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Existence and multiplicity results

for some nonlinear elliptic equations: a survey
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Riassunto: Discutiamo alcuni risultati di esistenza e molteplicità per equazioni
ellittiche nonlineari del tipo (1).

Abstract: We survey some existence and multiplicity results dealing with non-
linear elliptic equations like (1).

1 – Introduction

In this paper we will outline some recent advances concerning the

existence of solutions of some classes of Nonlinear Elliptic Equations. We

will mainly deal with the existence of positive solutions of problems like

(1) −∆u + au = ∏h(x)uq−1 + k(x)uα−1, x ∈ D,

where
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• ∆ denotes the Laplace operator;

• ∏ ≥ 0 is a real parameter and h(x) and k(x) are given functions that

will be precised in each case;

• D is either a bounded smooth domain ≠ ⊂ IRn or it is all of IRn.

In the former case we will associate (1) with homogeneous Dirichlet

boundary conditions u(x) = 0, x ∈ @≠; in the latter we will look for

bound states, namely for solutions u such that u(x) → 0 as |x| →1;

• 1 < q < α ≤ 2∗. In particular, a main part of the discussion will be

focussed on the case that q < 2 < α, when the nonlinearity is the

sum of a concave and a convex term;

• a is a non-negative constant. Precisely, when D = ≠ we can take

w.l.o.g. a = 0. When D = IRn, we shall take a > 0, say a = 1, if

α < 2∗ and a = 0 if α = 2∗.

Here and in the sequel we set

2∗ =





2n

n− 2
if n ≥ 3

d +1 if n = 2.

We will also review some results concerning the existence of multiple

solutions, possibly infinitely many, of problems with odd nonlinearities

like

(2) −∆u + au = ∏h(x)|u|q−2u + k(x)|u|α−2u, x ∈ D,

Let us point out that (1) and (2) are model problems and the results we

will discuss hold for broader classes of equations. We refer to the original

papers for more general results. See also the Monographs [47] and [51].

The paper is divided into 6 Sections, organized as follows.

Section 2 contains some results dealing with (1) when D = ≠. We

mainly report on some results taken from [8], [9].

Section 3 is devoted to show how some of the preceding results can

be extended to quasilinear problems, where the second order operator

−∆ is substituted by the p-laplacian −∆p := −div (|∇u|p−2∇u). Here

we mainly follow the papers [10], [23], [36]-[39].

Section 4 deals with second order elliptic equations on IRn in the case

that the nonlinearity has a subcritical growth at infinity, namely when

α < 2∗. We outline the results of [35], [42].



[3] Existence and multiplicity results etc. 169

Sections 5 and 6 are concerned with the case that D = IRn, a = 0 and

α = 2∗ (critical growth). In the former we use the Concentration Com-

pactness method, while in the latter we report some recent results of [11],

[12] which are obtained by means of a perturbation method variational

in nature.

There is a very large bibliography on the topics we will deal with and

is not possible to make an exhaustive list of papers. We have reported

only the works that are more closely related to the material discussed

here. Moreover, to confine the survey within the limits of a reason-

able length, we cannot discuss many other interesting topics on elliptic

equations. Among them, we cite the problems dealing with the bifurca-

tion from the essential spectrum, the existence of solutions of nonlinear

Schrödinger equations with a potential (including the existence of multi-

bump solutions when the potential has an oscillating behaviour), the ex-

istence of concentrated solutions for singularly perturbed problems, and

the list could continue.

Notation

– ≠ denotes a bounded domain in IRn with smooth boundary @≠.

– For D = ≠ or D = IRn, Lr(D) denote Lebesgue spaces. and Hk,r(D)

denote the Sobolev spaces; we also set Hk(D) = Hk,2(D).

– D1,2(IRn) denotes the closure of C1
0 (IRn) with respect the norm

k∇ukL2(IRn).

– ∏1 = ∏1(≠) denotes the first eigenvalue of the Laplace opeartor −∆
on H1

0 (≠).

– u+ denotes the positive part of the function u.

2 – Second order problems on bounded domains

In this section we will mainly deal with the existence of positive

solutions to Dirichlet boundary value problems like

(3)





−∆u = ∏uq−1 + kuα−1 in ≠,

u(x) > 0 in ≠,

u|@≠ = 0,
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where, for the sake of simplicity, we have taken h ≡ 1 and k to be a

constant.

First, it is convenient to recall some known results in the limit cases

in which either q = 2 or k = 0.

(a) When k = 0 and 1 < q < 2, namely when the nonlinearity is purely

concave, problem (3) has a unique solution for every ∏ > 0, which can be

found e.g. by the method of lower and upper solutions. The uniqueness

is proved in [27].

(b) When q = 2, k > 0 and 2 < α < 2∗ the problem can be faced by

variational tools. Let us consider the Euler functional

f∏(u) =
1

2

Z

≠

|∇u|2dx− ∏
2

Z

≠

u2dx− k

α

Z

≠

uα+dx.

It is immediate to see that f∏ has the Mountain-Pass geometry when-

ever 0 ≤ ∏ < ∏1. Furthermore, the condition α < 2∗ ensures that the

Palais-Smale, (PS) in short, compactness condition is satisfied. Then the

Mountain-Pass Theorem [14] provides the existence of a critical point

u 6= 0 of f∏ and hence a solution of (3), provided 0 ≤ ∏ < ∏1.

(c) In the limit case of the critical Sobolev exponent α = 2∗, problem (3)

(with k = 1) becomes

(4)





−∆u = ∏u + u(n+2)/(n−2) in ≠ ⊂ IRn, n ≥ 3,

u(x) > 0 in ≠,

u|@≠ = 0.

and can have no solution at all. This is the case if e.g. ∏ = 0 and the

domain ≠ is star-shaped. (See [45]). However, a celebrated result by

Brezis and Nirenberg shows that

Theorem 2.1 [25]. If n ≥ 4 problem (4) has a positive solution

iff ∏ ∈ (0,∏1). If n = 3, there exists ∏ > 0 such that problem (4) has a

positive solution for all ∏ ∈ (∏,∏1).
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Roughly, the functional f∏ with α = 2∗ satisfies the (PS) condition

along any sequence uj such that

f∏(uj) → c∏, ∇f∏(uj) → 0,

provided c∏ < (1/n)Sn/2, where S denotes the best Sobolev constant for

the embedding of H1
0 (≠) in L2∗(≠). One proves that the mountain-pass

critical level c∏ is actually below (1/n)Sn/2 provided 0 < ∏ < ∏1 an n ≥ 4.

When n = 3, one shows that this happens for ∏ < ∏ < ∏1, for a suitable

∏ > 0 depending on ≠.

Moreover if n = 3 there exist domains (for instance a ball) and ∏ < ∏1

such that if ∏ ∈ (0,∏) problem (4) has no positive solution. See [25].

For future references, let us recall that problem (3) with q = 2, can

be also faced by the Bifurcation Theory. Actually, it is well known that

∏1 is a bifurcation point for (the positive) solutions of (3) and there is a

continuum

Σ = {(∏, u) ∈ IR×H1
0 (≠) : u is a solution of (3)}

such that (∏1, 0) ∈ Σ. It is worth recalling that this result holds true with-

out any restriction on α. The local behaviour of Σ near (∏1, 0) depends

on the sign of k. If k > 0, resp. k < 0, the bifurcation is sub-critical,

resp. super-critical. See figure 1 below. For example, the existence of

solutions of (4) for ∏ in a left neighbourhood of ∏1 can be deduced by

these arguments.

λ1

Subcritical bifurcation

λ1

Supercritical bifurcation

Fig. 1
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To control the global behaviour of Σ one has to take α < 2∗. If

this is the case one can show, see [40], there exists an a priori bound for

the positive solutions of (3) and this permits to show that it possesses a

solution for every 0 ≤ ∏ < ∏1, see the left part of figure 2 below.

λ1

Bifurcation diagram when k > 0

λ1

Bifurcation diagram when k+ 6≡ 0,R
kϕα1 < 0

Fig. 2

Remark 2.2. For completeness, let us recall some further results.

1) If k < 0 and α > 2 (with no further restrictions), problem (3) with

q = 2 has a solution for all ∏ > ∏1: it suffices to consider, for u ≥ 0, the

positive part of ∏u + kuα−1 and use the maximum principle.

2) When k = k(x) and k+, the positive part of k, is not identically

= 0, problem (3) has still a solution for 0 ≤ ∏ < ∏1. In addition, if

ϕ1 denotes the (normalized) positive eigenfuction of −∆ on H1
0 (≠) andR

kϕα1 < 0, the bifurcation from ∏1 is supercritical. As a consequence, one

can show that there exists ε > 0 such that (3) has at least two solutions

for all ∏1 < ∏ < ∏1 + ε. See the right part of Figure 2. We refer to [1],

see also [4], for more details.

2.1 – Concave-convex nonlinearities

The simultaneous effect of the concave and the convex terms has been

investigated in [8]. Here we report on some of those results. Since here

the positive factor k is not relevant, we will take in the sequel k = 1.
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Theorem 2.3 [8].

(i) Let 1 < q < 2 < α. Then there exist Λ > 0 such that

1. for all ∏ ∈ (0,Λ) problem (3) has a minimal solution u∏;

2. for ∏ = Λ problem (3) has at least one weak solution uΛ ∈
H1

0 (≠) ∩ Lα+1(≠);

3. for ∏ > Λ problem (3) has no solution.

(ii) Let 1 < q < 2 < α ≤ 2∗. Then for all ∏ ∈ (0,Λ) problem (3) has a

second solution v∏ > u∏.

The proof is based on the following steps:

Step 1. Statement (i) is proved by using lower and upper solutions.

Clearly, here one takes advantage of the presence of the concave term

∏uq−1.

Step 2. To prove (ii) one uses critical point theory. First, one uses

[26] to show that the minimal solution u∏ is a local minimum of f∏ in

H1
0 (≠). Next, one verifies that f∏ has the Mountain-Pass geometry. Let-

ting, as before, c∏ denote the Mountain-Pass level, one proves that f∏
satisfies the (PS) condition at level c∏ provided α ≤ 2∗. In particu-

lar, when α = 2∗ this is true because, again, the presence of the term

−∏
q

R
≠ uq

+dx implies that c∏ < (1/n)Sn/2.

Remark 2.4. The results stated in Theorem 2.3 can be made more

precise. One can show that there is A > 0 such that for all ∏ ∈ (0,Λ)

problem (3) has at most one solution such that kuk1 ≤ A. Furthermore,

when α = 2∗ and ≠ is star-shaped, any solution w∏ different from the

minimal solution u∏ is such that kw∏k1 →1 as ∏ ↓ 0.

We can also prove a multiplicity result concerning the problem

(5)

(
−∆u = ∏ |u|q−2u + |u|α−2u in ≠,

u|@≠ = 0.

When 2 = q < α < 2∗ it is well known that the Lusternik-Schnierelman

theory provides the existence of infinitely many solutions of (5) for all ∏.

See, e.g. [3], [14]. A similar result holds when the nonlinearity is merely

∏|u|q−2u with ∏ > 0 and 1 < q < 2, see [5].



174 A. AMBROSETTI – J. GARCIA AZORERO – I. PERAL [8]

Using again the Lusternik-Schnierelman theory applied to

ef∏(u) =
1

2

Z

≠

|∇u|2dx− ∏
q

Z

≠

|u|qdx− 1

α

Z

≠

|u|αdx,

one can extend the cited results to handle equations with concave-convex

nonlinearities.

Theorem 2.5 [8], [38]. Let 1 < q < 2 < α ≤ 2∗. Then there is

∏∗ > 0 such that for all ∏ ∈ (0,∏∗) (5) has infinitely many solutions with
ef∏(u) < 0. Furthermore, if 1 < q < 2 < α < 2∗, (5) has also infinitely

many solutions with ef∏(u) > 0.

Remark 2.6. When 1 < q < 2 < α < 2∗, Bartsch and Willem

[49] have shown that the preceding results hold true for all ∏ > 0. More-

over, Wang [49] has proved the existence of infinitely many solutions with

negative energy for equations like (5) with |u|α−2u substituted by any con-

tinuous g(x, u) which is odd in u for |u| small and such that g = o(|u|q−1)

as |u| → 0, uniformly in x ∈ ≠.

Next, following [9, Sect. 2], we obtain some multiplicity results with-

out symmetry assumptions. Precisely consider

(6) −∆u = ∏|u|q−2u + G0(u), x ∈ ≠, u = 0x ∈ @≠,

where G ∈ C2(IR, IR) satisfies:

(G1) G0(s)s ≥ αG(s) > 0, ∀ s ∈ IR, with 2 < α < 2∗;

(G2) G00(s)s2 ≥ αG0(s)s, ∀ s ∈ IR;

(G3) G00(s)s2 ≤ c1|s|α, ∀ s ∈ IR (c1 > 0).

From the above assumptions it follows that G is convex and

(7) G(s) =
1

α
|s|α + o(|s|α), at s = 0, s = 1.

Of course, the difference with the nonlinearity handled in equation (5)

is that now G0 is not assumed to be odd. For u ∈ H1
0 (≠) we set (below
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u− := u− u+):

f∏(u) =
1

2

Z

≠

|∇u|2dx− ∏
q

Z

≠

|u|qdx−
Z

≠

G(u)dx ,

f+
∏ (u) =

1

2

Z

≠

|∇u|2dx− ∏
q

Z

≠

uq
+dx−

Z

≠

G(u+)dx ,

f−
∏ (u) =

1

2

Z

≠

|∇u|2dx− ∏
q

Z

≠

uq
−dx−

Z

≠

G(u−)dx .

From the preceding arguments, see Theorem 2.3, it follows there exists

δ > 0 such that for all ∏ ∈ (0, δ) one has:

(i) f+
∏ has a local minimum u1 > 0 and a Mountain-Pass critical point

v1 > 0, with f+
∏ (u1) < 0 < f+

∏ (v1);

(ii) f−
∏ has a local minimum u2 > 0 and a Mountain-Pass critical point

v2 > 0, with f−
∏ (u2) < 0 < f−

∏ (v2).

Taking advantage of this geometry we can prove the following result.

Theorem 2.7 [9]. There exists ∏∗ > 0 such that, for all 0 < ∏ < ∏∗,

one has:

(i) if (7) holds, then (6) has a solution u3 6= u1,2, with f∏(u3) < 0;

(ii) if, in addition, (G1 − G2 − G3) hold, then (6) has another solution

v3 6= v1,2, with f∏(v3) > 0.

The idea of the proof can be summarized as follows.

Step 1. According to the results of [26], u1,2 are also local minima

of f∏. Consider the Mountain Pass Level with base u1 and u2,

b∏ = inf
h∈H

max{f∏(h(t)) : t ∈ [0, 1]}

where H = {h ∈ C1([0, 1],H1
0 (≠)) : h(0) = u1, h(1) = u2}. Since

f∏ verifies the (PS) condition, then b∏ is a critical level that carries a

critical point u3 different from u1,2. Moreover, the fact that f∏(tu) < 0

for all t 6= 0 and small, implies that b∏ < 0 and hence f∏(u3) < 0. This

proves (i).
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Step 2. For u ∈ H1
0 (≠) we set

φ±
∏ (u) := (∇f±

∏ (u)|u) =

Z

≠

|∇u|2dx− ∏
Z

≠

|u±|q −
Z

≠

G0(u±)u±dx.

and

φ∏(u) := (∇f∏(u)|u) =

Z

≠

|∇u|2dx− ∏
Z

≠

|u|q −
Z

≠

G0(u)udx.

Using the properties of G it is possible to show that there exist ∏0 > 0,

A > 0 and ρ > 0 such that, setting

M±
∏ = {u ∈ H1

0 (≠) : φ±
∏ (u) = 0, kuk ≥ ρ},

respectively

M∏ = {u ∈ H1
0 (≠) : φ∏(u) = 0, kuk ≥ ρ},

there results, for all 0 < ∏ < ∏0:

(a) (∇φ±
∏ (u)|u) < 0, resp. (∇φ∏(u)|u) < 0, for all u ∈ M±

∏ , resp. M∏; in

particular M±
∏ , resp. M∏, are smooth manifolds in H1

0 (≠). Moreover

they are radially diffeomorphic to the unit sphere in H1
0 (≠).

(b) f±
∏ (u) ≥ A, resp. f∏(u) ≥ A, for all u ∈ M±

∏ , resp. u ∈ M∏.

(c) Critical points of f±
∏ , resp. f∏, constrained on M±

∏ , resp. M∏, are

stationary points of f±
∏ , resp. f∏. We will refer this property by

saying that M±
∏ , resp. M∏, is a natural constraint for f±

∏ , resp. f∏.

Remark 2.8. One could actually show that if ∏ is small enough

the set {u ∈ H1
0 (≠) \ {0} : φ∏(u) = 0} consists of two disjoint manifolds,

radially diffeomorfic to the unit sphere in H1
0 (≠). One contains the critical

points of f∏ at negative levels; the other one is M∏ and carries the critical

points of f∏ at positive levels.

Step 3. f±
∏ , resp. f∏, satisfy the Palais-Smale condition on M±

∏ ,

resp. M∏.

Step 4. By the previous steps it follows that there exist w1 ∈ M+
∏

and w2 ∈ M−
∏ such that

f+
∏ (w1) = min

u∈M+
∏

f+
∏ > 0(8)

f−
∏ (w2) = min

u∈M−
∏

f−
∏ > 0.(9)
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We can assume that w1 = v1 and w2 = v2, otherwise w1,2 already pro-

vide two additional solutions of (6). The new feature is that, now, v1,2

are characterized as minima of f±
∏ on M±

∏ . Furthermore, by a suitable

modification of the arguments of [26], one can show that v1,2 are in fact

local minima of f∏ on M∏.

Step 5. We use the preceding information to find another critical

point of f∏ on M∏. This critical point will be obtained by using the

Mountain-Pass Theorem with base points v1 and v2. This is possible

because of (8) and (9). More precisely, let H∗ = {h ∈ C([0, 1],M∏) :

h(0) = v1, h(1) = v2} and set

b∗∏ = inf
h∈H∗ max{f∏(h(t)) : t ∈ [0, 1]}.

There results b∗∏ > max{f∏(v1), f∏(v2)} > 0 and since (PS) holds, the

Mountain-Pass Theorem yields the existence of v3 6= v1, v2, which is a

critical point of f∏ on M∏, with f∏(v3) = b∗∏ > 0. Finally, since M∏ is a

natural constraint, see Step 2, then v3 is a free critical point of f∏ and

hence a solution of (6).

Remark 2.9. The results in Theorem 2.7 extends some results in

[48]. Other results with lack of symmetry can be found in [20] and the

references therein.

3 – Quasilinear problems

In this section we consider the quasilinear (model) problem

(10)

(
−∆pu = ∏|u|q−2u + |u|α−2u in ≠,

u|@≠ = 0,

where 1 < q < p < α ≤ p∗. Here

p∗ =

( np

n− p
if n > p

+1 if n ≤ p.

As in Section 2, we begin with a short review of some results in the case

q = p. Letting ∏1 denote now the first eigenvalue of the p-laplacian,

−∆pu = ∏|u|p−2u, in≠, u|@≠ = 0,
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one shows that there exists a positive solution of (10) for all 0 ≤ ∏ < ∏1,

when q = p and α < p∗. Such a solution is found as Mountain-Pass

critical point of the Euler functional

F∏(u) =
1

p

Z

≠

|∇u|pdx− ∏
p

Z

≠

|u|pdx− 1

α

Z

≠

|u|αdx.

In the case in which α = p∗, the critical exponent case, one can follow the

strategy used to prove Theorem 2.1 and estimate the mountain-pass level

C∏ of F∏ (with α = p∗). One shows that, if n ≥ p2, there results C∏ <

(1/n)Sn/p, where the (PS) holds. This permits to obtain the following

result which is the counterpart of Theorem 2.1.

Theorem 3.1 [36]. Assume n ≥ p2. Then for 0 < ∏ < ∏1 the

problem (10) with p = q and α = p∗ has a positive solution.

Remark 3.2. For p < n < p2 (in the case p = 2 this corresponds

to n = 3) there is a result similar to the one stated in Theorem 2.1

for n = 3. See [15]. Moreover there is a non-existence result for ∏

close to zero, when the domain is a ball and we look for radial solutions.

This result is contained in a widely quoted, but unpublished, work by

Atkinson, Peletier and Serrin. See [32] where a generalization of this

result is proved.

3.1 – The case 1 < q < p < α ≤ p∗

Let us now consider the case 1 < q < p < α ≤ p∗ which corresponds

to the concave-convex case when p = 2. The following result extends

Theorem 2.3 to p-laplacian equations, in the case that α < p∗.

Theorem 3.3 [32]. Let 1 < q < p < α < p∗. Then there exist

Λ > 0 such that

1. for all ∏ ∈ (0,Λ) problem (10) has at least two positive solutions

u ∈ H1,p
0 (≠);

2. for ∏ = Λ problem (10) has at least one positive solution u ∈ H1,p
0 (≠);

3. for ∏ > Λ problem (10) has no solution.
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Theorem 3.3 has been proved by an argument similar to that used in

the semilinear case. The main difficulty arises dealing with the existence

of a second solution. The new feature is an extension to p-Laplace equa-

tions of the result by Brezis-Nirenberg [26] that allows to say that the

first solution sweeped between a lower and an upper solution is in fact a

local minimum in the Sobolev space for the Euler functional.

When α = p∗, to find a result global in ∏ as in Theorem 3.3, a

restriction on p is in order.

Theorem 3.4 [34]. Let 1 < q < p < α = p∗. Then the statement

1) of Theorem 3.3 holds true provided that either 2n/(n+2) < p < 3 and

1 < q < p, or p ≥ 3 and p∗ − 2/(p− 1) < q < p.

One can also extend to the p-laplacian the first statement of Theorem

2.5. Actually, for ∏ > 0 small one can take advantage of the fact that the

dominant term is ∏|u|q−2u with q < p, to find critical points of F∏ in the

region where F∏(u) < 0. This permits to prove:

Theorem 3.5 [38]. Let 1 < q < p < α ≤ p∗. Then there exists

∏0 > 0 such that for all ∏ ∈ (0,∏0) problem (10) has infinitely many

solutions with F∏(u) < 0.

3.2 – The radial case

In this subsection we take ≠ = B1 := {x ∈ IRn : |x| < 1} and look

for radial solutions of (10). Precisely, letting r = |x| and

Apu = − 1

rN−1

°
rN−1|u0(r)|p−2u0(r)

¢0
,

we shall look for solutions u = u(r) of

(11)

(
Apu = ∏|u|q−2u + |u|α−2u, 0 ≤ r < 1,

u0(0) = 0, u(1) = 0,

where 1 < q < p < α < p∗. Plainly, if u(r) solves (11), then u(|x|) is a

solution of (10).
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To begin with, we deal with positive (radial) solutions of (11) and

outline a procedure, based on Topological Degree arguments, that permits

to obtain an alternative proof of Theorem 3.3. We follow [9].

Let us set

eΛ = sup{∏ > 0 : (11) has a positive (radial) solution}.

Using lower and upper solutions, one readily shows that (11) has a pos-

itive radial solution for ∏ > 0 small enough. This implies that eΛ > 0.

Furthermore, one can also show that eΛ < 1.

The following Lemma provides an a-priori bound like the one by

Gidas and Spruck [40].

Lemma 3.6. There exists C > 0 such that kuk1 ≤ C, for all positive

(radial) solutions of (11) and all ∏ ∈ [0, eΛ].

The proof of Lemma 3.6 makes use of the following two facts.

1) One considers the Cauchy problem

(12)

(
Apu = |u(r)|α−2u(r),

u(0) = a, u0(0) = 0.

It is well known, see e.g. [33], that (12) has a unique solution ua; moreover

there exists Ra > 0 such that ua(Ra) = 0 and u0
a(Ra) < 0.

2) As a consequence of the preceding result one shows

Lemma 3.7. Let 1 < p < α < p∗ and let u be any solution of

(
Apu = |u|α−2u, 0 ≤ r < 1,

u0(0) = 0, u(r) ≥ 0.

Then u ≡ 0.
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Consider the compact map K∏ defined on X := {u ∈ C1(B1) : u(x) =

u(|x|), u(1) = 0} by setting

K∏(u) = (Ap)
−1
°
∏|u|q−2u + |u|α−2u

¢
∏ ∈ (0,Λ).

Lemma 3.6 and the homotopy invariance of the degree imply that

deg(I −K∏, Tr, 0) = const Tr := {u ∈ X : kukX < r},

for r > 0 large enough. Since for ∏ > eΛ (11) has no solution, we infer

that

deg(I −K∏, Tr, 0) = 0.

On the other side, using sub and super solutions and the arguments of

[2], it is easy to show that for all 0 < ∏ < eΛ, K∏ has a fixed point u∏.

Moreover, if this u∏ is isolated (otherwise we have done) its fixed point

index is = 1. Then, by the excision property of the degree we infer:

Theorem 3.8 [9]. For all ∏ ∈ (0, eΛ) the problem (11) admits at

least two positive solutions.

Remark 3.9. (a) Lemma 3.6 is the only point where one uses the fact

to deal with radial solutions. Then the preceding arguments provide a

different proof of Theorem 2.3, according with the uniform L1 estimates

by Gidas and Spruck. See [40].

(b) Lemma 3.6 can also be used to find a a global continuum S of

solutions of (11) emanating from ∏ = 0, u = 0 which has the behaviour

indicated Fig.3. See [9, Theorem 3.12].

λ

Fig. 3
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The result indicated in Remark 3.9-(b) can be greatly improved. In

order to highlight that the results do not depend on the oddness of the

nonlinearity, we will consider a slightly modification of problem (11),

namely

(13)

(
Apu = ∏|u|q−2u + g(r, u), 0 < r < 1,

u0(0) = 0, u(1) = 0,

where 1 < q < p and g ∈ C(IR+ × IR) satisfy, uniformly with respect to

r ∈ [0, 1],

(g1) lims→0

g(r, s)

|s|p−2s
= 0,

(g2) g(r, s)s > 0, ∀ s 6= 0,

(g3) g(r, s) ∼ |s|α−2s as |s| →1, with p < α < p∗.

Theorem 3.10 [10]. Let 1 < q < p < α < p∗ and suppose that

g satisfies (g1). Then there exist infinitely many unbounded continua

Γk ⊂ IR×X, k ∈ IN, of solutions of (13) with the following properties:

1) If ∏ ↓ 0 there exists uk
∏ ∈ X such that (∏, uk

∏) ∈ Γk and uk
∏ → 0.

2) If (∏, u) ∈ Γk, and ∏ > 0 then u 6= 0 and u has exactly k − 1 simple

zeros in the interval (0, 1).

3) There exists a constant ρ > 0 such that if r ∈ (0, ρ], and (∏, u) ∈ Γk

with kuk1 = ρ, then ∏ > ∏(ρ) > 0.

If, in addition, (g2 − g3) hold, then:

4) ∃Ck > 0 such that kuk ≤ Ck for every (∏, u) ∈ Γk, ∏ ≥ 0.

Corollary 3.11. Let 1 < q < p < α < p∗.

1) If (g1) holds, ∃∏∗ > 0 such that for all ∏ ∈ [0,∏∗) problem (13) has

infinitely many radial solutions.

2) If, in addition, (g2 − g3) hold, then for all ∏ ∈ [0,∏∗) problem (13)

has infinitely many pairs of radial solutions.
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λ

Γ1

Γ2

Γ3

Fig. 4

The behaviour of the solutions set of (13) is indicated in Fig. 4 below.

The proof is carried out in 3 steps.

Step 1. For j ∈ IN let aj = jp−q and

hj(u) =

(
aj · |u|p−2u, if |u| ≤ 1/j,

|u|q−2u if |u| ≥ 1/j.

Problem (13) is approximated by

(14)

(
Apu = ∏hj(u) + g(r, u), 0 < r < 1,

u0(0) = 0, u(1) = 0,

which can be handled by bifurcation theory (for the case p 6= 2, see [9]).

It follows that for all k ∈ IN there exists an unbounded continuum Sk,j

of solutions (∏, u) of (14) bifurcating from µk,j = µk/aj, where µk is the

k-th eigenvalue of

Apu = ∏|u|p−2u, u0(0) = 0, u(1) = 0.

Moreover, if (∏, u) ∈ Sk and u 6= 0 then u has exactly k−1 zeros in (0, 1).

Step 2. Using a topological lemma from [50], one performs a limiting

procedure to find that Sk “converges” to a continuum Γk.
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Step 3. The branches Sk satisfy properties 1 − 4 stated in Theo-

rem 3.10. Moreover, it is possible to show these properties are preserved

after the limiting procedure.

4 – Problems on IRn: the sub-critical case

In this section we will be concerned with elliptic equations on all of

IRn like

(15)

(
−∆u + u = ∏h(x)uq−1 + k(x)uα−1,

u > 0, u ∈ H1(IRn).

Here we deal with the case in which the exponent α is sub-critical, namely

2 < α < 2∗. This will be always assumed in this section.

Let us begin with some results dealing with

(16)

(
−∆u + u = k(x)uα−1 in IRn,

u > 0, u ∈ H1(IRn).

The main tool used to face (16) is critical point theory.

Let us suppose that k ∈ L1(IRn) and that

(17) k(x) > 0, ∀x ∈ IRn, lim
|x|→1

k(x) = k1 > 0.

Solutions u ∈ H1(IRn) of (16) can be found as critical points of

f(u) :=
1

2

Z

IRn

°|∇u|2 + u2
¢− 1

α

Z

IRn
k(x)|u|α.

The functional f has the geometry of the Mountain-Pass Theorem: u = 0

is a strict local minimum and there exists e ∈ H1(IRn) such that f(e) < 0.

But, since we are dealing with a problem on all of IRn which is invariant

under translations, there is a lack of (PS), even if α < 2∗.

If k(x) ≡ k1 > 0 the difficulty can be overcome by looking for

radially symmetric solutions. Actually, the Sobolev space H1
r (IRn), the

radial functions of H1(IRn), is compactly embedded in Lα(IRn) for any

α ∈]2, 2∗[, and this permits to prove the existence of a solution of

(18) −∆u + u = k1uα−1, u > 0, u ∈ H1
r (IRn).

See [46], [22].
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Remark 4.1. If n = 4 or n ≥ 6 it has been shown that (18) possesses

a non-radial solution. See [18].

When k(x) 6≡ k1 or, more in general, is not radial, the lack of (PS)

can be bypassed by using the Concentration-Compactness Principle in-

troduced by P.L. Lions [43], [44]. Roughly, let us set

Sα = inf{1

2

Z

IRn

°|∇u|2 + u2
¢

: u ∈ H1(IRn),

Z

IRn
k1|u|α = 1}.

Remark 4.2. The value Sα is achieved by a positive radially sym-

metric function w ∈ H1(IRn) satisfying (18).

There results

Lemma 4.4. (PS)c holds provided c <
°

1
2
− 1
α

¢
Sα/(α−2)
α .

Moreover, letting c(f) denote the Mountain-Pass level of f one proves:

Lemma 4.4. Let (17) hold and suppose that k(x) > k1 for all

x ∈ IRn. Then c(f) <
°

1
2
− 1
α

¢
S

α
α−2
α .

From Lemmas 4.3 and 4.4 one immediately infers that c(f) is a critical

level for f and hence (16) has a positive solution.

A more general result has been obtained in [17] proving that (16) has

a positive solution provided k satisfies (17) and ∃C, δ > 0 such that

(19) k(x) ≥ k1 − Ce−δ|x|, for |x| ¿ 1.

The new feature is that if (19) holds, the critical point of f is found at

a min-max level which is possibly greater that
°

1
2
− 1
α

¢
Sα/(α−2)
α . For this

reason the results of [17] require delicate arguments.

As for the case of problem on bounded domains, one can find multi-

plicity results provided the nonlinearity is odd. For example, if 2 < α < 2∗

the problem

(20) −∆u + u = |u|α−2u, u ∈ H1(IRn)

has infinitely many radial solutions, see [46]. Furthermore, if n = 4 or

n ≥ 6, (20) has infinitely many non-radial solutions, see [18].
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Remark 4.5. If n ≥ 3 and α ≥ 2∗, the only solution of (20) which

belongs to H1(IRn) ∩ Lα(IRn) is u ≡ 0.

Different are the results if we deal with a concave nonlineaity. For

example, following [24], consider the problem

(21) −∆u = h(x)uq−1, x ∈ IRn, u > 0, (1 < q < 2)

where h satisfies:

(22) h ∈ L1
loc(IR

n), h ≥ 0.

Using sub- and supersolutions, one can prove:

Theorem 4.6 [24]. Suppose that (22) holds. Then problem (21) has

a solution iff there exists U ∈ L1(IRn) such that −∆U = h. Moreover,

(21) has exactly one solution such that lim sup|x|→1 u(x) = 0.

For some other results dealing with problems on IRn with a concave

(or, more in general, sublinear at infinity) nonlinearity, see [16].

Next, we will briefly discuss the existence of solutions of (15) in the

concave-convex case, namely when 1 < q < 2 < α < 2∗. The main tool

used to face problem (15) is critical point theory jointly with bifurcation

results. Following [35], we will consider two cases:

(I) h ≥ 0, h ∈ Ls(IRN), for all s ∈ [1,1], and k > 0, k ∈ Lt(IRN),

t = 2N
2N−α(N−2)

.

(II) h ≥ 0, h ∈ Ls(IRN), for all s ∈ (1,1], k ≡ 1.

In the case (I), the behaviour is very similar to that found dealing

with the Dirichlet problem in a bounded domain. In fact, the hypothesis

on k permits to prove a global Palais-Smale condition and the classical

variational methods can be applied.

One can also find a bifurcation result. Problem (15) is approximated

with problems on balls with radious R →1. Then a limiting procedure

like the one emploied in Theorem 3.10 allows us to show:

Theorem 4.7 [35]. Assume h, k satisfy (I) and let 2 < α < 2∗.

Then there exists a nonempty closed connected set Σ ⊂ H1(IRn) of posi-

tive solutions of (15) branching-off from (0, 0). Moreover
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1. There exists a constant c∗ > 0 such that if u ∈ H1(IRn) is a positive

solution of (15) with ∏ = 0, then ||u||H1 ≥ c∗. (Σ does not collapse

into H1 × {∏ = 0}.)
2. If (u0,∏0) ∈ Σ, and ∏0 > 0, then u0 > 0. (Σ does not collapse into

{0}× (0,1).)

3. There exists Λ > 0 such that Σ ⊂ H1(IRn)× [0,Λ].

The abstract topological argument that allows us to pass to the limit

on the set of approximate branches, requires some compactness. The

idea is that if we take a bounded sequence {(uj,∏j)} of solutions of the

approximate problems we have in fact a Palais-Smale sequence for the

energy functional corresponding to problem (15).

Dealing with case (II), the main difference is that the Palais-Smale

condition holds only locally and for small values of ∏, depending on a

convenient norm of h. As a consequence, we can obtain a limit of branches

in H1(IRn), as in case (I), only for small ∏. More precisely we obtain a

continuum of solutions Σe ⊂ H1(IRn) × [0,∏0). Here ∏0 has to be small

to have the Palais-Smale condition.

Furthermore, by using uniform L1 estimates derived from [40] we

have the following result that gives rise to a global branch in C1,α.

Theorem 4.8 [35]. Assume h, k satisfy (II) and let 2 < α < 2∗.

Then, there exists Λ > 0 and a branch Σ ⊂ C1,α × [0,Λ] of positive

solutions of (15) bifurcating from (0, 0).

The branch Σ is bounded in C1,α × [0,Λ], is nondegenerate in the

sense of Theorem 4.7-1) and can be seen as an extension of Σe in the

space C1,α. Unfortunately, we have no estimates to conclude that Σ is

globally contained in H1(IRn). As anticipated before, the difficulty to

get these estimates arises because the Palais-Smale condition is obtained

only under a critical level of the energy, and for ∏ small. A priori, we

do not know if, branching off from (0, 0), the solutions on Σ blow up in

the energy norm at some value of ∏ ∈ [0,Λ]. However, the behaviour

of Σ in C1,α × [0,Λ] is similar to the one indicated in Figure 3. Let us

point out that the crossing of Σ with ∏ = 0 could be a function with

finite energy, namely in H1(IRn). This would be consistent with the

perturbation method we will discuss in Section 6 later on. But, again,
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we cannot exclude that the crossing point is a solution of (15) which has

not finite energy, such as v ≡ 1.

What is the precise behaviour of Σ is an open problem.

5 – Problems on IRn: the case of critical exponent

In this section we deal with equations on IRn involving a nonlinearity

like uα−1 with α = 2∗. According to Remark 4.5, here the natural function

space is D1,2(IRn). Our model problem will be

(23) −∆u = ∏h(x)uq−1 + u
n+2
n−2 , u ∈ D1,2(IRn),

with 1 < q < 2∗. Non-negative solutions of (23) can be found as critical

points of the functional f∏ : D1,2(IRn) −→ IR,

f∏(u) =
1

2

Z

IRn

|∇u|2 − ∏
q

Z

IRn

h(x)uq
+ −

1

2∗

Z

IRn

u2∗
+ .

Above, it is understood that h is a function such that the preceding

functional makes sense. Specific assumptions will be made later on.

Likewise for the problems discussed in the preceding section, also

dealing with (23) one of the main difficulty is the concerned with the

(PS) condition. Let us recall that now, dealing with these critical non-

linearities, the analogous of Sα defined in the preceding section is the

Sobolev constant

S = inf





Z

IRn

|∇u|2dx : u ∈ D1,2(IRn),

Z

IRn

u2∗dx = 1



 .

Roughly, the Concentration Compactness Principle implies that f∏ satis-

fies (PS) at any level c < 1
n
Sn/2.

The first case we shall consider is the problem

(24)




−∆u + a(x)u = u

n+2
n−2 ,

u > 0, u ∈ D1,2(IRn).
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Assume that

(a0) a(x) ≥ 0, and a(x) ≥ ∫ > 0 in some ball centered in a point

x̄ ∈ IRN .

(a1) a ∈ Ls for all s ∈ (n/2− ε, n/2+ ε), ε > 0 if n > 3, s ∈ (n/2− ε, 3)

if n = 3.

Theorem 5.1 [21]. If (a0) and (a1) hold then (24) has at least a

solution provided kakLn/2 is sufficiently small.

The method of proof is still based on an application of the Mountain-

Pass theorem jointly with the concentration compactness principle. The-

orem 5.1 is completed by the following

Remark 5.2. Let (a0) hold and suppose that a does not satisfy (a1)

but merely a ∈ Ln/2. Then the miniminization problem

inf{
Z

IRn

(|∇u|2 + a(x)u2)dx : u ∈ D1,2(IRn)|
Z

IRn

|u|n+2
n−2 dx = 1},

has no solution.

For another result dealing with (24), see Theorem 6.5 below.

We now consider (23) whith 1 < q < 2 and h satisfying

(h0) h ∈ Lt(IRN), with t = 2n/(n + 2− (q − 1)(n− 2)).

(h1) h+ 6≡ 0. ( h+ denotes the positive part of h.)

First of all, one shows the following geometric result.

Lemma 5.3. If 1 < q < 2, there exist ρ > 0, and ε0 > 0 such that

−1 < inf{f∏(u) : u ∈ D1,2(IRn), kukD1,2(IRn) ≤ ρ} < 0.

Concerning the (PS) condition one proves:

Lemma 5.4. Let {um} ⊂ D1,2(IRn) and c ∈ IR be such that:

1. f∏(um) → c < 0,

2. ∇f∏(um) → 0.

Then {um} has a strongly convergent subsequence.
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An application of Lemmas 5.3 and 5.4 implies that f∏ achieves its

infimum on the ball kukD1,2 ≤ ρ yielding

Theorem 5.5 [12]. Let 1 < q < 2 and suppose that (h0, h1) hold.

Then there exists ε0 > 0 such that for all ∏ ∈ (0, ε0) problem (23) has a

non-negative solution u0,∏ such that u0,∏ → 0 in D1,2(IRn) as ∏→ 0+. In

addition, u0,∏ is a local minimizer of f∏.

Theorem 5.5 can be completed by showing that (23) possesses a sec-

ond non-negative solution eu∏. Following the arguments of [8], one con-

siders the translated functional

(25) bf∏(v) =
1

2

Z

IRn

|∇v|2dx−
Z

IRn

H(∏, x, v)dx,

where

H(∏, x, v) =

Z v

0

g(∏, x, s)ds,

g(∏, x, s) =

(
∏h(x)

≥
(u0,∏ + s)q − uq

0,∏

¥
+
≥
(u0,∏ + s)α − uα0,∏

¥
, s ≥ 0

0, s < 0

Obviously, bf∏ has a local minimum at v = 0. Without loss of generality

we can assume it is a strict local minimum. To find a Mountain-Pass

critical point we have to investigate the (PS) condition. As anticipated

before, one shows that

bf∏ satisfies the (PS) condition at any level c <
1

n
Sn/2.

Finally, one checks that, for ∏ > 0 small, the Mountain-Pass level c( bf∏) of

bf∏ is indeed smaller than
1

n
S

n
2 . Therefore c( bf∏) carries a second critical

point of bf∏ and thus (23) has a second solution eu∏.
For completeness, it is worth stating the following result.

Theorem 5.6. There exists ∏̄ > 0 such that if u∏ is a nonnegative

solution to problem (23) for ∏ > ∏̄, then u∏ ≡ 0.
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The proof is similar to the one in the bounded domain case. See [9]

and [35].

We end this section with a result dealing with (23) when 2 < q < 2∗.

In such a case, the geometry of the functional f∏ is different from the

previous one because now 0 ∈ D1,2(IRn) is a local minimum. It is possible

to show that, if ∏ > 0 is sufficiently small, the Mountain-Pass critical level

c∏(f∏) is smaller than
1

n
S

n
2 , where (PS) holds. This yields

Theorem 5.7 [12]. Assume that 2 < q < 2∗, (h0), (h1) hold and

let h > 0. Then there exists ε0 > 0 such that if ∏ < ε0 problem (23) has

at least a positive solution.

6 – Existence via perturbation

In this final section we will seek solutions of (23) by using a pertur-

bation method in critical point theory discussed in [6], [7]. This approach

has been followed in [11], [12] and gives rise to somewhat different results

than those outlined in the previous section. To keep our notations as

close as possible to that of [11], [12], we shall consider the problem (23)

with ∏ = ε. Let us write the corresponding Euler functional fε in the

form

fε(u) = f0(u) + εG(u)

where

f0(u) =
1

2

Z

IRn

|∇u|2dx− 1

2∗

Z

IRn

u2∗dx, G(u) =
1

q

Z

IRn

h(x)uq
+dx.

The unperturbed functional f0 has an n + 1 dimensional manifold of

critical points, corresponding to the solutions of

(26)




−∆u = u

n+2
n−2 ,

u > 0, u ∈ D1,2(IRn),

Letting

z0(x) =

µ
1

1 + |x|2
∂ (n−2)

2

,
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it is known that all the solutions of (26) have the form

zµ,ξ(x) = µ−(n−2)/2z0

µ
x− ξ

µ

∂
µ > 0, ξ ∈ IRn.

Hence every element of Z = {zµ,ξ : µ > 0, ξ ∈ IRn} ' IRn+1 is a critical

point of f0. Such a Z will be called critical manifold of f0. In a certain

sense, it is just this critical manifold that causes the lack of (PS).

We will now outline a procedure that allows us to find the points of Z

from which critical points of fε, namely solutions of (23) branch off. First

of all, it is worth pointing out that Z is non-degenerate in the following

sense:

(27) KerD2f0(z) = TzZ, ∀ z ∈ Z.

Above TzZ denotes the tangent manifold to Z at z.

Using this non degeneracy, one proves

Lemma 6.1. There exist ε0 > 0 and a smooth function

w = w(µ, ξ, ε) : Z × (−ε0, ε0) → D1,2(IRn)

such that

(a) w(µ, ξ, 0) = 0

(a) ∇fε(zµ,ξ + w) ∈ Tzµ,ξ
Z.

Consider the finite dimensional functional Φε : (0,+1)× IRn → IR,

Φε(µ, ξ) = fε(zµ,ξ + w(µ, ξ, ε))

Lemma 6.2. If (µ∗, ξ∗) ∈ (0,+1) × IRn is a critical point of Φε,

then zµ∗,ξ∗ + w(µ∗, ξ∗, ε) is a critical point of fε.
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Lemmas 6.1 and 6.2 are nothing but a kind of finite dimensional

reduction like the Lyapunov-Schmidt one.

In order to find critical points of Φε it is convenient to expand Φε
with respect to ε. One finds:

Φε(z) = b + εG(z) + o(|ε|), b := f0(z).

In the specific situation of (23), there results

Γ(µ, ξ) := G(zµ,ξ) =
1

q

Z

IRn

h(x)zq
µ,ξdx.

Setting θ = q · (n− 2)/2 (remark that θ < n), one gets

(28) Γ(µ, ξ) =
µn−θ

q

Z

IRn

h(µy + ξ)zq
0(y)dy.

The reader will recognize that Γ is the analogous of the functional

that in Dynamical System theory is called Poincaré functional, i.e. the

primitive of the Melnikov function.

As a consequence of the preceding arguments we infer

Lemma 6.3. If (µ∗, ξ∗) ∈ (0,+1)×IRn is a local strict minimum or

maximum of Γ, then for |ε| small, uε = zµ∗,ξ∗ + w(µ∗, ξ∗, ε) is a solution

of (23).

To find existence results, we shall distinguish whether q > 2 or not.

Theorem 6.4 [11]. Let 2 < q < 2∗ and suppose that h ∈ L1(IRn) ∩
L1(IRn), h 6≡ 0. Then for |ε| small, equation (23) has a positive solution.

Theorem 6.5 [11]. Let q = 2 and suppose h is continuous and such

that

(h2) ω := supp (h) is compact.

Moreover, we assume that either
R

IRn
h 6= 0 or h 6≡ 0 and n > 4. Then for

|ε| small, equation (23) has a positive solution. Moreover, if n > 4 and h

changes sign, then (23) has at least two positive solutions.
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Theorem 6.6 [12]. Let 1 < q < 2 and suppose h 6≡ 0 is a continuous

function such that (h2) holds.

Then there exists ε1 > 0, µ1 > 0 and ξ1 ∈ IRN such that for all

|ε| < ε1 problem (23) has a positive solution u1,ε with u1,ε → zµ1,ξ1 in

D1,2(IRn) as ε→ 0.

Furthermore, if h changes sign then (23) has at least two positive

solutions. Precisely, there exist µ2 > 0, ξ2 ∈ IRN with (µ1, ξ1) 6= (µ2, ξ2)

and a second positive solution u2,ε of (Pε) such that u2,ε → zµ2,ξ2 in

D1,2(IRn) as ε→ 0.

Since u1,ε and u2,ε are close to Z while the solution found in Theorem 5.5

bifurcates from u = 0, we can use Theorem 5.5 jointly with Theorem 6.6

to infer

Corollary 6.7. If h changes sign and satisfies both the assump-

tions of Theorems 5.5 and 6.5, then (23) has at least three different non-

negative solutions.

The proof of Theorems 6.4 and 6.5 relies mainly on the following

facts:

(Γ1) limµ→0+ Γ(µ, ξ) = 0;

(Γ2) limµ+|ξ|→1 Γ(µ, ξ) = 0;

(Γ3) Γ 6≡ 0.

For example, if n > 4 and n/(n − 2) < q < 2, property (Γ3) can be

shown in the following way. Actually z0 ∈ Lq(IRn) and one uses (28) to

yield

lim
µ→0+

Γ(µ, ξ)

µn−θ =
h(ξ)

q

Z

IRn

zq
0.

Let us point out that when 1 < q < 2 the functional fε is no more of

class C2 and the abstract setting needs to be modified. We refer to [12]

for details.

Remark 6.8. In general, critical points of fε are non-negative solu-

tions of (23). To show that they are indeed positive solutions, one uses the

strong maximum principle provided q > 2. To prove the positivity when

1 < q ≤ 2 we assume (h2) and use the fact that the solutions are close to

some z ∈ Z. The assumption (h2) in the case q = 2 has been eliminated
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in the recent paper [29]. Of course, if h > 0, as in Theorem 5.5, we can

directly conclude that the solution is positive.

As a concluding remark we recall that in some recent papers [11],

[13], [42] the abstract approach has been used to face problems like

−∆u = (1 + εK(x))u
n+2
n−2 , u ∈ D1,2(IRn),

arising in Differential Geometry (e.g. the Scalar Curvature problem and

the Yamabe problem). We will not discuss this kind of results here.
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