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Orthogonal invariants and the Bell polynomials

C. CASSISA – P.E. RICCI

Dedicated to the memory of Gaetano Fichera

Riassunto: Utilizzando delle formule di rappresentazione che fanno uso dei poli-
nomi di Bell, vengono trovate delle relazioni verificate dagli invarianti ortogonali degli
autovalori di operatori hermitiani compatti, che includono dei precedenti risultati di
Didier Robert.

Abstract: By using representation formulas based on the Bell polynomials we de-
rive some relations verified by the orthogonal invariants of the eigenvalues of hermitian
compact operators, including some preceding results of Didier Robert.

1 – Introduction

It is well known that the eigenvalues µk of a positive compact oper-

ator (shortly PCO) T in a complex Hilbert space H can be ordered in a

sequence

(1.1) 0 ≤ · · · ≤ µ3 ≤ µ2 ≤ µ1,

s.t. when infinite many eigenvalues exist, they have the zero as an accu-

mulation point.
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A classical example of eigenvalue problem for such an operator (which

is strictly positive) is given by

(1.2) Tφ = Kφ :=

Z

A

K(x, y)φ(y)dy = µφ(x),

where the kernel K(x, y) of the second kind Fredholm operator K belongs

to L2(A × A), and is such that K(x, y) = K(y, x), (Kφ,φ) > 0 if

φ 6= 0 ∈ L2(A) (see S.G. Mikhlin [2]).

The numerical computation of the eigenvalues of T is usually per-

formed by using the Rayleigh-Ritz method for obtaining lower bounds,

and the orthogonal invariants method (see G. Fichera [3], [4], [5]) for

upper bounds. A short description of such methods will be given in Sec-

tion 3. In a recent paper [6], an iterative method for computing the above

mentioned eigenvalues has been shown.

The orthogonal invariants are, by definition, symmetric functions of

the eigenvalues of T :

(1.3) In
s (T ) =

X

k1<k2<···<ks

[µk1
µk2

· · ·µks ]
n
,

so that it is natural to expect that (as in the algebraic case) connections

with I1
s (T ) or In

1 (T ) hold true.

As a matter of fact, such formulas can be found in the classical book

of J. Riordan [7], as an application of a standard tool of Combinatorial

Analysis: the Bell polynomials.

Some results in this direction have been previously given by D.

Robert [1].

In this article, by using the Bell polynomials, we will recover Robert’s

formulas for operators T := T n , and we will write explicit expressions

of the orthogonal invariant I1
s (T ) in terms of Ir

1(T ), r ≤ s. Similar

expressions of Is
1(T ) in terms of I1

m(T ), m ≤ s are also obtained. These

last formulas have not been considered in Robert’s article.

2 – Recalling the Bell polynomials

The Bell polynomials are a standard mathematical tool for represent-

ing the n-th derivative of a composite function (see e.g. [7]).
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Denoting by Φ(t) := f(g(t)) the composition of functions x = g(t)

and y = f(x), defined in suitable intervals of the real axis, and putting

Φm := Dm
t Φ(t), fh := Dh

xf(x)|x=g(t), gk := Dk
t g(t),

then the n-th derivative can be represented by

Φn = Yn(f1, g1; f2, g2; . . . ; fn, gn),

where the Yn are the Bell polynomials satisfying the recurrence relation:

(2.1)





Y0 := f1;

Yn+1(f1, g1; . . . ; fn, gn; fn+1, gn+1) =

=
nX

k=0

√
n

k

!
Yn−k(f2, g1; f3, g2; . . . ; fn−k+1, gn−k)gk+1.

A well known explicit expression for the Bell polynomials is given by

the Faà di Bruno formula:

Yn(f1, g1; f2, g2; . . . ; fn, gn) =
X

π(n)

n!

r1!r2! . . . rn!
fr

∑
g1

1!

∏r1
∑
g2

2!

∏r2

· · ·
∑
gn

n!

∏rn

,

where the sum runs over all partitions π(n) of the integer n, ri denotes

the number of parts of size i, and r = r1+r2+· · ·+rn denotes the number

of parts of the considered partition.

3 – The Rayleigh-Ritz and orthogonal invariants methods

Let {vk}k∈N be a complete system of linearly independent vectors

in a Hilbert space H, put V∫ := span{v1, v2, . . . , v∫}, denote by P∫ the

orthogonal projector, P∫ : H → V∫ , and consider a strictly positive

compact operator T : H → H and the corresponding eigenvalue problem

(3.1) Tφ = µφ.

We assume here the operator T to be strictly positive, in order to

avoid quotient spaces.
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Proposition 3.1 (Rayleigh-Ritz). Consider the positive eigenvalues

(3.2) µ
(∫)
1 ≥ µ

(∫)
2 ≥ · · · ≥ µ(∫)

∫ ,

of the operator P∫TP∫. Then

i) the positive eigenvalues of P∫TP∫ are obtained by solving the equation:

det{(Tvj, vh)− µ(vj, vh)} = 0, (j, h = 1, ..., ∫),

(µ = 0 is always an eigenvalue of P∫TP∫).

ii) For any fixed k and for any ∫ ≥ k the following inequality hold true

µ
(∫)
k ≤ µ

(∫+1)
k ≤ µk.

iii) Furthermore the limit condition is valid

lim
∫→1

µ
(∫)
k = µk.

i.e. the Rayleigh-Ritz method always gives lower bounds for the first ∫

eigenvalues of the operator T , and the condition iii) holds true.

The method of the orthogonal invariants have been introduced by G.

Fichera [5], in order to provide upper bounds for the same eigenvalues.

A complete orthogonal invariants system is a complete system of

numbers which is invariant under the unitary equivalence for operators.

Such a system must depend only on the eigenvalues of the operator.

Theoretically we could consider the system

In
s (T ) =

X

k1<k2<···<ks

[µk1
µk2

· · ·µks ]
n
,

for any fixed s (order of the invariant) and n = 1, 2, 3, ... (degree of the in-

variant), provided that all these numbers can be computed independently

of the knowledge of the eigenvalues of T .

Let

v1
(∫), v2

(∫), . . . , v∫
(∫),
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be normalized eigenvectors of P∫TP∫ corresponding to the eigenvalues

(3.2) and denote by

V(k)
∫ := span{v(∫)

1 , . . . v
(∫)
k−1, v

(∫)
k+1, . . . , v

(∫)
∫ }

and by P (k)
∫ the orthogonal projector P (k)

∫ : H → V(k)
∫ .

Proposition 3.2 (Fichera). If In
s (T ) < 1, for any fixed n, s ∈ N

and ∀k : k ≤ ∫, put

σ
(∫)
k :=

"
In

s (T )− In
s (P∫TP∫)

In
s−1(P

(k)
∫ TP

(k)
∫ )

+ [µ
(∫)
k ]n

# 1
n

.

Then:

σ
(∫)
k ≥ σ(∫+1)

k ≥ µk,

and the limit condition

lim
∫→1

σ
(∫)
k = µk

holds true.

In the particular case of an Hilbert space H = L2(A),

∀n, s ∈ N, In
s (T ) < 1 iff T nϕ =

Z

A

K(x, y)ϕ(y)dy,

where K(x, y) =

Z

A

H(x, z)H(z, y)dz, H(x, y) = H(y, x) ∈ L2(A×A).

Then the orthogonal invariants can be expressed (see [5]) by the

multiple integral

(3.3) In
s (T ) =

1

s!

Z

A

· · ·
Z

A

f(x1, . . . , xs)dx1 · · · dxs,

where f(x1, · · · , xs) denotes the Fredholm determinant

f(x1, x2, · · · , xs) :=

ØØØØØØØØ

K(x1, x1) K(x1, x2) . . . K(x1, xs)

K(x2, x1) K(x2, x2) . . . K(x2, xs)

. . . . . . . . . . . . . . . . . . . . .

K(xs, x1) K(xs, x2) . . . K(xs, xs)

ØØØØØØØØ
.
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In particular, for s = 1:

In
1 (T ) =

Z

A

K(x, x)dx =

Z Z

A×A

|H(x, y)|2 dxdy,

and, for s = 2:

In
2 (T ) =

1

2

Z Z

A×A

[K(x, x)K(y, y)− |K(x, y)|2] dx dy.

4 – Fredholm determinants and Robert’s formulas

In the cited book of S.G. Mikhlin [2], explicit and recurrent formulas

for the Fredholm determinants are recalled. Namely, putting ∏ := 1
µ
, the

Fredholm resolvent is given by the meromorphic function:

H(x, y;∏) =
D(x, y;∏)

D(∏)
.

In the above formula, by definition (1.3), and recalling (3.3)-(3.4), the

Fredholm first minor D(∏) is expressed by

(4.1) D(∏) =
1X

s=0

(−1)s In
s (T )∏s.

Moreover, the Fredholm determinant D(x, y;∏) is given by

(4.2) D(x, y;∏) =
1X

s=0

(−1)s

s!
Bs(x, y)∏s,

where

(4.3)





B0(x, y) = K(x, y)

Bs(x, y) = s! In
s (T )K(x, y)− s

Z

A

K(x, z)Bs−1(z, y)dz.

In the above cited article [1], D. Robert has found the following

formulas

(4.4) In
s (T ) =

1

s

sX

q=1

(−1)q−1Iqn
1 (T )In

s−q(T )
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(4.5) In
s (T ) = (−1)s

sX

k=1

(−1)k

k!

X

r1+···+rk=s
1≤ri≤s

Inr1
1 (T ) · · · Inrk

1 (T )

r1 · · · rk

,

which allow to reduce the orthogonal invariant In
s (T ) to In

1 (T ).

Since the eigenvalues of T n are given by µn
i , if µi are the eigenvalues of

T , in the following, denoting by n the smallest integer such that In
s (T ) <

1, we will put T := T n, so that I1
s (T ) = I1

s (T n) = In
s (T ), and the above

eq. (4.4)-(4.5) become:

I1
s (T ) =

1

s

sX

q=1

(−1)q−1Iq
1(T )I1

s−q(T )(4.6)

I1
s (T ) = (−1)s

sX

k=1

(−1)k

k!

X

r1+···+rk=s
1≤ri≤s

Ir1
1 (T ) · · · Irk

1 (T )

r1 · · · rk

.(4.7)

Remark 4.1. It is worth to note that there exist PCO not satisfying

the above mentioned condition which requires the existence of an integer

n such that In
s (T ) < 1 (see [5]), however this condition is satisfied by

all the PCO occurring in applications.

5 – Symmetric functions and the Bell polynomials

Consider the (real and nonnegative) eigenvalues µk of the PCO T ,

and put

(5.1)

σ1 =
X

i

µi

σ2 =
X

i1<i2

µi1µi2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

σk =
X

i1<i2<···<ik

µi1µi2 · · ·µik = I1
k
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(5.2)

s1 =
X

i

µi

s2 =
X

i

µ2
i

. . . . . . . . . . . . . . .

sk =
X

i

µk
i = Ik

1

Another class of symmetric functions is given by the so called ho-

mogeneous product sum symmetric functions hn, n = 1, 2, . . . , defined by

the equations (see eq. (4.1)):

(5.3)

(1−µ1∏)(1−µ2∏)(1−µ3∏) · · · = 1− σ1∏+ σ2∏
2 − σ3∏

3 + · · · =

= (1 + h1∏+ h2∏
2+ h3∏

3+. . . )−1 =

= D(∏).

Note that these functions represent the coefficients of the power ex-

pansion with respect to ∏ of the first Fredholm minor.

Then (see e.g. [7]), the following representation formulas in terms of

the Bell polynomials hold true:

σk =
(−1)k

k!
Yk

°
1,−s1; 1,−s2; 1,−2!s3; . . . ; 1,−(k − 1)!sk

¢
(5.4)

sk = − 1

(k−1)!
Yk

°
1,−σ1;−1, 2!σ2; . . . ; (−1)k−1(k−1)!, (−1)kk!σk

¢
(5.5)

hk =
1

k!
Yk

°
1, s1; 1, s2; 1, 2!s3; . . . ; 1, (k−1)!sk

¢
(5.6)

sk =
1

(k−1)!
Yk

°
1, h1;−1, 2!h2; 2!, 3!h3; . . . ; (−1)k−1(k−1)!, k!hk

¢
.(5.7)

The above formulas (5.4)-(5.5) constitute a generalization of the well

known Newton-Girard formulas and its inverse, since we have, in partic-

ular:

(5.8)

σ1 = s1

σ2 =
1

2
(s2

1 − s2)

σ3 =
1

6
(s3

1 − 3s1s2 + 2s3)

. . . . . . . . . . . . . . . . . . . . . . . .



[9] Orthogonal invariants and the Bell polynomials 301

(5.9)

s1 = σ1

s2 = σ2
1 − 2σ2

s3 = σ3
1 − 3σ1σ2 + 3σ3

. . . . . . . . . . . . . . . . . . . . .

6 – Orthogonal invariants’ reduction formulas

Writing formulas of the preceding section in terms of orthogonal in-

variants, we obtain:

(6.1)
I1

k(T ) =

= (−1)k

k!
Yk

°
1,−I1

1 (T );1,−I2
1 (T );1,−2!I3

1 (T ); . . . ; 1,−(k−1)!Ik
1 (T )

¢

(6.2)
Ik

1 (T ) =

=− 1
(k−1)!

Yk

°
1,−I1

1 (T );−1, 2!I1
2 (T );. . . ;(−1)k−1(k−1)!, (−1)kk!I1

k(T )
¢
.

6.1 – A simple proof of the first Robert formula

We start from the recurrence relation (2.1) written in the form:

(6.3)

Ys(f1, g1; . . . ; fs−1, gs−1; fs, gs) =

=
sX

q=1

√
s− 1

q − 1

!
Ys−q(f2, g1; f3, g2; . . . ; fs−q+1, gs−q)gq.

Then, by (6.1), it follows

I1
s (T ) = (−1)s

s!
Ys(1,−I1

1 (T ); 1,−I2
1 (T ); 1,−2!I3

1 (T ); . . . ; 1,−(s−1)!Is
1(T ))=

= (−1)s

s!

sX

q=1

√
s− 1

q − 1

!
Ys−q(1,−I1

1 (T ); 1,−I2
1 (T ); . . .

. . . ; 1,−(s− q − 1)!Is−q
1 (T ))(−(q − 1)!)Iq

1(T )),
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and consequenty:

(6.4)

I1
s (T ) =

(−1)s

s!

sX

q=1

√
s− 1

q − 1

!
(−1)s−q(s−q)!Is−q

1 (T )(−(q−1)!)Iq
1(T )=

=
1

s

sX

q=1

(−1)q−1Is−q
1 (T )Iq

1(T ),

which is the first Robert formula.

6.2 – Reduction formulas for the invariants

We first show a representation of I1
s (T ), s > 1 by means of Ik

1 (T ),

k = 1, 2, . . . , s.

By eq. (6.1), and the Faà di Bruno formula immediately follows:

Proposition 6.1. For any integer s ≥ 1, the orthogonal invariant

I1
s (T ), is espressed in terms of Ik

1 (T ), k = 1, 2, . . . , s by

(6.5) I1
s (T ) = (−1)s

X

π(s)

(−1)k

r1!r2! · · · rs!

∑I1
1 (T )

1

∏r1∑I2
1 (T )

2

∏r2

· · ·
∑Is

1(T )

s

∏rs

,

where π(s) denotes the sum running on all partitions of s = r1 + 2r2 +

· · · + srs and k = r1 + r2 + · · · + rs.

In particular:

(6.6)

I1
2 (T ) =

1

2
((I1

1 (T ))2 − I2
1 (T ))

I1
3 (T ) =

1

6
((I1

1 (T ))3 − 3I1
1 (T )I2

1 (T ) + 2I3
1 (T )).

Remark 6.2. The second Robert formula is essentially equivalent to

the Faà di Bruno formula. This could be proved verifying that for first

indices the two formulas give the same values, and taking into account

the recurrence relation (2.1), which is translated into the first Robert

formula, as we have shown in the preceding section.

In a similar way, by eq. (6.2) and the Faà di Bruno formula, Ik
1 (T ),

k > 1 can be represented by means of I1
s (T ), s = 1, 2, . . . , k:
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Proposition 6.3. For any integer k ≥ 1, the orthogonal invariant

Ik
1 (T ), is expressed in terms of I1

h(T ), h = 1, 2, . . . , k by

(6.7) Ik
1 (T ) =

X

π(k)

(−1)k+s k (s− 1)!

r1!r2! · · · rk!

°I1
1 (T )

¢r1°I1
2 (T )

¢r2 · · · °I1
k(T )

¢rk ,

where π(k) denotes the sum running on all partitions of k = r1 + 2r2 +

· · · + krk and s = r1 + r2 + · · · + rk.

In particular:

(6.8)
I2

1 (T ) = (I1
1 (T ))2 − 2I1

2 (T )

I3
1 (T ) = (I1

1 (T ))3 − 3I1
1 (T )I1

2 (T ) + 3I1
3 (T ).
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