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Statistical theory of dislocations in

two-dimensional elastic bodies

H. ZORSKI

Dedicated to the memory of Gaetano Fichera

Riassunto: Si determinano le equazioni di evoluzione di una distribuzione conti-
nua di dislocazioni nella teoria lineare dell’elasticità. Le dislocazioni sono rappresentate
da un gas di particelle immateriali dotate di una struttura: esse possiedono un’inerzia
di campo. Si assume, unico assioma, una legge costitutiva per il tensore cinetico dello
sforzo. Si ottiene un modello con due continui interagenti governati da un sistema di
6 equazioni differenziali per lo spostamento, la densità e la velocità del gas di disloca-
zioni. Si studiano le proprietà di questo sistema di equazioni e si ricava una legge di
bilancio energetico. Si esamina nei dettagli il caso particolarmente interessante delle
dislocazioni a vite.

Abstract: We derive in this paper equations of continuously distributed disloca-
tions in linear elastic media, starting from a finite number of dislocation lines perpen-
dicular to the plane of the solid. Thus, dislocations are points with a structure and the
non-material (but possessing field mass) dislocation “gas” is constructed by statistical
means, following known procedures of the kinetic theory. A constitutive law for the
kinetic stress tensor is postulated - the only one required in this theory. The result is
a mixture of two interacting continua, governed by a system of 6 partial differential
equations, for 3 displacements, 2 dislocation gas velocities and the dislocation density.

Energy balance law is derived from the system of equations and some general prop-
erties of the latter are examined.

One particular case is examined in more detail, namely screw dislocations.
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1 – The governing equations

We start with a single dislocation A (fig. 1). In the present two-dimen-

sional theory, the surface of every dislocation is the half-plane y ≥ 0,

extending in the z direction from −1 to +1. The Burgers vector b

(the same for all dislocations) is assumed to be constant over the surface

and in time. The surface
A

S of the dislocation A is assumed to move

rigidly without rotation, its motion therefore is determined by the two

coordinates
A

≥1(t),
A

≥2(t) of the boundary of
A

S, i.e. by the dislocation line.

P

ζ(t) = (ζ1(t), ζ2(t) + a2, ζ3(t))

ζ(t) = (ζ1(t), ζ2(t))

ζ(t) = (ζ1(t), ζ2(t))

x1

− ∞

+ ∞

+ ∞

x3

x2

dislocation surface

dislocation surface

dislocation line

in space

x1

x2

in plane

. .

Fig. 1. – Dislocation surface and its rigid motion. ≥̇(t) is the velocity of climbing.
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Denote by Gij(
A

≥1(t) − x1,
A

≥2(t) − x2) the two-dimensional dynamic

Green function of the linear elasticity. Then displacement ui(xα, t)(i =

1, 2, 3,α = 1, 2) produced by the dislocation is given by the sum of the

static and dynamic parts ([2], [1])

(1.1) − 1

µ

A
ui(xα, t) =

A

Ai(xα, t) +
A

Bi(xα, t)

where

(1.2)

A

Ai(xα, t) = bj

Z 1

0

da2

Z
dτσj1pqGiq,p ,

A

Bi(xα, t) =
1

c2
2

bj

Z 1

0

da2

Z
dτv1(τ)

@

@τ
Gij .

µσijpq is the Hookean tensor of elastic constants. For an isotropic body

σijpq = ∏
µ
δijδpq + δipδjq + δiqδjp . Time integration is extended from −1

to t + 0. @
@τ

Gij is time derivative with
A

≥(τ) held constant. Applying to
A

Ai(xα, t) the Lamé operator Lir and taking into account that LirGrq =

δiqδ(
A

≥1(τ)− x1)δ(
A

≥2(τ)− x2)δ(t− τ), we obtain

Lir

A

Ar = bj

Z 1

0

da2

Z
dτσj1βi

@

@≥β

h
δ
≥A

≥1(τ)−x1)δ(
A

≥2(τ)−x2+a2

¥
δ(t−τ)

i
=

= −bj

@

@xβ

Z 1

0

da2σj1βiδ
≥A

≥1(t)− x1

¥
δ
≥A

≥2(t)− x2 + a2

¥
=

= −bjσj1βi

@

@xβ

h
δ
≥A

≥1(t)− x1

¥
η
≥
x2 −

A

≥2(t)
¥i

,

for
R1
0 da2δ(

A

≥2(t)− x2 + a2) = η(x2 −
A

≥2(t)), the Heaviside function.

Similarly

Lir

A

Br =
1

c2
2

bi

Z 1

0

da2

Z
dτv1(τ)

h
δ
≥A

≥1(τ)−x1

¥
δ
≥A

≥2(τ)−x2+a2

¥ @
@τ
δ(t− τ)

i
=

=− 1

c2
2

bi

@

@t

h
A
v1(t)δ

≥A

≥1(t)− x1

¥
η
≥
x2 −

A

≥2(t)
¥i

where
A
v1(t) =

Ȧ

≥1(t), (·) denoting time differentiation. Hence

(1.3)Lir
A
ur(xα, t)=bj

h
µσj1βi

@

@xβ
+ ρδij

@

@t

A
v1(t)

i
δ
≥A

≥1(t)−x1

¥
η
≥
x2−

A

≥2(t)
¥
.
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The right-hand side of the above relation represents the (singular) body

forces producing the considered dislocation. We note that these forces are

distributed over the surface of the dislocation, i.e. in our two-dimensional

case over the line 0 ≤ a2 ≤ 1.

The coordinates of the dislocation line
A

≥α(t)α = 1, 2 and its veloci-

ties are assumed to be random variables. Representation (1.3) naturally

suggests an application of the Kirkwood statistical formalism based on

generalised functions (see e.g. [5], [4]). The necessary definitions and

formulae are given in App. 1.

Prior to deriving the equations of motion for the mixture of the elastic

and dislocation continua consider the density of dislocations. The natural

definition following from equation (1.3) is

(1.4) ≤(x, t) =
DX

A

δ
≥A

≥1(t)− x1

¥
η
≥
x2 −

A

≥2(t)
¥E

.

Substituting the local expresion
P

Aδ(
A

≥1(t) − x1)η(x2 −
A

≥2(t)) into the

transport law A1.3 App. 1, we obtain the continuity equation

(1.5) ≤̇+ (≤vα),α = 0

where

(1.6) ≤vα(x, t) =
DX

A

A
vα(t)δ

≥A

≥1(t)− x1

¥
η
≥
x2 −

A

≥2(t)
¥E

.

The dimension of ≤ is cm−1 and since

(1.7) η
≥
x2 −

A

≥2(t)
¥

=

Z 1

0

da2δ
≥A

≥2(t)− x2 + a2

¥
=

Z x2−
A
≥ 2(t)

−1
dbδ(b)

the quantity

(1.8) ∫(x, t) =
DX

α

δ
≥A

≥1(t)− x1

¥
δ
≥
x2 −

A

≥2(t)
¥E

the dimension of which is cm−2 , is the average number of dislocation

lines per unit area. We have

(1.9) ≤(x, t) ≥ 0, ∫(x, t) ≥ 0 .
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For the average of the total displacement at point (xα, t) includ-

ing a displacement
◦
ui, which we call the complementary field, such that

Lir
◦
ur = 0,

(1.10) ui =
◦
ui +

X

A

A
ui

averaging (1.3) and writing for simplificity hu1i = ui, we obtain

(1.11) Lirur = ρüi − σiβ,β = µbpσp1iβ≤,β + ρb1
˙≤v1

where now (·) = @
@t

, ≤,β = @
@xβ

are partial derivatives. ≤(xα, t) is the

average density of dislocation gas and vα(xα, t) is its average velocity

(eq. 1.10 contains v1 only). σiβ is the Hookean stress tensor generated by

displacement ui. Except for the term ρbi
˙≤vi the above equation resembles

that of linear thermoelasticity. In fact, it can be written in the form

(1.12) ρ(u̇i − bi≤v1)
· = σiβ,β

where

(1.13) σij = σij + µbqσq1ij≤ = µσijmnemn, emn = u(m,n) + δ1(mbn)≤

is the total stress tensor. Its first part is the usual Hookean stress, while

the second part is proportional to the dislocation density (temperature

in thermoelasticity).

Let us now proceed to the equations of motion of the dislocation

gas. Before calculating the averages, we shall make clear the meaning of

the force per unit area on a single dislocation A (in gcm−2), derived in

App. 2, due to the displacement field
◦
ui(xα, t). It is easier to start with

the three-dimensional case. We have (App. 2)

(1.14)
Ao

f i

≥A

≥α, t
¥

= −bp

h≥
nq

◦
σpq,i − niρ

◦̈
up

¥
+ ρ

A
vq

≥
nq

◦̇
up,i − ni

◦̇
up,q

¥i
.

◦
σij denotes the stress tensor due to displacement

◦
ui, at a surface point

xα =
A

≥α(a
∆, t),∆ = 1, 2. This force consists of two parts, both linear

in displacement. The static part is the known Peach-Koehler force, per
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unit area. The dynamic part of
Ao

f i has the following property: its rate

of work on velocity
A
vi vanishes; in fact

A
vi

A
vq

≥
nq

◦̇
up,i − ni

◦̇
up,q

¥
= 0 .

In general, the dynamic part of the above force is strictly a surface density,

in the particular case however, when both nα and
A
vα are independent of

a∆ applying Stokes’ formulae we find that the total line density is

(1.15) −
h
b ·
≥ ◦
σ + ρ

◦̇
u

A
v
¥i
× `

rather than −(b · ◦
σ)× `.

The force on dislocation A, due to displacement
B
u, produced by dis-

location B has the form identical to (1.13)

(1.16)
AB

f i = −bp

h≥
nq

B
σpq,i − niρ

B̈
up

¥
+ ρ

A
vq

≥
nq

Ḃ
up,i − ni

Ḃ
up,q

¥i
.

We are now in a position to calculate the averages. In view of (A1.1)

and (A1.10), denoting the average force at (xα, t), due to the complemen-

tary field
◦
ui(xα, t), by ≤(xα, t)

◦
f(xα, t) (in gcm−3) we have

(1.17) ≤
◦
f i(xα, t) = −bp≤

h≥
nq

◦
σpq,i − niρ

◦̈
up

¥
+ ρvq

≥
nq

◦̇
up,i − ni

◦̇
up,q

¥i
.

Similarly, although
AB

f i depends also on
B

≥α(τ), τ < t,

(1.18) ≤
B

f i(xα, t) = −bp≤
h≥

nq
B
σpq,i − niρ

B̈
up

¥
+ ρvq

≥
nq

Ḃ
up,i − ni

Ḃ
up,q

¥i

and the total external average force at (xα, t) is

(1.19) ≤fi(xα, t) = ≤
◦
f i(xα, t) +

X

B 6=A

≤
B

f i(xα, t) .
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In absence of a self-force, fi(xα, t) = 0. Denoting the self-force by

≤
AA

f i(xα, t) and assuming that its dependence on its own displacement
A
u(

A

≥α(t), t) is (1.16), we obtain again by linearity in displacement

(1.20) ≤
A

f i(xα, t) = −bp≤[(nqσpq,i − niρüp) + ρvq(nqu̇p,i − niu̇p,q)]

where the stress tensor in the right-hand side is based on ui =
◦
u +

P
B

B
u,

the total displacement at point (xα, t).

Prior to averaging we recall ([6], [3]) that the self-force is infinite and

to represent it in terms of the dislocation velocity a special normalization

procedure is required. For point defects (small open or closed surfaces in

space) it was shown in [6] on the basis of the Wheeler-Feynman method

that the required expresion has the form

(1.21)
A

fα =
A
mαβ

Ä

≥β =
A
mαβ

Ȧ
vβ .

Since all our dislocations are identical
A
mαβ = mαβ. The tensorial mass

in gcm−3 sec2 in the case of isotropic elasticity was shown to be

(1.22)
mij = µc−5

2 ∆1[δij(m1|b|2 + m2(b · n)2) + m3b · nn(ibj)+

+ m4bibj + m5|b|2ninj] .

∆1 is an infinite constant, independent of the motion and properties of

the solid or the dislocation

∆1 =

Z
δ(y)

y
dz

where δ(z) is the one-dimensional Dirac function. m1, . . . ,m5 depend

on the Lamé constants only. The matrix mij is positive-definite and this

is the only property of mij used in this paper.

Averaging (1.20) is standard in the kinetic theory (App. 1). Namely,

in two dimensions

(1.23)
h
A

f ii(xα, t) = mαβ[ ˙≤vβ + (≤vβv∞),∞]−mαβ
K
σβ∞,∞ =

= mαβ≤
Dvβ
Dt

−mαβ
K
σβ∞,∞ .
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K
σαβ is the kinetic stress tensor

(1.24)
K
σαβ = h(vα − v)(vβ − v)i

which requires a constitutive relation. Substituting (1.22) into (1.20) we

arrive at the required equation of motion of the dislocation gas. Thus

our system has the form (i, p, . . . = 1, 2, 3,α,β, . . . = 1, 2)

(1.25)

ρüi − σiβ,β = µbp

≥
σp1iβ≤,β + δip

1

c2
2

˙≤v1

¥

≤mαβ

Dvβ
Dt

= mαβ
K
σβ∞,∞ − bp≤[(σ1p,α − δα1ρüp)+

+ ρ(v1u̇p,α − δα1vβu̇p,β)]

≤̇+ (≤vα),α = 0 .

The second of the above equations can be transformed as follows. Since

mαβ is invertible, we multiply the equation by m−1
∞α, denote 1

ρ
mαβ by m̄αβ

and substitute for üi from the first equation (1.24); then

(1.26)
≤
Dvα
Dt

=
K
σα∞,∞−bp≤m̄

−1
α∞

h1
ρ
(σip,∞−δ∞1σpβ,β)+(v1u̇p,∞−δ∞1vβu̇p,β)

i

− bpbq≤m̄
−1
α1 (c2

2σq1pβ≤,β + δpq
˙≤v1) .

The first term in the square bracket is the static part of the Peach-

Koehler force. The last term is proportional to the dimensionless pa-

rameter β = |b|2≤
m̄

where ≤ and m̄ are some typical values of the density of

dislocations and its mass, respectively. (1.24) is a system of 6 partial dif-

ferential equations for ui, ≤ and vα, provided
K
σαβ is given in terms of these

quantities. This constitutive relation in what follows will be assumed to

have the form

(1.27)
K
σ =

K
σ(≤, ≤,α) .

System (1.24) is conservative and implies the energy balance. To

derive it we multiply (1.25)1 by u̇i, (1.25)2 by vα. Adding the results,
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using (1.25)3 and taking into account the identities

≤,βu̇i = (≤u̇i),β − ˙≤ui,β − (≤v∞),∞ui,β

≤ui,β∞v∞ = (≤ui,βv∞),∞ − ui,β(≤v∞),∞

we arrive at the energy balance

(1.28) Ė + Pα,α = −mαβvα,∞
K
σβ∞

where

(1.29)
E = Kel + φel + Kd + bp≤(σp1 − ρv1u̇p)

Pα = −σpαu̇p + Kdvα −mβ∞vβ
K
σ∞α + bp≤(vασp1 − µσp1mαu̇m) .

Kel and Kd are the kinetic energies of the elastic body and the dislocation

gas, respectively. φel = 1
2
σpαup,α is the Hookean elastic energy. The right-

hand side in (1.28) is the rate of work of the kinetic dislocational stress

tensor. Both, the total energy density E and the energy flux vector

Pα contain terms due to the interaction between the two continua, all

proportional to the dimensionless vector ≤bi.

2 – Screw dislocations

We assume in this section that b1 = b2 = 0 and we write b3 = b.

To simplify the problem we neglect the dynamic part of the force on

a dislocation (the second term in the square bracket in (1.26)) and the

term proportional to β. The system of equations of motion and the

continuity equation (1.25)1, (1.25)3, (1.26) is split into the homogeneous

purely elastic plane problem for u1, u2 and the system of four equations

(2.1)

ü3 − c2
2∇2u3 = b(c2

2≤,1 + ˙≤v1)

m̄1β≤[v̇β + (v∞vβ),∞] = m̄1β
K
σβ∞,∞ +

1

ρ
b≤σ32,2

m̄2β≤[v̇β + (v∞vβ),∞] = m̄2β
K
σβ∞,∞ −

1

ρ
b≤σ31,2

≤̇+ (≤v∞),∞ = 0
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where σ3α = µu3,α,α = 1, 2.

To close the system we shall employ the following constitutive relation

for the kinetic stress tensor:

(2.2)
K
σαβ = −δαβ(R≤+ r∞≤,∞)

where R and r∞ are constant, R is the customary gas constant equal to the

square of the sound velocity in the dislocation gas. Vector rα is the first

nonlocality coefficient; its meaning will be clarified later in this section.

First, consider the hyperbolicity of system (2.1) with rα = 0. To this

end (see e.g. [7]) we rewrite our system in the form of a first order system.

Denote u3,1 = y1, u3,2 = y2, u̇3 = y3, v1 = y4, v2 = y5, ≤ = y6 and complete

the system by the compatibility conditions ẏ1 = y3,1, ẏ2 = y3,2. Now

(2.3) A0
KLẏL + AαKLuL,α = 0 K,L = 1, . . . , 6

is the system (2.1) and the compatibility conditions, in the required form.

Here the matrices A0,Aα are

(2.4) A0 =




0 0 1 −by6 0 −by4

0 0 0 y6 0 0

0 0 0 0 y6 0

0 0 0 0 0 1

1 0 0 0 0 0

0 1 0 0 0 0




(2.4)

A1 =




−c2
2 0 0 0 0 −bc2

2

0 α12y6 0 y6y4 0 R

0 α22y6 0 0 y6y4 0

0 0 0 y6 0 y4

0 0 −1 0 0 0

0 0 0 0 0 0




A2 =




0 −c2
2 0 0 0 0

0 −α11y6 0 y6y5 0 0

0 −α21y6 0 0 y6y5 R

0 0 0 0 y6 y5

0 0 0 0 0 0

0 0 −1 0 0 0




,
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where ααβ = c2
2bm̄

−1
αβ . Equating to zero the determinant

(2.5) det(ωA0 + ωαA
α)

we obtain after some calculations

(2.6) det(ωA0 + ωαA
α) = ωD(ω,ωα) = 0

where

(2.7)

D(ω,ωα) = ω̇[ω̇2 −R|ω|2][ω2 − c2
2|ω|2]+

+ b2c2
2≤ω2{α1[ω(ω̇2 −Rω2

2)− ω̇ω1(v1ω + ω1)]+

+ α2ω2[Rωω1 − (v1ω + c2
2ω1)ω̇]}

and we have introduced the notation ω̇ = ω+vαωα,α1 = m̄−1
12 ω1−m̄−1

11 ω2,

α2 = m̄−1
22 ω1 − m̄−1

21 ω2, |ω|2 = ω2
1 + ω2

2. Thus, there is a solution ω = 0,

due to the introduction of the compatibility conditions. The first part in

D(ω,ωα) is independent of the coupling between the two continua and

clearly corresponds to their independent characteristics. The second part

is proportional to β = b2≤̄
m̄

. The whole D(ω,ωα) is homogeneous of degree

5 in (ω,ωα). The second part vanishes when ω2 = 0.

The dispersion equation for ω(k) of the problem linearized around a

constant solution (u0 = 0,v0, ≤0) is obtained from (2.6) by setting ωα =

−kα, ≤ = ≤0,v = v0. In the particular case when v0 = 0 we have for

D(ω,kα)

(2.8)
ω{(ω2 −R|k|2)(ω2 − c2

2|k|2)+

− b2c2
2≤0k2[α1(ω

2 −Rk2
2 − c2

2k
2
1) + α2k1k2(R− c2

2)]} = 0 .

To see the role played by some of the constants in the problem let us

examine (2.8) assuming that m̄−1
12 = 0, i.e. α1 = m̄−1

11 ω2,α2 = m̄−1
22 ω.

Denoting n1 = m̄−1
11 m̄, n2 = m̄−1

22 m̄ where m̄ is the typical mass entering

β and ≤̄ is a typical density, besides the solution ω = 0 we obtain a

quadratic equation for ω2 namely

(2.9) ωn + Bω2 + C = 0
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where
B = −[(R + c2

2)|k|2 + βc2
2n1k

2
2] < 0

C = Rc2
2(k

4
1 + bk2

1k
2
2 + ck4

2) ,

b = 2 +
β

R
[c2

2n1 + (R− c2
2)n2] ,

c = 1 + βn1 > 0 .

For C = 0,ω1,2 = 0,ω3,4 = ±
√

B.C > 0 for arbitrary k, |k| > 0 iff either

b2 − 4c < 0 or b2 − 4c ≥ 0 and b > 0. Then

ω2 =
1

2
(−B ±

√
B2 − 4C)

and both solutions for ω2 are real and positive iff B2 − 4C > 0. Now,

B2 − 4C = a0k4
1 + b0k2

1k
2
2 + c0k4

2 where a0 = (R − c2
2)

2 ≥ 0, b0 = −2(R −
c2
2)[(R − c2

2) − c2
2β(n1 − 2n2)], c

0 = [(R − c2
2) − c2

2βn1]
2 ≥ 0, b02 − 4a0c0 =

16(R− c2
2)

2c2
2βn2[(R− c2

2)− c2
2β(n2 − n1)].

To examine travelling waves we assume that all unknown functions

depend on one variable ξ = kαxα − V t, |k|2 = k2
1 + k2

2 = 1. Then the

system (2.1) takes the form (after integrating once equation (2.1)1) of a

system of four ordinary differential equations

(2.10)

(V 2 − c2
2)u

0
3 = b≤(c2

2k1 − V v1) + c3, c3 = const.

Km̄1βv
0
β = m̄1βk∞

K
σ 0
β∞ + c2

2bk
2
2≤u

00
3

Km̄2βv
0
β = m̄2βk∞

K
σ 0
β∞ − c2

2bk1k2≤u
00
3

≤(k∞v∞ − V ) = K .

The last equation is algebraic. It should be born in mind that signK =

sign(k∞v∞ − V ); otherwise K is constant. We observe after multiplying

equations (2.10)2,3 by m̄−1
αβ that the terms containing the displacement u00

3

are proportional to the parameter β = b2≤
m̄

and in this analysis they will

be neglected. The constitutive relation for the kinetic stress tensor
K
σαβ

is taken in the form

(2.11)
K
σαβ = −δαβ(R≤+ r∞≤,∞) = −δαβR(≤+ r̄∞≤,∞)
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R is here as before the square of the sound velocity in the dislocation gas

and r∞ or r̄∞ = r∞
R

is the coefficient of nonlocality. In the variable ξ we

have

(2.12)
K
σαβ = −δαβR(≤+ r̄∞k∞≤

0) .

Now the system is separated: we first solve equations (2.10)2,3,4 for the

dislocation gas and then the displacement u3 is determined from (2.10)1.

Thus, integrating once (note that m̄αβ is eliminated)

(2.13) Kvα = −kαR(≤+ r̄∞k∞≤
0) + Cα

and substituting into (2.10)4 we obtain a first order differential equation

for the density

(2.14) r̄≤≤0 + (≤2 + 2D̄≤+ K̄2) = 0

where the new constants are D̄ = 1
2R

(KV − CαKα), K̄
2 = 1

R
K2. We

are interested in a (physical) solution ≤ > 0, bounded on the whole line

ξ ∈ (−1,+1), we assume therefore that D̄ < 0 and D̄2 > K̄2. Then

the required solution for ≤(ξ) can be written in the form (fig. 2)

(2.15) ≤1 ln
≤1 − ≤
≤1 − ≤0

− ≤2 ln
≤− ≤2
≤0 − ≤2

= −≤1 − ≤2
r̄

(ξ − ξ0), ≤(ξ0) = ≤0

where for r̄ > 0, ≤1 = ≤(1) = |D̄| +
√

D̄2 − K̄2, ≤2 = ≤(−1) = |D̄| −√
D̄2 − K̄2. We note that for r̄ < 0, ≤(−1) = ≤1, ≤(1) = ≤2. Figure 2

shows that we are faced with a kink.

ε1

ε

ξ = hαxα − Vt

ε0

ε2

Fig. 2. – Density kink in traveling waves, screw dislocations.
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The constants appearing in the above solution in terms of the values

of ≤(−1) and vα(−1) follow from equations (2.10), (2.13), namely

(2.16)

K = ≤(−1)[kαvα(−1)− V ]

Cα = ≤(−1)[Rkα + vα(−1)(kβvβ(−1)− V )2]

2RD̄ = −≤(−1)[R + (kβvβ(−1)− V )2] < 0

4R2(D̄2 − K̄2) = ≤2(−1)[R− (kβvβ(−1)− V )2]2 ≥ 0 .

To avoid trivial or nonphysical solutions we assume that kαvα(−1)−
V 6= 0 and kαvα(−1)− V 6= R. Furthermore to solve for u3(ξ), V

2 6= c2
2.

The Hookean stress 1
µ
σα3 = u0

3kα has the form

(2.17)
1

µ
σα3 =

1

V 2 − c2
2

kα(A + B≤)

where

(2.18) A = c3−V Kk1b, B = b{c2
2k1−V (k1(kβvβ(−1)−V )−v1(−1)]} .

If k2 = 0, k1 = 1 i.e. ξ = x1 − V t the terms containing u00
3 (2.10)

vanish and our solution is valid for arbitrary β. Now the constants K,Cα,

etc. have a simpler form, e.g.

A = c3 − V ≤(−1)[v1(−1)− V ]b , B = b(c2
2 + V 2) .

Observe that since the terms containing u00
3 have been neglected, (2.15)

is the solution of a pure gas dynamics problem with the constitutive

relation (2.12). However, the more general problem without the above

assumption of β ø 1, can be solved in similar manner.

– Appendix 1. Statistical mechanics ([5], [4])

The phase space is the space of pairs Γ = {
A

≥α(t),
A
vα(t)},α = 1, 2;A =

1, 2, . . . , NA (the number of dislocation lines). F ({
A

≥α(t)}, {A
vα(t)}) is the

distribution function obeying the Liouville equation, so that

(A1.1)
d

dt
(FdΓ) = 0 .
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We define the local average at point (x, t) as follows:

(A1.2) P (x, t) = hP i(x, t) =

Z
dΓF bP

≥nA

≥α(t),
A
vα(t)

o
;x, t

¥
.

Then, in view of (A1.1) we have the transport theorem

(A1.3)
@

@t
P (x, t) =

Z
dΓF

d bP
dt

.

In particular, if

(A1.4) bP =
X

A

δ
≥A

≥1(t)− x1)δ(
A

≥2(t)− x2

¥

we define P (x, t) to be the density ∫(x, t)(cm−2), i.e. the average number

of points in the plane or, the average number of dislocation lines. The

transport theorem (A1.3) now yields the continuity equation (we denote
@
@t

by (·))

(A1.5) ∫̇ + (vα∫),α = 0

where

(A1.6) ∫(x, t)vα(x, t) =

Z
dΓF

X

A

A
vα(t)δ

≥A

≥1(t)− x1

¥
δ
≥A

≥2(t)− x2

¥
.

Similarly, since

Z 1

0

da2δ(≥2 + a2 − x2) = η(x2 − ≥2)

replacing in (A1.4) δ(
A

≥2(t)−x2) by δ(
A

≥2(t)+a2−x2) and integrating over

a2 we have a new density

(A1.7) ≤(x, t) =
DX

A

δ
≥A

≥1(t)− x1

¥
η
≥
x2 −

A

≥2(t)
¥E
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and bearing in mind taht
A
vα(t) is independent of a2 we obtain the new

continuity equation

(A1.8) ≤̇+ (vα≤),α = 0

where

(A1.9) ≤(x, t)vα(x, t) =

Z
dΓF

X

A

A
vα(t)δ

≥A

≥1(t)− x1

¥
η
≥
x2 −

A

≥2(t)
¥

.

Finally we note that if

bP =
X

A

δ
≥A

≥1(t)− x1

¥
η
≥
x2 −

A

≥2(t)
¥

· f(xα, t)

then

(A1.10) hf(xα, t)i = ≤(x, t)f(xα, t)

for an arbitrary function f(xα, t).

– Appendix 2. Force on a dislocation

In order to simplify the procedure, bearing in mind that in this paper

the dislocation surface is plane, we assume from the begining that the

normal ni is constant and the surface element da = da1da2 where a∆,∆ =

1, 2, are Cartesian coordinates on the surface.

Consider the Lagrangian containing a displacement field u(x, t) ex-

ternal to the dislocation

(A2.1) L{ui} =

Z t

0

Z

s

dabpt(n)p(ui) i = 1, 2, 3

where t(n)pu = σ(n)pu + ρnq ≥̇q
@
@τ

up is the dynamic stress vector on the

surface, σ(n)pu = nrσrp(u). Thus, the Lagrangian density is the work

done by the dynamic stress vector on the displacement discontinuity, i.e.

Burgers vector bi. The displacement ui(≥p, t) = limx→≥ u(x, t) and its

derivatives are assumed to be smooth and given in the vicinity of the
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surface. Consequently, the Lagrangian density depends on ≥(ab, t) and

≥̇(ab, t), derivatives with respect to ab being absent, and on point (x, t)

through u(x, t).

We define the density of the force, i.e. the force per unit area on the

dislocation due to the displacement field u as the variational derivative

(A2.2) fi(≥, ≥̇) = −
√
@

@≥i
− d

dt

@

@≥̇i

!
(bpt(n)pu)

where d
dt

denotes the total derivative. Hence

(A2.3) fi(≥, ≥̇) = −bp[(nqσpq,i − niρüp) + ρ≥̇q(nqu̇p,i − niu̇p,q)] .

Since in our simplified model of the dislocation in a two-dimensional solid

ni = (1, 0, 0), @
@x3

= 0

(A2.4) fα(≥, ≥̇) = −bp[(σp1,α−δ1αρüp)+ρ≥̇β(δβ1u̇p,α−δα1u̇p,β)] α = 1, 2 .

Two remarks are in order here. First, since the field u(x, t) satisfies

homogeneous Lamé equation in the vinicity of s, ρüp = σpq,q and the first

part of the force takes the “static” form

(A2.5) −bp(σp1,α − δα1σpβ,β) .

Secondly, the second, dynamic part of the forcr does not contribute to the

rate of work on velocity ≥̇α (similarly to the magnetic part of the Lorentz

force on a charged particle). Thus

(A2.6) fα≥̇α = −bp(≥̇ασp1,α − ≥̇1ρüp) .

The formally static part of fα (A2.5) is the Peach-Koehler force per

unit area. In fact, let us integrate it over the dislocation surface s setting

in the Stokes’ formula
Z

s

dsnrεrqsTiq,s =

Z

l

dllqTiq ,

Tiq = εipqσmpbm. Then

(A2.7) bp

Z

s

ds(nqσpq,i − niσpq,q) = bm

Z

l

dllqεipqσmp .
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The line density in the right-hand side (σ · b) × l is the Peach-Koehler

force per unit boundary of the dislocation surface ([1]).
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