)dτdt

to make G a Hilbert space.

Equation (6.5) can be written as

AĖ = I0

where A is an operator from G to its dual G0. It is bounded and coercive.

Then, from the Lax-Milgram theorem, we have the following result:

Theorem 6.1. For any Ĩ0 ∈ G0, the equation (6.5) has a unique

solution Ė ∈G such that

kĖkG ≤ KkĨ0kG0 .

In other words, there exists an isomorphism between G and G0.

Proposition 6.2. Two histories E0
1, E0

2 correspond to two equiva-

lent states if and only if

(6.7) Ĩ0(t,E
0
1) = Ĩ0(t,E

0
2) ∀t ∈ IR+ .

Proof. If (6.7) holds for any t ∈ IR+, then for t →1 we have

(6.8) E0
1(0) = E0

2(0) .
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Equation (6.7) and (6.8) imply equivalence according to Definition 3.2.

The converse is trivial.

Remark 6.1. Proposition 6.2 yields a bijective map between G0 and

the set ΣR. In other words it is possible to identify any class of equivalent

histories with a function Ĩ0.

This result allows us to represent the minimum free energy as a func-

tion defined on the set ΣR of equivalent histories which will be done

explicitly for a particular class of materials in Section 10.

Let us now consider the implications of Theorem 4.2 and in particular

Corollary 4.3. Motivated by the latter result and the fact, stated formally

in Section 8, that the elastic free energy is less than or equal to any

viscoelastic free energy, we take φM to be φ(1) where φ(t) is the elastic

free energy corresponding to strain E(t), given by

(6.9) φ(t) =
1

2
G1E(t) · E(t) .

This choice will be justified more clearly later. If we seek the history

which maximizes the functional

(6.10)

W (σ, P )− φ(1) =

=
1

2

Z 1

0

Z 1

0

G(|t−τ |)Ė(τ) · Ė(t)dτdt−
Z 1

0

Ĩ0(t,E
0) · Ė(t) dt− φ(1)

where Ĩ0(t,E
0) is defined by (6.4) then, instead of (6.5), we obtain

(6.11)

Z 1

0

G(|t− τ |)Ė(m)(τ) dτ = Ĩ0(t,E
0) + G1E(m)(1)

noting that e(1) =
R1
0 ė(t)dt.

Let us express the solution of (6.5), namely Ė(m), as the sum

(6.12) Ė(m) = Ė(m1) + Ė(m2)

where Ė(m1) is the solution of (6.11) and Ė(m2) satisfies the equation

obtained by subtracting (6.11) from (6.5), namely

(6.13)

Z 1

0

G(|t− τ |)Ė(m2)(τ)dτ = −G1E(m1)(1) =

= −G1
≥
E(m1)(0) +

Z 1

0

Ė(m1)(τ) dτ
¥

.



[15] Maximum and minimum free energies and etc. 145

As a consequence of Theorem 6.1, equation (6.13) has a unique solu-

tion Ė(m2) ∈ G, which we denote formally by

Ė(m2)(t) = −E(m1)(1)δ(t−1).

This function can be expressed as the limit of a sequence [1]. Note

that (6.12) corresponds to continuations given formally by

(6.14) E(m)(t) = E(m1)(t)−E(m1)(1)H(t−1)

where H(s) is the Heaviside step-function.

Remark 6.2. As a consequence of Theorem 4.2, the maximum recov-

erable work, which we obtain using the functional W (σ, P ) or (W (σ, P )−
φM(ρ̂(σ, P ))) is the same, but the processes from which we obtain this

maximum recoverable work are different. If we use W (σ, P ), the op-

timal process is Ė(m) which satisfies (6.5); while if we use (W (σ, P ) −
φM(ρ̂(σ, P ))), the optimal process is Ė(m1) which satisfies (6.11).

We have from Theorem 4.2 and Corollary 4.3, (6.10) and (6.11)

√m(E0) =
1

2

Z 1

0

Z 1

0

G(|t− τ |)Ė(m1)(τ) · Ė(m1)(t)dτdt− φ(1)+

+ G1E(1)E(0)

where Ė(m1) is now the solution of equation (6.11). Carrying out partial

integrations and using (6.11), we find that

(6.15)
√m(E0)=S(0)+

1

2

Z 1

0

Z 1

0

@2

@t@τ
G(|t−τ |)E(m1)(τ) · E(m1)(t)dτdt

S(t)=T(t) · E(t)− 1

2
G0E(t) · E(t) .

The form (6.15) is shown in Section 8 (Proposition 8.1) to have the char-

acteristic properties of a free energy, one of which eliminates the freedom

of an additive constant. This justifies the inclusion of φ(1) in (6.10).
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7 – Minimum Free Energy

We begin with some preliminary results and definitions. Following [5],

we will be considering frequency space quantities, defined by analytic

continuation from integral definitions, as functions on the complex ω

plane, denoted by ≠, where

(7.1)
≠+ = {ω ∈ ≠ | =ω ∈ IR+}

≠(+) = {ω ∈ ≠ | =ω ∈ IR++} .

Similarly, ≠− and ≠(−) are the lower half-planes including and exclud-

ing the real axis, respectively. The quantities f±, defined by (5.2), are

analytic in ≠(∓) respectively.

The function G0
F is analytic on ≠(−). This follows from its integral

definition over IR+. It will be assumed further that G0
F is analytic on IR

and thus on ≠−. It is defined by analytic continuation in regions of ≠+

where the Fourier integral does not converge.

The quantity G0
s has singularities in both ≠(+) and ≠(−) that are

mirror images of each other. It goes to zero at the origin and must also

be analytic there. Thus, it vanishes as ωn where the integer n ≥ 1. It is

assumed that n = 1.

A quantity central to our considerations is defined by

(7.2) H(ω) := −ωG0
s(ω) .

It is a positive, even function of the frequency. We have [1]

(7.3) G0(0) = −H(1) .

If G(s), s ∈ IR+ is extended to the even function G(
ØØØs
ØØØ) on IR then

G0(
ØØØs
ØØØ) is an odd function with Fourier transform given by

(7.4) G0
F (ω) = −2iG0

s(ω) .

We will be using the Fourier transforms of the strain history and

continuation defined by

(7.5)

Et
+(ω) =

Z 1

0

e−iωsEt(s)ds

Et
−(ω) =

Z 0

−1
e−iωsEt(s)ds .
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It is necessary to include cases where the histories and continuations do

not belong to L2, as outlined in [1]. The quantity Et
+ is analytic on ≠(−)

and Et
− is analytic on ≠(+). Both are assumed to be analytic on IR. It

is further assumed that they are analytic at infinity, so that if Et(0) is

finite, which is of course assumed, Et
± go to zero at large ω as ω−1 in

all directions. We will require the derivative of Et
+ with respect to t.

Assuming that the strain history has a derivative which is continuous

and belongs to L1(IR+), then

(7.6)
d

dt
Et

+(ω) = −iωEt
+(ω) + E(t) .

We can write (5.3) in the form

(7.7) T(t) = G0E(t) +
1

iπ

Z 1

−1

H(ω)

ω
Et

+(ω)dω

where the oddness of H(ω)/ω has been used.

Let us now solve the Wiener-Hopf equation (6.11). It can be written

in the form [1]

(7.8)

Z 1

−1

@

@t
G(|t− τ |)E0(τ)dτ = R(t)

E0(τ) = E(m1)(−τ), τ ∈ IR−−

R(t) = 0, t ∈ IR−

while on IR+, the quantity E0 is the given history. This relation de-

fines R on IR+. Taking Fourier transforms and multiplying across by ω,

we obtain, with the aid of (7.4) and (7.2),

(7.9) 2iH(ω)(E0
+(ω) + E(m)(ω)) = ωR+(ω)

where E(m)(ω) is the Fourier transform of E0(τ) defined by (7.8) on IR−−

and is the quantity we wish to determine. Also, R+(ω) is analytic on ≠(−)

and by assumption also on IR.

Now [6], the tensor H (which is isomorphic to a matrix in IR6 × IR6)

can be factorized as follows: H(ω) = H+(ω)H−(ω), where H± is analytic,
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with no zeros in its determinant, on ≠∓. We multiply (7.9) by [H+(ω)]−1

to obtain

(7.10) H−(ω)(E0
+(ω) + E(m)(ω)) =

ω

2i
[H+(ω)]−1R+(ω) .

With the aid of the Plemelj formulae [17], we write

(7.11)

Q(ω) := H−(ω)E0
+(ω) = q−(ω)− q+(ω)

q±(ω) = lim
z→ω∓

q(z)

q(z) =
1

2πi

Z 1

−1

Q(ω0)

ω0 − z
dω0

where q− is analytic on ≠(+) and q+ is analytic on ≠(−). In fact, they are

given by q(z) for z ∈ ≠(+) and ≠(−) respectively. With earlier assumptions

giving that H−(ω)E0
+(ω) is analytic on IR, it can be deduced that q± are

analytic on IR [5]. In ≠(−), q− is defined by analytic continuation from

≠+, while q+ is correspondingly defined in ≠(+). Substituting (7.11)

into (7.10) we obtain

(7.12) K(ω) = q−(ω) + H−(ω)E(m)(ω) = q+(ω) +
ω

2i
[H+(ω)]−1R+(ω) .

The function K(ω) is analytic on ≠− by virtue of the first relation and

analytic on ≠+ by virtue of the second. It is therefore analytic over the

entire complex plane. By Liouville’s theorem it must be a polynomial.

However, for |ω| → 1, K(ω) → 0 as 1/ω since q− and E(m) have this

property. Hence, it must vanish everywhere so that

(7.13) H−(ω)E(m)(ω) + q−(ω) = 0

and the minimum free energy (6.15) may be represented in the form

(7.14)

√m(E0) = S(0) +
1

2π

Z 1

−1
H(ω)E(m)(ω) · Ē(m)(ω)dω

= S(0) +
1

2π

Z 1

−1
q(ω) · q̄(ω)dω
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by application of the Convolution theorem, Plancherel’s theorem and

(7.13). The results (7.13) and (7.14) agree with those in [6] obtained by

a variational technique.

The above solution can be extended to a much wider class of histo-

ries [1].

– Part B: A new variational method

8 – Certain time-domain relationships

In this first section of Part B, we shall present certain observations

and demonstrations, the object of which is to elucidate the content of the

developments of later sections in the frequency domain, by pointing to

equivalent developments, as far as possible, in the time domain.

We understand throughout this section that G(s) refers to its even

extension G(|s|), s ∈ IR. The work function

(8.1) W (t) = φ(−1) +

Z t

−1
T(s) · Ė(s)ds

can be expressed in the form [1]

(8.2)
W (t) = S(t) +

1

2

Z t

−1

Z t

−1
G12(s− u)E(u) · E(s)duds

G12(s− u) =
@2

@u@s
G(s− u) .

It may be written as

(8.3) W (t) = S(t) +
1

2

Z 1

0

Z 1

0

G12(s− u)Et(u) · Et(s)du ds .

A frequency representation can also be given as in (7.14):

(8.4) W (t) = S(t) +
1

2π

Z 1

−1
H(ω)Et

+(ω) · Ēt
+(ω)dω

where H is defined by (7.2) and Et
+ by (7.5). Note that, in frequency

space, the integral term is clearly non-negative since H is positive-definite.
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We define the scalar product of E1,E2 : IR 7→ Sym (differing from,

though related to (6.6) if E1,E2 are zero on IR−−)

(8.5)

(E1,E2) =
1

2

Z 1

−1

Z 1

−1
G12(s− u)Et

1(u) · Et
2(s)duds =

=
1

2π

Z 1

−1
H(ω)Et

1F (ω) · Ēt
2F (ω)dω =

= (E2,E1)

where

(8.6) Et
F (ω) =

Z 1

−1
e−iωsEt(s)ds = Et

+(ω) + Et
−(ω) .

The last relation of (8.5) follows by virtue of the symmetry of the tensor

G12. If quantities defined in frequency space are in the brackets, it is

understood that the second form of (8.5) is to be used. The norm of E

is defined by

kEk2 = (E,E) ≥ 0

= kEFk2 = (EF ,EF ) .

This corresponds to the integral terms in (8.3) and (8.4) if Et vanishes

on IR−, or equivalently, if Et
−(ω) vanishes. Note that for such a history

(8.7) (T(t)−G0E(t)) · Ea = −2(Eh,Et)

for arbitrary Ea ∈ Sym, where Eh is a constant history equal to Ea and

(E(t),Et) is the state resulting in stress T(t)(2). Its Fourier transform

(see (7.5)) is Ea(iω
−)−1, which yields (7.7).

Let Et be a given history with zero continuation, i.e. Et(s), s ∈ IR−−

vanishes. Also, let E(−1) = 0. We have Et(0+) = E(t), a specified

quantity. Let

(8.8) Et
1 = Et + Et

d

(2)The bracket notation for scalar product and state may be distinguished by the fact
that, in the latter case, the argument of E(t) is explicitly included.
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where in general Et
1,E

t
d are not assumed to vanish on IR−−. The con-

straint

(8.9)

Z 1

−1
G2(s− u)Et

d(u)du = 0, s ∈ IR−

is imposed, where the subscript “2” indicates differentiation with respect

to u, giving a discontinuous function. It implies that

(8.10)

Z 1

−1
G12(s− u)Et

d(u)du = 0, s ∈ IR−− .

Note that we exclude the point zero from this relation. It will be dealt

with later, in the light of a further assumption of a discontinuity in Et
d.

In fact, (8.10) also implies (8.9) on IR−− by virtue of the fact that G2

vanishes at large times. The variational principle involves seeking a choice

of Et
1 which minimizes kEt

1k2 under specified variations subject to (8.10).

Two cases were considered in [1], corresponding to the minimum and

maximum free energy, using a generalisation of the Lagrange multiplier

technique

We now show how in general free energies emerge from the above

considerations. The discussion will based on the orthogonality condition

(8.11) (Et
d,E

t
1) = 0, Et

d = Et
1 −Et

from which it follows that

(8.12) kEtk2 = kEt
1k2 + kEt

dk2 .

This orthogonality can be shown to hold for the two cases considered

in [1]. It also applies to the solutions that emerge from the more general

variational scheme introduced in Section 10.

Let us first state the characteristic properties of an isothermal free

energy, provable within a general framework [18], [19], [12]:

P1:

(8.13)
@√(t)

@E(t)
= T(t) .
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P2: Let E† be a static history equal to E0 at all past times. Then

√(E†) = φ(E0) .

where φ(E0) is the elastic free energy defined by (6.9).

P3: For any history Et
a

√(Et
a) ≥ φ(Ea(t)) .

P4: Condition (3.3) holds. For √ differentiable, this will be true if

√̇(t) = T(t) · Ė(t)−D(t)

where D(t) ≥ 0.

The discussion is restricted to differentiable histories and continu-

ations, except at the current time t where finite discontinuities in Et
1

and Et
m must be allowed.

Note that P2 eliminates the freedom of an additive constant in √,

provided φ is taken to be uniquely defined.

Proposition 8.1. The quantity

(8.14) √(t) = S(t) + kEt
1k2

where Et
1 is defined by (8.8) and constrained by (8.9), (8.11), obeys prop-

erties P1-P4 of a free energy if Et
1 has a finite discontinuity at the origin.

Proof. Property P1 follows from (8.14) on noting that

@S(t)

@E(t)
= T(t) .

We can write (8.14) in the form

(8.15) √(t) = φ(t) + kEt
1 −E†

1k2

where E†
1 is the static history that Et

1 becomes if Et is the static history

equal to E(t) at each time [1]. The quantity φ(t) is the elastic free energy
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for strain E(t). This follows with the aid of (8.7) and (8.10). Note

that (8.15) is an explicitly positive form of the free energy. Properties

P2, P3 follow immediately.

We may replace kEt
1k2 by kEtk2−kEt

dk2 in (8.14) by virtue of (8.12).

Differentiating and using the fact that S(t) + kEtk2 = W (t) as given

by (8.3) is also given by (8.1), we obtain

√̇(t) = T(Et) · Ė(t)−D(t)

D(t) =
d

dt
kEt

dk2

so that if P4 is to hold, D(t) must be non-negative. It is convenient

to use Ed rather than Et
d at this point, the former quantity having a

discontinuity at time t. Thus

kEdk2 =
1

2

Z 1

−1

Z 1

−1
G12(s− u)Ed(u) · Ed(s)duds

and
d

dt
kEdk2 =

Z 1

−1
G12(t− u)Ed(u)du · (Ed(t

−)−Ed(t
+))

where the symmetry of G has been used. At s = 0, (8.10) has the form

Z 1

−1
G12(t− u)Ed(u)du = G0(0)(Ed(t

+)−Ed(t
−))

so that

(8.16)
d

dt
kEt

dk2 = −G0(0)|Ed(t
−)−Ed(t

+)|2 ≥ 0 .

In particular, if Et
d vanishes on IR−− then Ed(t

+) = Et
d(0

−) = 0.

The connection between the discontinuity in the history at the cur-

rent time and the rate of dissipation is interesting from a physical point

of view.
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9 – The discrete spectrum model

In the remaining sections, we derive explicit forms of various free

energies associated with a discrete spectrum material. Only the scalar

case will be considered.

The stress function T (t) and the current value and strain history

(E(t), Et) are scalars related by

(9.1) T (t) = G(0)E(t) +

Z 1

0

G0(s)Et(s)ds

where G0 and G0 are also scalar quantities. The relaxation function

G(t) = G0 +

Z t

0

G0(u)du, G0 = G(0)

is given by the explicit form

G(t) = G1 +
nX

i=1

Gie
−αit; G1 = G0 −

nX

i=1

Gi

where n is a positive integer, the inverse decay times αi : ∈ : IR+, i =

1, 2, . . . n and the coefficients Gi are also generally assumed to be positive.

Let α1 < α2 < α3 . . . . We have

(9.2) G0(t) =
nX

i=1

gie
−αit, gi = −αiGi < 0 .

The scalar quantity H(ω) corresponding to (7.2) has the form [5]

(9.3) H(ω) = H1

nY

i=1

n∞2
i + ω2

α2
i + ω2

o

where H1 = H(1), defined by the scalar form of (7.3) to be H1 =

−G0(0) = −Pn
i=1 gi > 0. In (9.3), ∞1 = 0 and (−∞2

i ), i = 2, 3, . . . n are the

zeros of H1(ω
2) = H(ω) which occur such that α2

1 < ∞2
2 < α2

2 < ∞2
3 . . . .
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The factorization of H as specified by (9.3) may be established by

inspection to be

H+(ω) = h1

nY

i=1

nω − i∞i

ω − iαi

o

H−(ω) = h1

nY

i=1

nω + i∞i

ω + iαi

o
=

= H̄+(ω) = H+(−ω); h1 = H1/2
1 .

In this paper, we consider a much larger class of factorizations of H

obtained by interchanging the zeros of H+ and H−, but leaving the sin-

gularity structure unchanged. There are N = 2n−1 distinct factorizations

of this kind which we distinguish by the label f = 0, 1, 2, . . . N . The case

f = 0 is where no zeros are interchanged and f = N where all zeros are

interchanged. These can be written as

(9.4)

H(ω) = Hf
+(ω)Hf

−(ω)

Hf
+(ω) = h1

nY

i=1

nω − iρi

ω − iαi

o

Hf
−(ω) = h1

nY

i=1

nω + iρi

ω + αi

o
=

= H̄f
+(ω) = Hf

+(−ω)

ρi = εi∞i, ε1 = 1, εi = ±1, i = 2, 3, . . . n.

The superscript f is omitted on ρi and is to be understood from context.

Most of the relations derived in [5] do not depend on the location of

the zeros of H+ and H−, but do depend crucially on the location of the

singularities. We note here certain results to be used later which can be

proved in a manner identical to that given in [5].

The quantity

(9.5) Q(ft)(ω) = Hf
−(ω)Et

+(ω) = q
(ft)
− (ω)− q

(ft)
+ (ω)

where q
(ft)
− (ω) is analytic in ≠+, going to zero at large ω as ω−1, while

q
(ft)
+ (ω) is analytic in ≠− with similar large ω behaviour. They are given



156 M. FABRIZIO – J. M. GOLDEN [26]

by the limit z → ω ∈ IR of

(9.6) q(ft)(z) =
1

2πi

Z 1

−1

Q(ft)(ω)

ω − z
dω

from above and below the real axis respectively. The analyticity of these

quantities on IR follows from the assumed analyticity of G0
F and Et

+ on

IR [5]. They are defined over the entire complex plane by analytic con-

tinuation.

It can be shown that [5]

(9.7)

d

dt
q
(ft)
+ (ω) = −iωq

(ft)
+ (ω)−Kf(t)

d

dt
q
(ft)
− (ω) = −iωq

(ft)
− (ω)−Kf(t) + Hf

−(ω)E(t)

Kf(t) =
1

2π

Z 1

−1
Hf

−(ω)
h
Et

+(ω)− E(t)

iω−

i
dω

using the notation of (7.5). Also

(9.8)

1

2π

Z 1

−1
q
(ft)
+ (−ω)dω = −1

2
Kf(t) =

1

2π

Z 1

−1
q
(ft)
+ (ω)dω

1

2π

Z 1

−1
q
(ft)
− (−ω)dω =

1

2
(Kf(t)− h1E(t)) =

1

2π

Z 1

−1
q
(ft)
− (ω)dω .

We also consider a generalization of (9.5) where the strain is defined

over IR, with Fourier transforms given by (8.6). With a view to future

applications, the relevant relations will be written for Et
d, the scalar ver-

sion of the quantity introduced in (8.8):

(9.9)
U (ft)(ω) = Hf

−(ω)Et
dF (ω) = Hf

−(ω)(Et
d+(ω) + Et

d−(ω)) =

= u
(ft)
− (ω)− u

(ft)
+ (ω)

where

(9.10)

u
(ft)
± (ω) = lim

z→ω∓
u(ft)(z)

u(ft)(z) =
1

2πi

Z 1

−1

U (ft)(ω)

ω − z
dω .
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The quantities u
(ft)
± have the same analyticity properties as q

(ft)
± . It is

clear that

(9.11)
u

(ft)
− (ω) = q

(ft)
d− + Hf

−(ω)Et
d−(ω) = q

(ft)
d+ + Hf

−(ω)Et
dF (ω)

u
(ft)
+ (ω) = q

(ft)
d+

where q
(ft)
d± are defined by (9.5) and (9.6) with Et

d+ replacing Et
+.

We will now state a result, proved in [1], which is not confined to

a discrete spectrum material. It relies upon the fact that H(ω) is fac-

torizable into quantities analytic on ≠+ and ≠−, with zeros that may be

interchanged. Analyticity excludes non-isolated as well as isolated singu-

larities, of course. It relies also on the analyticity of the various quantities

on the real axis

Proposition 9.1.The strain history and continuation Et
d obeys (8.9)

if u
(ft)
− vanishes. Relation (8.9) implies that u

(ft)
− vanishes in two cases:

(i) where no exchange of zeros in H± takes place (f = 0); and (ii)

where Et
d− vanishes.

The first case (f = 0) corresponds to the minimum free energy, while

case (ii) corresponds to the maximum free energy (f = N). In fact we

see from (9.11) that Et
d− vanishing yields q

(Nt)
d− = 0 so that Proposi-

tion 9.1 is stating that condition (8.9) implies that q
(Nt)
d− vanishes. Re-

calling that (8.9) in this case is the condition for equivalence of states Et
1

and Et, we conclude that q
(Nt)
1− defined by (9.5), for a given history Et

1, is

a state variable on the space of minimal states ΣR.

In Section 10, we shall adopt the condition u
(ft)
− = 0 as the constraint

on our variational scheme in all cases, not just in the two described in

Proposition 9.1. This condition implies (8.9) but is a stronger assumption

in general (except in the two cases), which is in effect the content of

Proposition 9.1.

It is proved in [6], for general materials and in the full tensorial case,

that (stated for scalars) q
(ft)
− is a state variable for f = 0. The argument

used in that reference can easily be extended to all f . Thus, we state

Corollary 9.2. The quantity q
(ft)
− is a function of state for all

permutations f .
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An implication of this result is that all the free energies given in the

following sections are functions of state. If q
(ft)
− is a function of state,

then in general q
(ft)
+ = q

(ft)
− −Hf

−Et
+ will not be, because of the occurance

of the transformed history.

It is convenient to introduce a conventional scalar product

(9.12) hf, gi =
1

2π

Z 1

−1
f̄(ω)g(ω)dω

as well as (8.5). Observe that f and g are orthogonal in this scalar

product if f is analytic in ≠+ and g in ≠− or vica versa and both vanish

at infinity at least as strongly as ω−1. We write

hf, fi = kfkL

indicating the Lesbeque L2 norm.

10 – A family of free energies in ΣR

We will now derive an expression for a free energy corresponding to

each permutation f and a given state σ = (E(t), Et), which are function-

als only of the equivalence class σR rather than σ. This family includes

the minimum free energy derived in [5], a maximum free energy defined

on ΣR and intermediate functionals. No clear ordering emerges from the

general treatment. However, in Section 11, we present explicit forms for

these free energies and establish a partial ordering within the family.

These developments are the frequency domain generalization of the

theory presented in Section 8. In frequency space, we shall see that it is

possible to obtain explicit results with relative ease.

The following constrained optimization problem is considered. For a

given state (E(t), Et), we seek Et
d which minimizes kEt

1k2, where Et
1 =

Et +Et
d, subject not to (8.9) but to the stronger condition (except in two

cases; see Proposition 9.1)

(10.1) u
(ft)
− (ω) =

1

2πi

Z 1

−1

Hf
−(ω0)Et

dF (ω0)

ω0 − ω+
dω0 = 0 .
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Note that in general Et
1, E

t
d are defined on IR. It follows from (9.11) that

(10.2) Et
dF (ω) = −q

(ft)
d+ (ω)

Hf
−(ω)

= − 1

2πiHf
−(ω)

Z 1

−1

Hf
−(ω0)Et

dF (ω0)

ω0 − ω− dω0 .

Using the factorization (9.4), we see that the quantity to be minimized

has the form

M(t) = kHf
−(Et

+ + Et
dF )k2

L .

Now

(10.3) U (ft)(ω) = Hf
−(ω)Et

dF (ω) = −u
(ft)
+ (ω)

by virtue of (10.1). Using (9.5), we see that

(10.4) M(t) = kq(ft)
− − q

(ft)
+ − u

(ft)
+ k2

L .

Let us vary u
(ft)
+ (ω), replacing it by u

(ft)
+ (ω)+k(ω) where k(ω) is arbitrary

except for the constraint that it has the same analytic structure as u
(ft)
+ (ω)

- namely that it is analytic in ≠− and goes to zero at infinity as ω−1. The

minimization condition is

hk, q
(ft)
− − q

(ft)
+ − u

(ft)
+ i = 0

for all allowable k. The q
(ft)
− term drops out by virtue of the comment

after (9.12). Application of the corresponding argument in [5] yields that

u
(ft)
+ = −q

(ft)
+ or from (9.5), (9.6) and (10.3)

(10.5)

E
(ft)
dF (ω) =

q
(ft)
+ (ω)

Hf
−(ω)

=

=
1

2πiHf
−(ω)

Z 1

−1

Hf
−(ω0)Et

+(ω0)

ω0 − ω− dω0 = E
(ft)
dm (ω)

which is the optimal choice. From (10.2) it follows that

q
(ft)
1+ (ω) =

1

2πi

Z 1

−1

Hf
−(ω0)Et

1(ω
0)

ω0 − ω− dω0 = 0 .
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The resulting free energy follows by inserting (10.5) (in the form u
(ft)
+ =

−q
(ft)
+ ) into (10.4) and recalling (8.14):

(10.6) √f(t) = S(t) + kq(ft)
− k2

L = S(t) + kEt
fk2

where Et
f is the optimal choice of Et

1 (denoted by Et
fo in this context),

here given by

(10.7) Et
f(ω) =

q
(ft)
− (ω)

Hf
−(ω)

=
1

2πiHf
−(ω)

Z 1

−1

H
(f)
− (ω0)Et

+(ω0)

ω0 − ω+
dω0 .

We write

(10.8) Et
f(ω) = Et

f+(ω) + Et
f−(ω)

where Et
f+(ω) is analytic in ≠− and corresponds to a history before time t,

while Et
f−(ω) is analytic in ≠+ and corresponds to a continuation after

time t.

If the zeros in Hf
− are not permuted (f = 0) then Et

f+ vanishes.

This case is readily identified as the minimum free energy derived in [5]

with Et
f identified as the negative of the optimal continuation given in

that paper. If all the zeros are permuted (f = N) then Et
f− vanishes [1],

corresponding to the maximum free energy. If some zeros are permuted,

we have an intermediate situation where neither Et
f+ nor Et

f− vanish.

For a static history (see (7.5)), Et
+(ω) = Et

s(ω) = E(t)/(iω), we have

from (10.7), closing on ≠(+), that [5]

(10.9) Et
fs(ω) =

E(t)

iω
.

One can write (10.6) in the form (see (8.15))

(10.10) √f(t) = φ(t) + kEt
f −Et

fsk2

on using the scalar form of relation (8.7) and

(l, Et
+ −Et

f) =
1

2
hh, q

(ft)
+ i = 0; h = 2i

H
(f)
− (ω)

ω
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where l = 1/iω. The orthogonality follows from the remark after (9.12).

It is clear that properties P1-P3 of a free energy follow from (10.6)

and (10.10). All that remains is to show that

(10.11) T (t)Ė(t) = Ẇ (t) = √̇f(t) + Df(t); Df(t) ≥ 0 .

Using (9.5) and the scalar form of (8.4), we can write

(10.12) W (t) = S(t) + kq(ft)
− − q

(ft)
+ k2

L = S(t) + kq(ft)
− k2

L + kq(ft)
+ k2

L

where the orthogonality of q
(ft)
− , q

(ft)
+ follows from the remark after (9.12).

We note in passing here that this orthogonality is that expressed by (8.11)

as may be seen from (10.5) and (10.7). Comparing (10.11) and (10.12),

we see with the help of (10.6) that

(10.13)
Df(t) =

d

dt
kq(ft)

+ k2 = K2
f (t)

Kf(t) = hH(f)
+ , Et

+ −Et
si

where Et
s is the static history E(t)/(iω). We have used (9.7) and (9.8) in

writing (10.13). The quantity Kf is real and Df is clearly non-negative.

It is shown in [1] that the time domain history and continuation with

minimum norm are in general non-zero for large positive and negative

times and have a discontinuity at time t. The magnitude of this dis-

continuity is related to (10.13) in such a manner as to give agreement

with (8.16). In intermediate cases, the history and continuation are ar-

bitrary to within an additive constant. This freedom allows us to make

a particular choice of Et
fs in (10.10), as pointed out after (8.15).

Finally, observe that (10.10) can be written in the form

√f(t) = φ(t) + kpfk2
L

pf(ω) = q
(ft)
− (ω)− Hf

−(ω)E(t)

iω
.

It now manifestly depends only on the couple (E(t), q
(ft)
− ) and is therefore

a state variable.
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11 – Explicit forms

Detailed expressions for these free energies are now presented, in

terms of the viscoelastic parameters of the discrete spectrum model. Also,

a ranking will be given among subsequences of these forms. It is further-

more pointed out that linear combinations of the free energy, with pos-

itivity restrictions on the coefficients, are also free energies. The results

quoted are obtained as described in [5] with minor modifications.

The quantities q
(ft)
± (ω) defined by (9.5) and (9.6) have the form

(11.1)

q
(ft)
− (ω) = ih1

nX

i=1

Rf
i Et

+(−iαi)

ω + iαi

q
(ft)
+ (ω) = q

(ft)
− (ω)−Hf

−(ω)Et
+(ω) =

= ih1

nX

i=1

Rf
i [Et

+(−iαi)−Et
+(ω)]

ω + iαi

− h1Et
+(ω)

Rf
i = (ρi − αi)

nY

j=1
j 6=i

n ρj − αi

αj − αi

o

where the ρi are defined in (9.4). Explicit expressions may also be given

for the optimal histories/continuations [1].

The quantity Kf(t), given by (9.7), has the form

(11.2) Kf(t) = −h1

nX

i=1

Rf
i

αi

ei(t)

where ei(t) = E(t)− αiE
t
+(−iαi).

Using (11.1), we find that the free energy √f(t), given by (10.6), has

the form [5]

√f(t) = S(t) + H1

nX

i,j=1

Rf
i Rf

j

αi + αj

Et
+(−iαi)E

t
+(−iαj) =

= S(t) +
1

2

Z 1

0

ds1

Z 1

0

ds2E
t(s1)Ff(s1, s2)E

t(s2)

Ff(s1, s2) = 2H1

nX

i,j=1

Rf
i Rf

j

αi + αj

e−αis1−αjs2 .
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A particular ranking among the free energies was established in [1].

Start from the minimum energy √m(t) which corresponds to εi = 1, i =

1, 2, . . . n. Interchanging a zero ∞l, l 6= 1 and denoting the resulting free

energy by √(1)(t), it can be shown that

√(1)(t) ≥ √(0)(t) .

If another zero is interchanged, one can show by the same argument that

√(2)(t) ≥ √(1)(t) and so on. There are (n − 1)! pathways starting with

√m(t) and ending with √(M)(t) with all zeros interchanged, where, on

each step, a zero untouched in previous steps, is interchanged. Along a

particular pathway, we have

(11.3) √(M)(t) = √(n)(t) ≥ √(n−1)(t) ≥ · · · ≥ √(1)(t) ≥ √(0)(t) = √m(t) .

The superscripts n, n − 1 etc. will have quite different meanings on

different pathways. The minimum and maximum free energies in each

sequence (11.3) are unique however. Thus, √m,√(M) are respectively

the minimum and maximum free energies corresponding to the element

σR ∈ ΣR defined by (E(t), Et).

The dissipation function corresponding to √f(t) is given by

(11.4) Df(t) = K2
f (t)

where Kf(t) is defined by (11.2).

The N free energies defined by different factorizations are all in the

set Sσ of free energies associated with the equivalence class σR. They are

in fact on the boundary of this convex set, in a sense that is discussed

in [1]. The convexity of Sσ means that we can form a family of free

energies given by

√(t) =
X

f

a2
f√

f(t),
X

f

a2
f = 1

where the sum is in general over all 2n−1 factorizations and each af can

take all real values. Clearly √m(t) ≤ √(t) ≤ √(M)(t).

For n = 1, the set Sσ reduces to a singleton - as demonstrated for a

very general exponential form in [14]. For n = 2, the range of allowable
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free energies can be determined by elementary considerations. This was

done by Breuer and Onat [20].

Acknowledgements

Our thanks to G. Gentili for useful discussions on aspects of this

work. This work has been supported by Italian M.U.R.S.T. through

the 40th project “Mathematical Methods for Materials Science” and by

a grant under the Enterprise Ireland International Collaboration Pro-

gramme (1998).

REFERENCES

[1] M. Fabrizio – J. M. Golden: Maximum and minimum free energies for a linear
viscoelastic material , Quart. Appl. Math., to appear.

[2] W. Noll: A new mathematical theory of simple materials, Arch. Rational Mech.
Anal., 48 (1972), 1-50.

[3] B. D. Coleman – D. R. Owen: A mathematical foundation for thermodynamics,
Arch. Rational Mech. Anal., 54 (1974), 1-104.

[4] M. Fabrizio – C. Giorgi – A. Morro: Free energies and dissipation properties
for systems with memory, Arch. Rational Mech. Anal., 125 (1994), 341-373.

[5] J. M. Golden: Free energies in the frequency domain: the scalar case, Quart.
Appl. Math., 58 (2000), 121-150.

[6] L. Deseri – G. Gentili – J. M. Golden: An explicit formula for the minimum
free energy in linear viscoelasticity, J. Elasticity, 54 (1999), 141-185.

[7] G. Fichera: Avere una memoria tenace crea gravi problemi , Arch. Rational
Mech. Anal., 70 (1979), 101-112.

[8] G. Fichera: Sulla principio della memoria evanescente, Rend. Sem. Mat. Univ.
Padova, 68 (1982), 245-259.

[9] G. Fichera: Problemi Analitici Nuovi nella Fisica Matematica Classica, Scuola
Tipo-Lito Instituto Anselmi, Marigliano, Napoli, 1985.

[10] G. Fichera: On linear viscoelasticy, Mech. Res. Comm., 12 (1979), 241-242.

[11] W. A. Day: The thermodynamics of materials with memory, Materials with Mem-
ory, D. Graffi ed., Liguori, Napoli, 1979.

[12] M. Fabrizio – A. Morro: Mathematical Problems in Linear Viscoelasticity,
SIAM, Philadelphia, 1992.



[35] Maximum and minimum free energies and etc. 165

[13] G. Del Piero – L. Deseri: On the concepts of state and free energy in linear
viscoelasticity, Arch. Rational Mech. Anal., 138 (1997), 1-35.

[14] G. Del Piero – L. Deseri: On the analytic expression of the free energy in linear
viscoelasticity, J. Elasticity, 43 (1996), 247-278.

[15] S. Breuer – E. T. Onat: On recoverable work in linear viscoelasticity, Z. Angew.
Math. Phys., 15 (1964), 13-21.

[16] M. Fabrizio – A. Morro: Viscoelastic relaxation functions compatible with ther-
modynamics, J. Elasticity, 19 (1988), 63-75.

[17] N. I. Muskhelishvili: Singular Integral Equations, Noordhoff, Groningen, 1953.

[18] B. D. Coleman: Thermodynamics of materials with memory, Arch. Rational
Mech. Anal., 17 (1964), 1-45.

[19] B. D. Coleman – V. J. Mizel: A general theory of dissipation in materials with
memory, Arch. Rational Mech. Anal., 27 (1967), 255-274.

[20] S. Breuer – E. T. Onat: On the determination of free energy in viscoelastic
solids, Z. Angew. Math. Phys., 15 (1964), 185-191.

Lavoro pervenuto alla redazione il 1 febbraio 2000
Bozze licenziate il 10 novembre 2000

INDIRIZZO DEGLI AUTORI:

M. Fabrizio – Dipartimento di Matematica – Università di Bologna – Bologna – Italia – e-mail:
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