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On the eigenvalues of the rhombical membrane

B. FIRMANI – M.L. LEUZZI

Dedicated to the memory of Prof. G. Fichera

Riassunto: Vengono calcolate approssimazioni per difetto e per eccesso dei primi
autovalori di una membrana rombica libera sul bordo. Le approssimazioni per eccesso
vengono ottenute per mezzo del metodo di Rayleigh-Ritz. Quelle per difetto sono calco-
late con un metodo che si fonda sulla teoria degli invarianti ortogonali e che si ispira,
data la mancanza di una funzione di Green esplicitamente nota, a quello proposto da
G. Fichera in un suo lavoro sugli autovalori nel problema di Neumann.

Abstract: In this paper both upper bounds and lower bounds are given for the
first eigenvalues of a rhombical membrane with free boundary. The upper bounds are
obtained through an application of the Rayleigh-Ritz method. The lower bounds are
calculated by means of a procedure relying on the Orthogonal Invariants method, which
is inspired, in view of the lack of a known Green function, by that one developed by
G. Fichera in a work on the Neumann eigenvalue problem.

1 – Introduction

In the work [3] G. Fichera addressed the problem of estimating

the eigenvalues of the Neumann problem for the Laplace operator in a

domain A for which the Green function is not known. The hypotheses on

the domain A are quite general: indeed, it is assumed that there exists
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a bi-lipschitzian homeomorphism between A and the unitn disc D. The

theory developed is easily extendable to handle the case of domains D

different from discs, for which however the Green function is known.

The upper bounds are obtained by means of the celebrated Rayleigh-

Ritz method. The lower bounds are found through an argument inspired

by previous work by Weinsteien and Aronszajn (see e.g. [10] and [2]),

which involves the lower estimate of the eigenvalues of a sequence of

suitable “intermediate” operators. An extension of these results for the

case of the elasticity operator with stress null conditions on the boundary

is contained in [1].

In spite of the fact that several years have passed since the appearance

of [3] and in spite of the interest both theoric and applicative of his results,

as far as the present note’s authors know, no computational applications

of these results have been performed.

In this paper the theory developed in [3] is applied with some slight

modifications to study the case of a rhombical membrane. The domain

D is assumed to be a square. In such a case one could apply as well the

theory exposed in [10], but the aim of the paper is to show the efficiency

of the methods of [3].

2 – The Neumann problem

Let A ⊂ R2 be a rhombus centered at the origin of the coordinate

axes and having sides of lenght 2. A is defined through the formulae:

− sinϑ < y < sinϑ
y

tanϑ
− 1 < x <

y

tanϑ
+ 1

where ϑ ∈ (0,π/2).

Define in the Sobolev space H1(A) the bilinear form

(1) B(u, v) =

ZZ

A

(uxvx + uyvy) dx dy

and set

(u, v)0,A =

ZZ

A

u v dx dy .
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Now, consider the eigenvalue problem

(2)





∆u + ∏u = 0 (x, y) ∈ A

@u

@∫
= 0 (x, y) ∈ @A

where u ∈ H1(A).

As known, the eigenvalues of (2) constitue a sequence

0 = ∏0 < ∏1 ≤ . . . ≤ ∏k ≤ . . .

where each eigenvalue has finite multiplicity. The eigenvalue problem (2)

is equivalent to the following functional problem:

(3) B(u, v) = ∏ (u, v)0,A , u ∈ H1(A) , ∀ v ∈ H1(A) .

Let H1(A) denote the space of the functions v ∈ H1(A) determined

by the condition ZZ

A

v(x, y) dx dy = 0 .

The problem (3), when considered in H1(A), admits only the positive

eigenvalues and precisely those are the eigenvalues we will try and calcu-

late.

Let D be the square (−1, 1) × (−1, 1) of the plane (ξ, η) and let us

consider the following map, which maps A in D:

(4)

(
x = ξ + η cosϑ

y = η sinϑ .

We can as well give the inverse functions

(5)




ξ = x− y

tanϑ

η =
y

sinϑ
.

The jacobian determinants of (4) and (5) are

(6)
I(x, y) =

1

sinϑ
J(ξ, η) = sinϑ .
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In view of (4) and (5) we can say that every function which is an

element of H1(A) also belongs to the space H1(A)(1). Because of that, we

will denote functions by the same letter, without specifying their depen-

dence on the variables (x, y) or (ξ, η).

Notice that from (1), (4), (5) and (6) one has:

(7) B(u, u) =
1

sinϑ

ZZ

A

(u2
ξ + u2

η − 2 cosϑ uξ uη) dξ dη .

3 – Upper bounds of the eigenvalues

In order to get upper bounds of the eigenvalues of (2), the Rayleigh-

Ritz method has been employed.

It amounts to choosing a system of functions, {vk} with k = 1, 2, . . . ,

complete in the space H1(A), and calculating, for a fixed index ∫, the

solutions of the secular equation

(8) det((B(vh, vk)− Λ (vh, vk)0,A)) = 0, k = 1, . . . , ∫ .

We denote the roots of the equation (8) by

(9) Λ∫1 ≤ Λ∫2 ≤ . . . ≤ Λ∫∫ .

For every integer k = 1, . . . , ∫, one has:

∏k ≤ Λ∫+1
k ≤ Λ∫k .

For the problem at hand we have choosen the functions

(10) vnh(x, y) = xn−hyh + ∞nh , n = 1, 2, . . . , h = 0, . . . , n

(1)In a similar way as for H1(A), we will denote H1(D) the set of functions v ∈ H1(D)
such that ZZ

D

v(ξ, η) J(ξ, η) dξ dη = 0 .
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with

∞nh =




− sinh ϑ

[ n−h
2 ]X

i=0

√
n− h

2i

!
cosn−h−2i ϑ

(2i + 1)(n− 2i + 1)
n even

0 n odd .

For a fixed index n, it is n = 1, . . . , n and h = 0, 1, . . . , n e ∫ = n(n + 3).

Also, the formula (10) implies:

B(vnh, vmk) = 2 sinh+k ϑ
≥

sinϑ (n− h)(m− k)×

×
[ n−h+m−k−2

2 ]X

l=0

√
n− h + m− k − 2

2l

!
×

× cosn−h+m−k−2−2l ϑ

(2l + 1)(n + m− 1− 2l)
(1− (−1)n+m−2l)+

+
hk

cosϑ

[ n−h+m−k
2 ]X

l=0

√
n− h + m− k

2l

!
×

× cosn−h+m−k−2l ϑ

(2l + 1)(n + m− 1− 2l)
(1− (−1)n+m−2l)

¥
,

(vnh, vmk)0,A = 2 sinh+k+1 ϑ

[ n−h+m−k
2 ]X

l=0

√
n− h + m− k

2l

!
×

× cosn+m−h−k−2l ϑ

(2l + 1)(n + m− 1− 2l)
(1 + (−1)n+m−2l)+

− 4 sinϑ ∞nh∞mk .

The values of the upper bound approximations Λ∫k obtained by means

of the Rayleigh-Ritz method are given in the Section 6.
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4 – Intermediate problems

To get lower bounds for the eigenvalues of the problem (3), we are

next going to introduce certain suitable intermediate problems, whose

eigenvalues approximate from below those of the given problem. Sub-

sequently, we will search for lower bounds of the eigenvalues of these

intermediate problems.

We recall that the Rayleigh-Ritz functional associated to (3) takes

the form

(11)

F (u) =
B(u, u)

(u, u)0,A

=

ZZ

D

(u2
ξ+u2

η − 2uξuη cosϑ)dξ dη

sin2 ϑ

ZZ

D

udξ dη
=

=
(1− cosϑ)

ZZ

D

(u2
ξ+u2

η)dξ dη+cosϑ

ZZ

D

(uξ−uη)
2dξ dη

sin2 ϑ

ZZ

D

udξ dη
.

Consider now n functions(2)

(12) w1, . . . , wn ∈ H0
1 (D) .

Letting Wn denote their generated subspace, define Pn as the orthogonal

projector of H1(D) on Wn.

If

ch = (uξ − uη, wh) =

ZZ

D

(uξ − uη)wh dξ dη =

= −
ZZ

D

u(u,wh,ξ − wh,η) dξ dη = −(u,wh,ξ − wh,η) ,

the orthogonal projector Pn may be represented as

(13) Pn(uξ − uη) =
1,nX

i,j

αij(uξ − uη, wi)wj = −
1,nX

i,j

αijciwj ,

where the matrix

(14) A = ((αij))

is the inverse of the Gram matrix of the system {w1, . . . , wn}.
(2)H0

1 (D) denotes the functions in H1(D) whose trace on @D vanishes.
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Moreover, one has

(15)

ZZ

D

(uξ − uη)
2 dξ dη ≥

ZZ

D

|Pn(uξ − uη)|2 dξ dη
1,nX

i,j

αij ci cj .

By taking the constants

q0 =
cosϑ

1− cosϑ
,

p0 = 1 + cosϑ ,

we define the functional

(16) Fn(u) =

ZZ

D

(u2
ξ + u2

η) dξ dη + q0

1,nX

i,j

αij ci cj

p0

ZZ

D

u dξ dη
.

From (13) and (16) it plainly follows that

(17) Fn(u) ≤ Fn+1(u) ≤ F (u) ∀u ∈ H1(D) .

Straightforward calculations show that the eulerian problem associ-

ated to the functional (16) is given by

(18)





1

p0

4u +
q0

p0

1,nX

i,j

αij ci (wj,ξ − wj,η) + ∏u = 0

@u

@∫
= 0

ZZ

D

u dξ dη = 0

where u ∈ H1(D). And the eigenvalues of the problem(18) form a se-

quence

0 < ∏1,n ≤ . . . ≤ ∏k,n ≤ . . .

which, according to (17), satisfies the inequalities

(19) ∏k,n ≤ ∏k,n+1 ≤ ∏k ∀ k = 1, . . .
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In order to determine lower bounds for the eigenvalues ∏k,n we will

employ the Orthogonal Invariants Method, which is described e.g. in [2].

Denote by the symbol ∏∫k,n these lower approximations:

(20) ∏∫k,n ≤ ∏k,n .

At this step, the Green function of the problem (18) has to be known.

So, we will devote the final part of this section to the Green function

construction.

To start with, consider the problem

(21)





4u + f = 0 (ξ, η) ∈ D

@u

@∫
= 0 (ξ, η) ∈ @D

ZZ

D

u dξ dη = 0

where f ∈ L2(D) satisfies
ZZ

D

f dξ dη = 0 .

It is wellknown that there exists a unique solution u ∈ H2(D) of (21),

which is given by

(22) u(ξ, η) = (Γ0f)(ξ, η) =

ZZ

D

H0(ξ, η, τ1, τ2)f(τ1, τ1) dτ1 dτ2

where

(23) H0(ξ, η, τ1, τ2) =
1

π2

0,+1X

h,k
h+k>0

1

h2 + k2
coshξ cos kη coshτ1 cos kτ2 .

The differential problem associated to the eigenvalue problem (18) is

the following:

(24)





1

p0

4u +
q0

p0

1,nX

i,j

αij ci (wj,ξ − wj,η) + f = 0

@u

@∫
= 0

ZZ

D

u dξ dη = 0

where f ∈ H1(D).
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The solution of the differential problem (24) is given by

(25) u = Γ0f +
q0

p0

1,nX

h,k

αhk ch Γ0(wk,ξ − wk,η) .

Having now introduced the matrix

Ã = ((q0Γ0(wk,ξ − wk,η), (wh,ξ − wh,η)))

and the vector φ = (φ1, . . . ,φn) with

(26) φk = (f,Γ0(wk,ξ − wk,η)) ,

call B the product matrix B = AÃ. Let the matrix B̃ be defined as

(27) B̃ = (B + p0I)−T (3) .

Then, the vector c = (c1, . . . , cn) appearing in (25) can be written as

(28) c = −p0 B̃ φ .

If b̃ij are the elements of the matrix B̃, in view of (14) and (22) one

gets the following final expression of (25):

(29)

u=Γnf =

=Γ0f−q0

1,nX

h,k

1,nX

j

αhkb̃hj(f,Γ0(wk,ξ − wk,η))Γ0(wj,ξ − wj,η) =

=

ZZ

D

≥
H0(ξ, η, τ1, τ2)−q0

1,nX

h,k,j

αhkb̃hjΓ0(wk,ξ − wk,η)Γ0(wj,ξ−wj,η)
¥
·

· f(τ1, τ2)dτ1dτ2 .

(3)The invertibility of the matrix BT + p0I is guaranteed by the uniqueness of the
solution of the problem (24).
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Finally, set

βkj = q0

1,nX

h

αkh b̃hj,(30)

gi(ξ, η) = Γn(wi,ξ − wi,η) .(31)

The Green operator (29) of the differential problem (24) has an Hermitian

kernel given by

(32) Hn(ξ, η, τ1, τ2) = H0(ξ, η, τ1, τ2)−
1,nX

k,j

βkj gj(ξ, η) gk(τ1, τ2) .

We are now in the position to apply the Orthogonal Invariants theory,

which allows to find lower approximations as in (20).

Denoting by Im
1 (Γn) (m ≥ 2) the Orthogonal Invariants of the prob-

lem (24) and by Λ∫k the upper approximations of its eigenvalues appearing

in (9), one has

(33) ∏∫k,n =
≥
Im

1 (Γn)−
1,∫X

i

(Λ∫k,n)−m
¥−1/m

≤ ∏k,n ≤ ∏k .

In the problem at hand it hasn’t been possible finding explicitely the

value of the invariants Im
1 (Γn). Neverthelees, they have been substituted

by some upper bounds and the error (introduced at this step) has been

explicitely evaluated.

5 – The invariants I2
1 (Γn) and I3

1 (Γn)

Introducing the following iterates of the Green function (32)

H(2)
n (ξ, η, τ1, τ2) =

ZZ

D

Hn(ξ, η,σ1,σ2) Hn(σ1,σ2, τ1, τ2)) dσ1 dσ2 ,

H(3)
n (ξ, η, τ1, τ2) =

ZZ

D

H(2)
n (ξ, η,σ1,σ2) Hn(σ1,σ2, τ1, τ2)) dσ1 dσ2 ,

the Orthogonal Invariants theory gives

I2
1 (Γn) =

ZZ

D

H(2)
n (ξ, η, ξ, η) dξ dη ,

I3
1 (Γn) =

ZZ

D

H(3)
n (ξ, η, ξ, η) dξ dη .
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Performing now starightforward calculations, setting

ϕ(ξ, η) =

ZZ

D

Hn(ξ, η, τ1, τ2) dτ1 dτ2

and keeping into account (32), we get:

(34)

I2
1 (Γn) =

ZZ

D

dξ dη

ZZ

D

(Hn(ξ, η, τ1, τ2))
2 dτ1 dτ2 =

= I2
1 (Γ0)− 2

1,nX

i,j

βhk(ϕh, gk) +
1,nX

h,k,l,m

βijβhk(gi, gj)(gh, gk) .

Analogously we get for the invariant I3
1 (Γn):

(35)

I3
1 (Γn) = I3

1 (Γ0)− 3
1,nX

i,j

βij(ϕi,ϕj) + 3
1,nX

i,j,h,k

βijβhk(ϕh, gj)(gj, gk)+

−
1,nX

i,j,h,k,l,m

βijβlm(gj, gk)(gi, gl)(gh, gm) .

We have now to calculate, approximately but with a rigorous estimate

of the error, the expressions (34) and (35).

5.1 – Numerical calculus of the invariant I2
1 (Γn)

We notice from (34) that the quantities we need to calculate in order

to know the value of the invariant I2
1 (Γn) are I2

1 (Γ0), βij, (gk,ϕh) and

(gk, gi).

The value of the invariant I2
1 (Γ0) can be calculated. It turns out to be

(36) I2
1 (Γ0) =

0,+1X

h,k
h+k>0

1

(h2 + k2)2
.

For a sufficiently large (and explicitely calculable) index µ, the fol-

lowing estimate can be derived regarding the rest of the series (36):

(37) |rµ| ≤ 1

4

≥
π − 2 arctgµ− 2

µ
+

2 + π

µ2
+

2

µ3
− 2

µ2
arctg

1

µ

¥
.
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We move now our attention to βij, (gk,ϕh) and (gk, gi). In order to

calculate these quantities, the functions w1, . . . , wn introduced in (12)

have been choosed as

(38) whk = sinhπξ sin kπη , h, k = 1, 2, . . .

The function gi defined in (31) becomes then(4)

ghk(ξ, η) = Γn(whk,ξ − whk,η) =

= hk
0,1X

i

(h) 1

i2 + k2

(1− (−1)i+h)

h2 − i2
cos kπξ cos iπη+

+ hk
0,1X

j

(k) 1

j2 + h2

(1− (−1)j+k)

k2 − j2
cos kπξ cos jπη .

The elements of the matrix B + p0I, defined in (27), take the form:

(39)

((B + p0I))lm = ((q0(Γn(whk,ξ − whk,η), (wij,ξ − wij,η))+p0I))lm =

= p0δlm +
≥
δih

0,1X

r

(kj) (1− (−1)j+r)(1− (−1)k+r)

(r2 + h2)(k2 − r2)(j2 − r2)
+

+ δjk

0,1X

r

(hi) (1− (−1)i+r)(1− (−1)h+r)

(r2 + i2)(h2 − r2)(i2 − r2)
+

+ (1− δih)(1− δjk)
1− (−1)i+h

h2 − i2
1− (−1)j+k

k2 − j2
×

×
≥ 1

i2 + k2
+

1

j2 + h2

¥¥
q0 h k i j .

If r1
µ denotes the rest in the series appearing in the formula (39), by

easy calculations one gets, for µ > max{j, k}, the following estimate:

(40)

|r1
µ| ≤

µ,+1X

l

1

(l2 + h2)(l2 − j2)(l2 − k2)
≤

≤ 4
≥π

2
− arctg µ +

µ

µ + 1
+ log

µ− 1

µ + 1

¥
.

(4)The symbol
P0,1

i
(h) means that the index i assumes all values between 0 and +1

but the value h. Analogously in the subsequent cases.
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By other easy calculations, the following formulae can be derived in

calculating the quantities (gk,ϕh):

(41)

(ϕij, ghk) =
≥
δih

0,1X

r

(jk) (1− (−1)j+r)(1− (−1)k+r)

(r2 + h2)3(k2 − r2)(j2 − r2)
+

+ δjk

0,1X

r

(hi) (1− (−1)i+r)(1− (−1)h+r)

(r2 + i2)3(h2 − r2)(i2 − r2)
+

+ (1− δih)(1− δjk)
1− (−1)i+h

h2 − i2
1− (−1)j+k

k2 − j2
×

×
≥ 1

(i2 + k2)3
+

1

(j2 + h2)3

¥¥
4 h k i j .

Also, an estimate for the rest is given by:

(42) |r2
µ| ≤ 13

2

≥π
2
− arctg µ

¥
+

µ(9µ4 + 2µ2 − 3)

2(µ2 + 1)2(µ2 − 1)
+ 2log

µ− 1

µ + 1
.

Finally, as for the calculus of (gi, gh), one gets:

(43)

(gij, ghk) =
≥
δih

0,1X

r

(jk) (1− (−1)j+r)(1− (−1)k+r)

(r2 + h2)2(k2 − r2)(j2 − r2)
+

+ δjk

0,1X

r

(hi) (1− (−1)i+r)(1− (−1)h+r)

(r2 + i2)2(h2 − r2)(i2 − r2)
+

+ (1− δih)(1− δjk)
1− (−1)i+h

h2 − i2
1− (−1)j+k

k2 − j2
×

×
≥ 1

(i2 + k2)2
+

1

(j2 + h2)2

¥¥
h k i j

and an estimate for the rest is given by:

(44) |r2
µ| ≤ 3(π − 2arctg µ) +

4µ

µ4 − 1
+ 3log

µ− 1

µ + 1
.

At this point, the invariant I2
1 (Γn) can be approximately calculated

and a rigorous estimate of the involved error can be exhibited. In the
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following table we indicate some values of the rest.

µ Rµ

1000 6.4219908199 E-07

2000 1.6061227046 E-07

3000 7.1392490590 E-08

4000 4.0160880137 E-08

5000 2.5703932985 E-08

6000 1.7850437485 E-08

7000 1.3114850094 E-08

8000 1.0041196619 E-08

5.2 – Numerical calculus of the invariant I3
1 (Γn)

The formula (35) suggests that the quantities we need to calculate in

order to know the value of the invariant I3
1 (Γn) are I3

1 (Γ0), βij, (gk,ϕh),

(ϕk,ϕh) and (gk, gi).

The value of the invariant I2
1 (Γ0) can be calculated and turns out

to be

(45) I3
1 (Γ0) =

0,+1X

h,k
h+k>0

1

(h2 + k2)3
.

Finally, the following formulae are obtained as for (ϕi,ϕh):

(ϕij,ϕhk) =
≥
δih

0,1X

r

(jk) (1− (−1)j+r)(1− (−1)k+r)

(r2 + h2)4(k2 − r2)(j2 − r2)
+

+ δjk

0,1X

r

(hi) (1− (−1)i+r)(1− (−1)h+rt)

(r2 + i2)4(h2 − r2)(i2 − r2)
+

+ (1− δih)(1− δjk)
1− (−1)i+h

h2 − i2
1− (−1)j+k

k2 − j2
×

×
≥ 1

(i2 + k2)4
+

1

(j2 + h2)4

¥¥
h k i j .

For the calculus of the quantities βij, (gk,ϕh), (gk, gi) one proceeds

as in the previous case and the estimate of the rests are similar too.
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The following table provides some values of the rest obtained in the

calculus of the invariant I3
1 (Γn).

µ Rµ

10 6.6878814010 E-07

50 2.1606547084 E-10

100 6.7541089806 E-12

120 2.7144308230 E-12

140 1.2559145980 E-12

6 – Tables with the final results

ϑ = π/6 n = 3 n = 20

I2
1 (Γn) I3

1 (Γn)

k ∏∫k,n ∏∫k,n Λ∫k
1 1.4136 1.5148 1.5212

2 2.2526 3.6171 3.8497

3 2.4053 5.6634 8.0706

4 2.4228 6.3192 14.0550

5 2.4254 6.4465 19.7418

ϑ = π/6 n = 4 n = 20

I2
1 (Γn) I3

1 (Γn)

k ∏∫k,n ∏∫k,n Λ∫k
1 1.4419 1.5148 1.5212

2 2.4617 3.6173 3.8497

3 2.6894 5.6646 8.0706

4 2.7168 6.3210 14.0550

5 2.7210 6.4485 19.7418

ϑ = π/4 n = 3 n = 20

I2
1 (Γn) I3

1 (Γn)

k ∏∫k,n ∏∫k,n Λ∫k
1 1.4865 1.6116 1.6236

2 2.2697 3.6851 4.0766

3 2.3847 4.9602 6.9545

4 2.4001 5.2829 8.6201

5 2.4154 5.6934 17.1677
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ϑ = π/4 n = 4 n = 20

I2
1 (Γn) I3

1 (Γn)

k ∏∫k,n ∏∫k,n Λ∫k
1 1.4930 1.6119 1.6236

2 2.3055 3.6936 4.0766

3 2.4286 4.9881 6.9545

4 2.4452 5.3188 8.6201

5 2.4617 5.7420 17.1677

ϑ = π/3 n = 3 n = 20

I2
1 (Γn) I3

1 (Γn)

k ∏∫k,n ∏∫k,n Λ∫k
1 1.6468 1.7895 1.7900

2 2.5348 4.3695 4.3871

3 2.5360 4.3796 4.3974

4 2.7013 9.1154 9.4718

5 2.7128 11.3915 12.3336

ϑ = π/3 n = 4 n = 20

I2
1 (Γn) I3

1 (Γn)

k ∏∫k,n ∏∫k,n Λ∫k
1 1.6468 1.7898 1.7900

2 2.5348 4.3792 4.3871

3 2.5360 4.3894 4.3974

4 2.7013 9.3064 9.4718

5 2.7128 11.8772 12.3336
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