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Riassunto: Si studiano gli operatori di aggregazione che sono ⊕-additivi sulle
funzioni comonotone. La operazione ⊕ é una qualunque pseudo-addizione. Il risul-
tato principale é un teorema generale di rappresentazione, che esprime gli operatori
usando una classe di misure fuzzy (funzioni monotone di insiemi). In particolare la
classe di misure fuzzy puó essere ottenuta a partire da una misura “discriminante” me-
diante una operazione di pseudo-moltiplicazione; in tal caso gli operatori sono espressi
esattamente da integrali monotoni generali (integrale di Choquet, integrale di Sugeno,
integrale fuzzy generale). Il teorema di rappresentazione fornisce un’ampia classe di
operatori di aggregazione e generalizza sensibilmente il ben noto teorema di caratteriz-
zazione dell’integrale di Choquet.

Abstract: We consider the aggregation operators which are comonotone-⊕-ad-
ditive, i.e., ⊕-additive for comonotone functions; ⊕ is any pseudo-addition. The main
result is a representation theorem which expresses any operator by means of a kind of
general fuzzy integral. This expression uses a family of fuzzy measures linked by a ⊕-
Cauchy equation. In particular, the family of fuzzy measures can be obtained from a
“discriminant” fuzzy measure by a pseudo-multiplication. In this case, the aggregation
operator is exactly expressed by a general fuzzy integral. The main result provides a
large class of aggregation operators and gives a wide generalization of the well known
characterization theorem of the Choquet’s integral.
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– Introduction

An aggregation operator is a procedure by which a unique value can

be associated to the results obtained through different tests or different

values of a data base. This unique value is a kind of mean value or average.

Many aggregation operators of different type have been considered in

connection with different situations [9], [13], [14]. In an axiomatic theory

of aggregation operators the results of the tests or the values in a data

base are described by a function f defined on the set ≠ of the tests or the

locations in the data base. The range of the function f is the set V of

the possible values as results. The properties which can be recognized for

the aggregation operator are suggested from the existence of any meaning

structure in V which the operator must preserve.

We propose in this paper an axiomatic definition for the aggregation

operators with arbitrarily many inputs (finite or infinite) when the set

V is an interval [0, F ] (0 < F ≤ +1). We request for the operators

the natural properties of idempotence, monotonicity and continuity from

below. Moreover, we assume that a structure of I-semigroup is defined

on the interval [0, F ] by means of a pseudo-addition ⊕ and we request

a property of weak (conditional) ⊕-additivity. The unconditioned ⊕-

additivity is too strong: it is not true, fort instance, for the Choquet

integral, which is the most known aggregation operator in the elementary

case, when the structure of I-semigroup is given by means of the common

addition. In order to obtain a wide class of operators we request only the

comonotone-⊕-additivity, i.e., the ⊕-additivity for function which are in

relation of comonotonicity [1], [5].

The aim of the paper is the characterization of the ⊕-comonotone

aggregation operators. First we note that to every operator of this kind a

family of fuzzy measures {µa, a ∈ [0, F ]} defined on ≠ is associated. The

element µa of the family is linked to the values of the operator for the basic

functions at level a. For this family we give the characteristic properties

and we prove that the aggregation operator is uniquely determined by

the associated family of fuzzy measures. In fact we construct explicitly

the operator, starting from the family of fuzzy measures and using the

comonotone ⊕-additivity and the monotonicity.

We obtain the representation theorem (main theorem) in any I-semi-

group, i.e., for any pseudo-addition. In the mathematical literature this
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result is never known in the particular and easier case of comonotone-

additive operators, i.e. when ⊕ is the ordinary addition in [0,+1]. The

representation theorem allows to study the further properties of the op-

erators by analysing the behavior of the operators on the subset of the

basic functions [4].

Finally, we consider a special form for the family {µa} assuming that

it is built from a given measure or fuzzy measure by means of a pseudo-

multiplication. We obtain the special aggregation operators defined by

a general fuzzy integral [1], [2]. This is a wide generalization of the

aggregation operators defined by means of the Choquet integral or the

Sugeno integral [9].

1 – Preliminary

Let ≠ be an abstract space, A a σ-algebra of subsets of ≠ and F the

family of all A-measurable functions f : ≠ → [0, F ], with 0 < F ≤ +1.

A chain Mf ⊃ A is associated to any f ∈ F : it is constituted by the sets

Cf(x) =: {ω ∈ ≠ | f(ω) > x} x ∈ [0, F ] .

We suppose that the interval [0, F ] has a structure of I-semigroup

defined by means of a pseudo-addition ⊕. The binary operation ⊕ :

[ 0, F ]2 → [ 0, F ] is called pseudo-addition if it is commutative, associa-

tive, monotone non decreasing, continuous, and if 0 is its neutral element.

The structure of the pseudo-additions is known; see [10] or [1], [8]

for the general form of the operation ⊕. We shall use, as well, a pseudo-

difference [12] defined for a ≤ b by

(1) b™ a = inf{x ∈ [0, F ] | a⊕ x = b} .

For any a ∈ [0, F ] and A ∈ A, a basic function b(a,A) is defined by:

b(a,A)(ω) =

(
a if ω ∈ A

0 if ω /∈ A.

A function s : ≠ → [0, F ] is called simple function if its range is

finite. The simple functions have several representations by means of
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basic functions; the well-known classical-standard representation is:

(2) s =
n_

i=1

b(ai, Ai)

with 0 < a1 < a2 < . . . < an and Ai = {ω ∈ ≠ | s(ω) = ai}.
Moreover, any simple function admits many ⊕-step representations:

(3) s =
mM

i=1

b(ci, Ci)

with C1 ⊇ C2 ⊇ . . . ⊇ Cm. The standard ⊕-step representation [1] is

obtained from (2) with m = n assuming:

c1 =a1 , c2 =a2™a1, . . . , cn =an™an−1 , Ci =
n[

j=i

Aj ={ω∈≠ | s(ω)≥ai}.

The standard ⊕-step representation is minimal for the number of steps

and for the height of the single steps.

The family F of the A-measurable functions is generated by the set

B of the basic functions. Let S be the set of all simple functions, we put:

Sf =: {s ∈ S | s≤ f}. For every f ∈F it is: f(ω) = sup{s(ω) | s ∈ Sf}
because every f ∈ F is the limit of a increasing sequence of simple func-

tions ([7] Ch. IV).

It is useful to recall the definition of comonotonicity for functions in

F (see [5]). Any function f : ≠ → [0, F ] introduces on ≠ a semi-order

relation:

ω1 <f ω2 ⇐⇒ f(ω1) < f(ω2) .

The functions f and g are called comonotone (f ∼ g) if the two corre-

sponding semi-orders are not contradictory, i.e., there exists no pair ω1,

ω2 in ≠ such that ω1 <f ω2 and ω2 <g ω1. An equivalent definition

of comonotonicity is expressed by means of the chains associated to the

functions:

(4) f ∼ g ⇐⇒ Mf ∪Mg = Mf+g.
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Later we denote fuzzy measure any non decreasing set function µ : A →
IR+ with µ(∅) = 0 (see [1], [5], [11]).

2 – Aggregation Operators

In this section we present an axiomatic approach of the aggregation

operators which are ⊕-comonotone-additive, i.e., ⊕-additive for comono-

tone functions.

Definition 2.1. A ⊕-comonotone aggregation operator is a func-

tional L : F → [0, F ] satisfying the following properties:

(L1) f(ω) = c ∀ω ∈ ≠ =⇒ L(f) = c (idempotence)

(L2) f(ω) ≤ f 0(ω) ∀ω ∈ ≠ =⇒ L(f) ≤ L(f 0) (monotonicity)

(L3) fk(ω) % f(ω) ∀ω ∈ ≠ =⇒ L(fk) % L(f) (continuity from below)

(L4) f1 ∼ f2 =⇒ L(f1 ⊕ f2) = L(f1)⊕L(f2) (comonotone ⊕-additivity).

The properties (L1-3) seem us to be natural for all aggregation op-

erators ([6], [9], [13], [14]): we want that they model a kind of monotone

and continuous averaging operation. The comonotone ⊕-additivity (L4)

fits the operators to the structure of the semigroup acting on the range

of values that shall be aggregated.

For these operators we shall recognize that they are completely de-

termined by their values on the set B of basic functions.

Proposition 2.2. Given a ⊕-comonotone aggregation operator L

– for any a ∈]0, F ] the map µa : A → [0, F ] defined by

(5) µa(A) =: L[b(a,A)]

is a fuzzy measure continuous from below;

– the family {µa|a ∈]0, F ]} satisfies the following properties:

(F1) µa(≠) = a ∀ a ∈]0, F ]

(F2) a < a0 =⇒ µa ≤ µa0

(F3) a % a0 =⇒ µa % µa0

(F4) µa⊕a0 = µa ⊕ µa0 ∀ a, a0 ∈]0, F ].
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The properties above are the restriction on B of the properties (L1-4).

The last one assigns a link between the measures of every fixed ele-

ment A ∈ A. It is expressed by a Cauchy equation on the I-semigroup

([0, F ],⊕), (see [3]).

Proposition 2.2 characterizes the families of fuzzy measures which

correspond to the comonotone-⊕-additive aggregation operators. This is

shown by the following representation theorem.

Main Theorem. Let {µa|a ∈]0, F ]} be a family of fuzzy measures

continuous from below. If it satisfies (F1-4) there exists a unique ⊕-

comonotone aggregation operator Lµ engendered from it by means of (5);

i.e., for which it is:

(6) Lµ[b(a,A)] = µa(A) ∀a ∈]0, F ], ∀A ∈ A.

The proof of this theorem is given in the next section. It consists in

the construction of the operator Lµ : F → [0, F ] in a quite natural way

which is univocally imposed by (L3) and (L4). The check, however, of

correctness of the construction and the verification of properties (L1-4)

are really non trivial and laborious because we assume no restriction on

the general form of the pseudo-addition ⊕.

3 – Proof of the Main Theorem: Construction of the comono-

tone aggregation operator from a given family of fuzzy mea-

sures

In this section we assume that a family {µa|a ∈]0, F ]} of fuzzy mea-

sures continuous from below and satisfying (F1-4) is given. We construct

explicitly the associated ⊕-comonotone aggregation operator. First we

give the form of the operator on the family S of the simple functions.

Later the functional is extended on the family F of all measurable func-

tions. Finally we prove that the so defined operator is a comonotone-⊕-

additive operator (properties L1-4) and it is the only one which, satisfying

(6), corresponds to the given family of fuzzy measures.

For every simple function s ∈ S we consider any ⊕-step representa-

tion (3). We observe that the ⊕-step representation is built adding at
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various time comonotone functions. So, if the functional L : F → [0, F ]

satisfies (L4) and (6), then its value L(s) is necessarily given by

(7) L(s) =
mM

i=1

L[b(ci, Ci)] =
mM

i=1

µci
(Ci).

Lemma 3.1. The expression (7) has the same value for all ⊕-

step representations of the same simple function; therefore it defines a

functional L : S → [0, F ].

Proof. 1 - First we consider the possible presence in (3) of an

inessential step. If c1 ⊕ c2 ⊕ . . . ⊕ cj−1 = ai and ai ⊕ cj = ai, the step

b(cj, Cj) is inessential in the representation (3). We prove that the cor-

responding addendum µcj
(Cj) in (7) is also negligible. Let

Sj = µc1(C1)⊕ µc2(C2)⊕ . . .⊕ µcj−1
(Cj−1),

from (F2) and (F3) we obtain:

Sj ≥ µc1(Cj−1)⊕ µc2(Cj−1)⊕ · · ·⊕ µcj−1
(Cj−1) = µai

(Cj−1) .

From the continuity of the operation ⊕ there exists w ∈ [0, Sj] such that

Sj = w ⊕ µai
(Cj−1). Again from (F2) and (F3) it holds:

Sj ≤ Sj+1 = Sj ⊕ µcj
(Cj) ≤ Sj ⊕ µcj

(Cj−1) = w ⊕ µai⊕cj
(Cj−1) =

= w ⊕ µai
(Cj−1) = Sj .

2 - We consider now the presence in (3) of a step subdivided in two

steps. Let Cj+1 = Cj, from (F3) it is: µcj
(Cj)⊕µcj+1

(Cj) = µcj⊕cj+1
(Cj).

The two basic functions b(cj, Cj) and b(cj+1, Cj) can be replaced by the

unique one b(cj ⊕ cj+1, Cj) without modifying the result of the expres-

sion (7).

3 - By elimination of all negligible steps and all subdivisions of

a single step in two or many steps, without changing the value of the

expression (7), we obtain from any ⊕-step representation (3) a quasi-

standard one, i.e., with m = n and Ci = ∪n
j=iAj.
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4 - We consider finally the possible presence in the quasi-standard

⊕-step representation of a non minimal step. Let ai = ai−1⊕ci (1 < i ≤ n)

and ci > ai ™ ai−1 then there exists di so that ci = (ai ™ ai−1) ⊕ di and

b(ci, Ci) = b(ai ™ ai−1, Ci) ⊕ b(di, Ci). The presence in a quasi-standard

⊕-representation of the non minimal step b(ci, Ci) is equivalent to the

presence of the inessential step b(di, Ci). This one can be eliminated

and the non minimal step b(ci, Ci) can be replaced by the minimal step

b(ai ™ ai−1, Ci).

So we recognize that any ⊕-step representation of a given simple

function s can be modified until to reach the standard ⊕-step represen-

tation without changing the value of the corresponding expression (7).

Therefore, for any ⊕-step representation of s the value of the expression

(7) is equal to that corresponding to the standard one.

Lemma 3.2. The functional L : S → [0, F ], defined by (7) is

monotone.

Proof. We consider the representations of two simple function s and

s0 by means of a common partition {A1, A2, . . . , An}

s =
n_

i=1

b(ai, Ai) , s0 =
n_

i=1

b(a0
i, Ai)

with a1 ≤ a2 ≤ . . . ≤ an and a0
1 ≤ a0

2 ≤ . . . ≤ a0
n. The relation s ≤ s0

involves ai ≤ a0
i for all i. For evaluating the functional L on s and s0 we

consider the ⊕-step representations:

(8) s =
nM

i=1

b(ci, Ci) , s0 =
nM

i=1

b(c0i, Ci) ,

with Ci =
n[

j=i

Aj and

(
c1 = a1, c2 = a2 ™ a1, . . . , cn = an ™ an−1,

c01 = a0
1, c02 = a0

2 ™ a0
1, . . . , c0n = a0

n ™ a0
n−1 .

It is sufficient to prove that

(9) L(s) =
nM

i=1

µci
(Ci) ≤ L(s0) =

nM

i=1

µc0
i
(Ci)

if ak < a0
k and ai = a0

i for i 6= k.
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Let k = 1, i.e., a0
1 = c01 > a1 = c1 and a0

i = ai for i > 1; putting

a0
1™ a1 = d, it is a2 = a0

2 = a0
1⊕ c02 = a1⊕ d⊕ c02 and from (1) we deduce

c2 = a2™a1 ≤ d⊕ c02. The two sides of (9) have the same addenda except

µc1(C1)⊕µc2(C2) in the left side and µc0
1
(C1)⊕µc0

2
(C2) in the right one;

for these terms we have:

µc1(C1)⊕ µc2(C2) ≤µc1(C1)⊕ µd⊕c0
2
(C2)=µc1(C1)⊕ µd(C2)⊕ µc0

2
(C2)≤

≤ µc1(C1)⊕ µd(C1)⊕ µc0
2
(C2) = µc0

1
(C1)⊕ µc0

2
(C2) .

We obtain the inequality (9) from the associativity and monotonicity

of the operation ⊕.

Let 1 < k < n, i.e., a0
k > ak and a0

i = ai for i 6= k ; it is as well

c0k > ck and putting c0k ™ ck = d, it is a0
k = ak ⊕ d, too. Similarly to the

previous case we obtain ak+1 = a0
k+1 = a0

k ⊕ c0k+1 = ak ⊕ d ⊕ c0k+1; we

deduce ck+1 = ak+1™ak ≤ d⊕ c0k+1 and the inequality (9) holds likewise.

Finally, let k = n, i.e., a0
i = ai for i < n and a0

n > an. The two

sides of (9) have the same addenda except µcn(Cn) in the left side and

µc0n(Cn) ≥ µcn(Cn) in the right one. The inequality (9) is immediate.

Lemma 3.3. The functional L defined in S by (7) is comonotone-

⊕-additive.

Proof. Let s1, s2 be two simple functions. If s1∼s2 the correspond-

ing chains Ms1
and Ms2

belong to the chain Ms1+s2
=:{≠,C1,C2, ...,Cm,∅}

and the functions s1, s2, s1 ⊕ s2, admit the following ⊕-step representa-

tions:

s1 =
mM

i=1

b(ci, Ci) , s2 =
mM

i=1

b(c0i, Ci) , s1 ⊕ s2 =
mM

i=1

b(ci ⊕ c0i, Ci) .

By (F3) and associativity of ⊕ we obtain from (7): L(s1 ⊕ s2) = L(s1)⊕
L(s2).

The Lemmas 3.1 and 3.2 suggest to assume the following definition

for the functional Lµ. This definition is the only one which is in agree-

ment with the properties (L3) and (L4) which are requested for the func-

tional Lµ.
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Definition 3.4. The functional Lµ : F → [0, F ] is defined by:

(10) Lµ(f) = sup{L(s) | s ∈ Sf} = sup
© mM

i=1

µci
(Ci) |

mM

i=1

b(ci, Ci) ≤ f
™
.

Lemma 3.5. The functional Lµ : F → [0, F ] defined by (10) is

non decreasing, continuous from below and it is the extension to F of the

functional L defined on S by means of (7):

(11) Lµ(s) = L(s) ∀s ∈ S.

Proof. The monotonicity of the functional Lµ is evident from the

definition itself; the equality (11) is consequence of the Lemma 3.2.

We must give only the proof of the continuity. Let {fk} be an in-

creasing sequence of functions in F which converges pointwise to a simple

function s:

fk % s =
n_

i=1

b(ai, Ai) =
nM

i=1

b(ci, Ci) .

Let c01, . . . , c0n be real numbers such that:

c0i < ci and ai−1 <
iM

j=1

c0j = a0
i < ai ∀i .

Taking Ck
i = {ω ∈ ≠ | fk(ω) > a0

i}, it is Ck
i ⊆ Ci. It is furthermore

Ck
i % Ci, because fk(ω) % f(ω) ∀ω ∈ ≠. Therefore, we have:

Lµ(fk) ≥
nM

i=1

µc0
i
(Ck

i ) and lim
k→+1

Lµ(fk) ≥
nM

i=1

µc0
i
(Ci).

From the arbitrariness of c0i, we obtain Lµ(fk) % L(s) = Lµ(s).

Now we assume fk % f , with f ∈ F . Let s ∈ Sf , it is fk ∧ s % s and

therefore

lim
k→+1

Lµ(fk) ≥ lim
k→+1

Lµ(fk ∧ s) = L(s) .

As s is arbitrary in Sf , we obtain the thesis: Lµ(fk) % Lµ(f) .



[11] Comonotone aggregation operators 333

Lemma 3.6. The functional Lµ is comonotone ⊕-additive.

Proof. Given two functions f and f 0 in F , we consider the two

families of simple functions:

S∗
f =
©
s=

nM

i=1

b(ci, Ci) | n∈IN, ci∈]0, F ], Ci ={ω ∈ ≠|f(ω) ≥ ci}
™⊂ Sf ,

S∗
f 0 =

©
s0=

nM

i=1

b(c0i, C
0
i) | n∈IN, c0i∈]0, F ], C 0

i ={ω ∈ ≠|f 0(ω) ≥c0i}
™⊂ Sf 0 .

It is: f = sup{s | s ∈ S∗
f }, f 0 = sup{s | s ∈ S∗

f 0}. Moreover, if f ∼ f 0,

the sets Ci = {ω ∈ ≠ | f(ω) ≥ c} and Ci = {ω ∈ ≠ | f 0(ω) ≥ c} belong

to the chain Mf+f 0 for all c ∈ [0, F ]. Therefore any function s ∈ S∗
f is

comonotone with every function s0 ∈ S∗
f 0 .

Given, now, two sequences sk ∈ S∗
f and s0k ∈ S∗

f 0 , with sk % f and

s0k % f 0, we have sk ⊕ s0k % f ⊕ f 0 and from Lemma 3.3 we obtain

L(sk⊕s0k) = L(sk)⊕L(s0k). From continuity from below of the functional

Lµ and from the continuity of the operation ⊕ , it is : Lµ(f ⊕ f 0) =

Lµ(f)⊕ Lµ(f 0) .

The Lemmas 3.5 and 3.6 show that the functional Lµ, defined by

(10), verifies the properties (L1), (L3) and (L4). The equality (11) gives

in particular (6) and from (F1) we obtain (L1), too.

Moreover the construction which leads to the definitions (7) and (10)

is the only possible in agreement with (6) and (L1-4), so the functional

Lµ is the unique ⊕-comonotone aggregation operator satisfying (6). This

observation ends the proof of the Main Theorem.

4 – Aggregation Operators as General Integrals

A significative example of family {µa|a ∈]0, F ]} can be build, by

means of a ⊕-fitting pseudo-multiplication [1], from a given measure or,

as well, a given fuzzy measure m : A → [0,M ] , (0 < M ≤ +1).

Definition 4.1. A binary operation ⊙: [0, F ] × [0,M ] → [0, F ]

is called a ⊕-fitting pseudo-multiplication if the following properties are
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satisfied:

(M1) a⊙ 0 = 0⊙m = 0 (zero element)

(M2) a ≤ a0, m ≤ m0 =⇒ a⊙m ≤ a0 ⊙m0 (monotonicity)

(M3) (sup ak)⊙ (supmh) = sup(ak ⊙mh) (left continuity)

(M4) (a⊕ b)⊙m = (a⊙m)⊕ (b⊙m) (left distributivity).

Let m : A → [0,M ] (0 < M ≤ +1) be a fuzzy measure continuous

from below, we define a family of fuzzy measures setting:

(12) µa(A) = a⊙m(A).

Proposition 4.2. If m(≠) is right unitary element for the pseudo-

multiplication ⊙, the family (12) of fuzzy measures satisfies the properties

(F1-4). The corresponding aggregation operator is exactly the general

integral (see [1], and [2]):

(13) Lµ(f) =

Z ⊕
f ⊙ dm .

Proof. From (M1-3) and from the continuity from below of m we

obtain directly that every µa defined by means of (12) is a fuzzy measure

continuous from below. From (M1) we obtain (F2) too; the property (F3)

is equivalent to (M4) and, if m(≠) is right unitary element, (F1) is true.

Moreover if the family {µa|a ∈]0, F ]} is given by (12), the definitions

(7) and (10) repeat the construction of the general integral given in [2]

and [1].

The possibility of building the family of fuzzy measures from a given

fuzzy measure using a pseudo-multiplication happens since the given

fuzzy measure m is discriminant for the family {µa}, according to the

following definition.

Definition 4.3. The fuzzy measure m is discriminant for the family

{µa|a ∈]0, F ]} if

m(A) = m(A0) =⇒ µa(A) = µa(A
0) ∀ a ∈ ]0, F ].
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Proposition 4.4. Let m : A → [0,M ] be a fuzzy measure with

Ranm = [0,M ]. If m is discriminant for the family {µa|a ∈]0, F ]} ,

then there exists a ⊕-fitting pseudo-multiplication ⊙ so that

µa(A) = a⊙m(A) , Lµ(f) =

Z ⊕
f ⊙ dm .

Proof. From Definition 4.3 we obtain that the set {µa(A) |A ∈
A, m(A) = x} is a singleton in [0, F ] for all a ∈]0, F ] and x ∈ [0,M ]. So

a function ϕ :]0, F ]× [0,M ] → [0, F ] is defined putting:

{ϕ(a,m)} =: {µa(A) |A ∈ A, m(A) = x}.

We recognize that µa(A) depends really from A only by means of m(A):

µa(A) = ϕ[a,m(A)].

The pseudo-multiplication ⊙ is defined by putting for x ∈ [0,M ]

0⊙ x = 0 , and a⊙ x = ϕ[a, x] ∀ a ∈]0, F ] .

This operation verifies the conditions (F1-4) and M = m(≠) is right

unitary element for it.

Remark. If the discriminant measure m belongs to the family {µa},
i.e., m = µu u ∈]0, F ], then M = u is as well a left unitary element for

⊙.
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