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Universal relations for elastic materials

R.S. RIVLIN

In affectionate memory of Gaetano Fichera, admired colleague and friend

Riassunto: Si ricavano alcune relazioni universali per le deformazioni finite ar-
bitrarie dei materiali elastici isotropi e trasversalmente isotropi. Esse sono adattate
a certi casi particolari nei quali la deformazione è composta da due deformazioni di
taglio, cui si sovrappone una dilatazione pura omogenea, quando la direzione del taglio
non è necessariamente sovrapposta ad una delle direzioni principali della dilatazione.

Abstract: Universal relations are derived for arbitrary finite deformations of
isotropic and transversely isotropic elastic materials. These are specialized to certain
particular cases in which the deformation consists of a simple shear superposed on a
pure homogeneous deformation, when the direction of shear does not necessarily lie in
a principal direction of the pure homogeneous deformation.

1 – Introduction

In this paper a universal relation means a relation between the stress

and deformation for a class of materials that is valid for all materials in

the class and does not involve the values of the material parameters which

vary from material to material within the class. We shall be concerned

with isotropic and transversely isotropic elastic materials.

For an isotropic elastic material subjected to infinitesimal deforma-

tions, universal relations are obtained trivially from the constitutive equa-
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– Transversely isotropic material.
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tion by eliminating the Lamé constants from at most three of the expres-

sions for the six components of stress, as is seen in Section 2.

In 1948, Rivlin [1] presented a simple universal relation for finite sim-

ple shear of isotropic elastic materials (see eq. (4.11) below). Since then

a number of workers have addressed the problem of determining further

universal relations for finite deformations of isotropic elastic materials.

Hayes and Knops [2] gave a procedure for obtaining such universal rela-

tions and concluded that at most three of them can be independent. They

derived the relation (4.11) as a special case. Wineman and Gandhi [3]

obtained a universal relation for simple shear superposed on an arbitrary

pure homogeneous deformation when the direction of shear is a principal

direction and the plane of shear is a principal plane of the pure homoge-

neous deformation (see eq. (4.9) below). The relation (4.11) again arises

as a special case.

In the present paper we obtain universal relations for arbitrary fi-

nite deformations of isotropic and transversely isotropic elastic materials.

Beatty [4] obtained such relations in the isotropic case using a different

procedure from that adopted here. The relation of the present work to his

is discussed in Section 11. Pucci and Saccomandi [5] have presented

a more general procedure for obtaining universal relations than that em-

ployed by previous workers. The approach adopted in the present paper,

although differently presented, is not essentially different from theirs. Our

universal relations are obtained by eliminating the material parameters

from the six equations expressing the stress components in terms of the

strain. In the case when the material is isotropic this requires at most

four of the six equations and the choice of these can be made in many

ways leading to a correspondingly large number of universal relations. It

is seen, in agreement with the conclusion of Hayes and Knops, that at

most three of the universal relations so obtained are independent.

In Sections 4, 5 and 6 the general universal relations are specialized

to three types of deformation of an isotropic elastic material. These

consist of a simple shear superposed on an arbitrary pure homogeneous

deformation, but differ in direction of shear or plane of shear.

If the material considered is transversely isotropic the expressions

in the constitutive equation for all six of the stress components must,

in general, be used to eliminate the material parameters, leading to a

single relation (see eqs. (7.5) and (7.6) below). In Sections 8, 9 and 10 of
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the present paper this universal relation is specialized for the same three

types of deformation as were discussed for an isotropic material. The

pure homogeneous deformation has one of its principal directions parallel

to the axis of rotational symmetry of the material.

2 – Universal relations for infinitesimal deformations

In classical elasticity theory, the constitutive equation for an isotropic

material, referred to a rectangular cartesian coordinate system x, is

(2.1) σ = 2µe + ∏(tr e)δ ,

where σ = kσijk is the stress matrix, e = keijk is the (infinitesimal) strain

matrix and δ is the unit matrix. e is defined by

(2.2) eij =
1

2

≥@ui

@xj

+
@uj

@xi

¥
,

where u = (ui) is the displacement vector for a particle in vector position

x = (xi). µ and ∏, the Lamé constants, are material constants for the

elastic material.

Equation (2.1) may be regarded as six simultaneous linear equations

in µ and ∏. We may solve two of these for µ and ∏ and then, by substi-

tution in the remaining four equations, obtain four independent relations

between σ and e which are independent of µ and ∏ and hence of the

particular isotropic elastic material considered. These relations are

(2.3)
σ11 − σ22

e11 − e22

=
σ22 − σ33

e22 − e33

=
σ23

e23

=
σ31

e31

=
σ12

e12

.

These are the universal relations for classical elasticity theory.

3 – Finite elasticity theory - isotropic materials

We consider an isotropic elastic material, which undergoes finite elas-

tic deformations in which a particle initially in vector position X = (XA),
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referred to a rectangular cartesian reference system x, moves to vector

position x=(xi). The deformation gradient matrix g=kgijk is defined by

(3.1) g = @x/@X = k@xi/@XAk .

The Cauchy strain matrix C = kCABk and Finger strain matrix c = kcijk
are defined by

(3.2) C = g†g, c = gg† .

Let W be the strain-energy function for the material. For an isotropic

material W is a function of the three strain invariants I1, I2, I3 defined by

(3.3)

I1 = trC = tr c ,

I2 =
1

2
[(trC)2 − trC2] =

1

2
[(tr c)2 − tr c2] ,

I3 = detC = det c .

The Cauchy stress matrix σ = kσijk, referred to the system x, is

given by

(3.4) σ = α1c + α2∞ + α3δ ,

where

(3.5) α1 = 2I
−1/2
3 (W1 + I1W2), α2 = −2I

−1/2
3 W2, α3 = 2I

1/2
3 W3 .

δ denotes the unit matrix, ∞ denotes c2 and W1, W2, W3 denote @W/@I1,

@W/@I2, @W/@I3 respectively.

We introduce the notation

(3.6) c∫(∫ = 1, . . . , 6) = c11, c22, c33, c23, c31, c12 ,

with analogous meanings for ∞∫ , δ∫ and σ∫ . We also introduce the notation

(3.7) L∫ = α1c∫ + α2∞∫ + α3δ∫ .

With this notation we may rewrite (3.4) as

(3.8) L∫ = σ∫ (∫ = 1, . . . , 6) .
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We may regard (3.8) as six simultaneous linear equations in the unknowns

α1, α2, α3.

We suppose that the deformation is such that the six expressions L∫
(∫ = 1, . . . , 6) are independent. Then, we may use any four of eqs. (3.8) to

eliminate α1, α2, α3 and obtain a universal relation. We may also obtain

a universal relation by eliminating α1 and α2 from the three equations

L∫ = σ∫ (∫ = 4, 5, 6).

Equivalently, we may eliminate α3 from eqs. (3.7) to obtain the five

equations

(3.9) L1 −L3 = σ1 − σ3, L2 −L3 = σ2 − σ3, L∫ = σ∫ (∫ = 4, 5, 6) .

Then, we may use any three of these equations to eliminate α1 and α2

and obtain a universal relation. In particular, by choosing the first two

of eqs. (3.9) together with one of the remaining relations, we obtain the

three universal relations

(3.10)

ØØØØØØ

σ1 − σ3 σ2 − σ3 σ∫
c1 − c3 c2 − c3 c∫
∞1 − ∞3 ∞2 − ∞3 ∞∫

ØØØØØØ
= 0 (∫ = 4, 5, 6) .

These are evidently independent.

With ∞ = c2 and the notation

(3.11) A = (c2−c3)(c2c3−c2
4)+(c3−c1)(c3c1−c2

5)+(c1−c2)(c1c2−c2
6) ,

we obtain, from (3.10), the three independent universal relations

(3.12)
(σ1− σ3)[c5c6(c2− c3) + c4(c

2
5− c2

6)]+

− (σ2−σ3)[c4(c1−c2)(c3−c1) + c5c6(c1−c3) + c4(c
2
4−c2

6)] = σ4A,

(3.13)
(σ1 − σ3)[c5(c1 − c2)(c2 − c3) + c4c6(c2 − c3) + c5(c

2
5 − c2

6)]+

− (σ2 − σ3)[c4c6(c1 − c3) + c5(c
2
4 − c2

6)] = σ5A ,

(3.14)
(σ1− σ3)[c6(c1 − c3)(c2 − c3) + c4c5(c2 − c3) + c6(c

2
5 − c2

6)]+

− (σ2−σ3)[c6(c1−c3)(c2−c3) + c4c5(c1−c3) + c6(c
2
4−c2

6)]=σ6A.
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It is easily seen that any universal relation, obtained by some other

choice of three equations from (3.9), can be derived from the three rela-

tions (3.10). For each choice of ∫ = 4, 5, 6 the relation (3.10) expresses

the condition that the straight line in the α1α2-plane, whose equation is

(3.15) c∫α1 + ∞∫α2 = σ∫ ,

passes through the intersection of the two straight lines whose equations

are

(3.16)
(c1 − c3)α1 + (∞1 − ∞3)α2 = σ1 − σ3 ,

(c2 − c3)α1 + (∞2 − ∞3)α2 = σ2 − σ3 .

Thus, all five of the straight lines (3.15) and (3.16) have a common in-

tersection and therefore from any three of them a universal relation anal-

ogous to (3.10) can be obtained. For example, from the fact that the

three straight lines (3.15) with ∫ = 4, 5, 6 have a common intersection,

we obtain the universal relation

(3.17)

ØØØØØØ

σ4 σ5 σ6

c4 c5 c6

∞4 ∞5 ∞6

ØØØØØØ
= 0 .

It follows from (3.16) that

(3.18) (c1 − c2)α1 + (∞1 − ∞2)α2 = σ1 − σ2 .

Accordingly this straight line also passes through the common intersec-

tion of (3.15) and (3.16). Thus, a universal relation can be obtained by

eliminating α1 and α2 from any three of the six linear equations (3.15),

(3.16) and (3.18).

In Sections 4, 5 and 6, three special cases of the relations (3.12)-(3.14)

are presented. In each case the deformation consists of a simple shear

superposed on a pure homogeneous deformation with principal extension

ratios ∏1, ∏2, ∏3.
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4 – Isotropic material - special case I

We choose the axes of the rectangular cartesian reference system x

to be parallel to the principal directions of the pure homogeneous defor-

mation. We superpose on the pure homogeneous deformation a simple

shear of amount K/∏3; the direction of shear lies in the 12-plane and the

plane of shear is parallel to the 3-axis. The deformation is described by

(4.1) x1 = ∏1X1 + K1X3, x2 = ∏2X2 + K2X3, x3 = ∏3X3 ,

where

(4.2) K1 = K cos θ, K2 = K sin θ

and θ is the angle between the direction of shear and the 1-direction.

Then, from (3.2),

c1 = ∏2
1 + K2

1 , c2 = ∏2
2 + K2

2 , c3 = ∏2
3 ,

(4.3)

c4 = K2∏3, c5 = K1∏3, c6 = K1K2 .

By substituting from (4.3) in (3.12)-(3.14), we obtain

K2∏3{(σ1 − σ3)K
2
1∏

2
2 − (σ2 − σ3)[(∏

2
2 − ∏2

1)(∏
2
1 − ∏2

3)+

+ ∏2
1(K

2
2 −K2

1) + K2
1∏

2
2]} = σ4A ,

(4.4)

K1∏3{(σ1 − σ3)[(∏
2
1 − ∏2

2)(∏
2
2 − ∏2

3) + ∏2
2(K

2
1 −K2

2) + K2
2∏

2
1]+

− (σ2 − σ3)K
2
2∏

2
1} = σ5A ,

(4.5)

K1K2{(σ1 − σ3)[∏
2
1(∏

2
2 − ∏2

3) + ∏2
1K

2
2 + ∏2

2K
2
1 ]+

− (σ2 − σ3)[∏
2
2(∏

2
1 − ∏2

3) + ∏2
1K

2
2 + ∏2

2K
2
1 ]} = σ6A .

(4.6)

where A, defined in (3.11), is given by

(4.7)

A = −(∏2
2 − ∏2

3)(∏
2
3 − ∏2

1)(∏
2
1 − ∏2

2)+

+ K2
1∏

2
2(2∏

2
1 − ∏2

2)−K2
2∏

2
1(2∏

2
2 − ∏2

1)+

− ∏2
3(∏

2
1K

2
1 − ∏2

2K
2
2) + (K2

1 −K2
2)(∏2

1K
2
2 + ∏2

2K
2
1) .
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If θ = 0, so that K2 = 0 and K1 = K, the relation (4.5) becomes

(4.8) {(σ1−σ3)K∏3−σ5(∏
2
1−∏2

3+K2)}{(∏2
2−∏2

3)(∏
2
1−∏2

2)+K2∏2
2} = 0 ,

whence

(4.9) (σ1 − σ3)K∏3 = σ5(∏
2
1 − ∏2

3 + K2) ,

or

(4.10) (∏2
2 − ∏2

3)(∏
2
1 − ∏2

2) + K2∏2
2 = 0 .

Since σ1, σ3 and σ5 depend continuously on ∏1, ∏2, ∏3 and K, the rela-

tion (4.9) must be valid even if (4.10) is satisfied.

The universal relation (4.9) was previously obtained by Wineman

and Gandhi [3]. If ∏1 = ∏2 = ∏3 = 1, we obtain Rivlin’s [1] universal

relation

(4.11) σ1 − σ3 = Kσ5 ,

If θ = 0, the relations (4.4) and (4.6) become

(4.12) σ4A = 0, σ6A = 0 ,

where

(4.13) A = −(∏2
2−∏2

3)(∏
2
3−∏2

1)(∏
2
1−∏2

2)+K2∏2
2(2∏

2
1−∏2

2)−∏2
1∏

2
3K

2+∏2
2K

4.

It follows that σ4 = σ6 = 0. This also follows trivially from the constitu-

tive equation for σ and the fact that if θ = 0, then c4 = c6 = ∞4 = ∞6 = 0.

With (4.3), the universal relation (3.17) yields

(4.14) ∏2
1K2σ5 − ∏2

2K1σ4 = (∏2
1 − ∏2

2)∏3σ6 .

This result could also be obtained, with greater difficulty, by eliminating

σ1 − σ3 and σ2 − σ3 from the universal relations (4.4)-(4.6).
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By substituting from (4.2) in (4.4) and (4.6) and differentiating with

respect to θ we can obtain the two universal relations

K∏3{(σ1−σ3)K
2∏2

2+ (σ2−σ3)(∏
2
1−∏2

2)(∏
2
1−∏2

3+K2)}=
dσ4

dθ

ØØØ
θ=0

A,(4.15)

K2{(σ1 − σ3)[∏
2
1(∏

2
2 − ∏2

3) + ∏2
2K

2]+

− (σ2 − σ3)[∏
2
2(∏

2
1 − ∏2

3) + ∏2
2K

2]} =
dσ6

dθ

ØØØ
θ=0

A ,
(4.16)

where A is given by (4.13).

5 – Isotropic material - special case II

We again choose the axes of the rectangular cartesian reference sys-

tem x to be parallel to the principal directions of the pure homogeneous

deformation. On the pure homogeneous deformation is superposed a sim-

ple shear of amount K, for which the plane of shear is the 12-plane of

the system x and the direction of shear is inclined at an angle θ to the

1-direction. The deformation is described, in the reference system x, by

(5.1)

x1 = (1−Kab)∏1X1 + Ka2∏2X2 ,

x2 = −Kb2∏1X1 + (1 + Kab)∏2X2 ,

x3 = ∏3X3 ,

where

(5.2) a = cos θ, b = sin θ .

With (3.1), (3.2) and (3.6) we obtain

(5.3)

c1 = (1−Kab)2∏2
1 + K2a4∏2

2,

c2 = K2b4∏2
1 + (1 + Kab)2∏2

2 ,

c3 = ∏2
3,

c4 = c5 = 0,

c6 = −Kb2∏2
1(1−Kab) + Ka2∏2

2(1 + Kab) .
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By introducing c4 =c5 =0 into the universal relation (3.14) and into (3.11)

we obtain

(5.4) (σ1 − σ2)c6 = (c1 − c2)σ6 ,

or

(5.5) (c2 − c3)(c1 − c3)− c2
6 = 0 ,

where the c’s are given by (5.3). From the fact that σ depends contin-

uously on c, it follows that the universal relation (5.4) is satisfied even

if (5.5) is satisfied.

A relation equivalent to the relation (4.9) of Wineman and Gandhi

can (allowing for difference of notation) be recovered by taking θ = 0

(i.e. a = 1, b = 0) in (5.3) and substituting the resulting expressions

in (5.4).

With c4 = c5 = 0, the universal relations (3.12) and (3.13) yield

σ4 = σ5 = 0.

6 – Isotropic material - special case III

In this section we again suppose that the isotropic material is sub-

jected to a pure homogeneous deformation and adopt a rectangular carte-

sian reference system x whose axes are parallel to its principal direc-

tions. On this deformation is superposed a simple shear of amount

K. The direction of shear is parallel to the 3-direction of the refer-

ence system x and the plane of shear is inclined at an angle θ to the

1-direction.

The deformation is described in the reference system x by

(6.1) x1 = ∏1X1, x2 = ∏2X2, x3 = ∏3X3 + K(a∏1X1 + b∏2X2) ,

where

(6.2) a = cos θ, b = sin θ .
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From (6.1) and the definition of c in (3.2) we obtain

(6.3)

c1 = ∏2
1,

c2 = ∏2
2,

c3 = ∏2
3 + K2(a2∏2

1 + b2∏2
2) ,

c4 = bK∏2
2,

c5 = aK∏2
1,

c6 = 0 .

By substituting from (6.3) in eqs (3.11)-(3.14) we obtain

(6.4)
bK∏2

2{(σ3 − σ2)[(∏
2
1 − ∏2

2)(∏
2
3 − ∏2

1) + ∏2
1K

2(b2∏2
2 + a2(∏2

1 − ∏2
2))]+

+ (σ1 − σ3)a
2K2∏4

1} = σ4A ,

(6.5)
aK∏2

1{(σ1 − σ3)[(∏
2
1 − ∏2

2)(∏
2
2 − ∏2

3) + ∏2
2K

2(a2∏2
1 + b2(∏2

2 − ∏2
1))]+

+ (σ3 − σ2)b
2K2∏4

2} = σ5A,

(6.6)
abK2∏2

1∏
2
2{(σ1 − σ3)[∏

2
2 − ∏2

3 −K2(a2∏2
1 + b2∏2

2)]+

+ (σ3 − σ2)[∏
2
1 − ∏2

3 −K2(a2∏2
1 + b2∏2

2)]} = σ6A ,

where

(6.7)

A = −(∏2
2 − ∏2

3)(∏
2
3 − ∏2

1)(∏
2
1 − ∏2

2)+

+ K2{∏2
1a

2[∏2
2(∏

2
2 − ∏2

3) + ∏2
3(∏

2
1 − ∏2

2)]+

+ ∏2
2b

2[∏2
1(∏

2
3 − ∏2

1) + ∏2
3(∏

2
1 − ∏2

2)]}+
+ K4∏2

1∏
2
2(b

2 − a2)(a2∏2
1 + b2∏2

2) .

If θ = 0, so that a = 1 and b = 0, equation (6.5) becomes

(6.8) (σ1 − σ3)K∏
2
1{(∏2

1 − ∏2
2)(∏

2
2 − ∏2

3) + ∏2
1∏

2
2K

2} = σ5A ,

where, from equation (6.7),

(6.9) A = −{(∏2
1 − ∏2

2)(∏
2
2 − ∏2

3) + ∏2
1∏

2
2K

2}(∏2
3 − ∏2

1 + K2∏2
1) .
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It follows that

(6.10) (σ3 − σ1)K∏
2
1 = σ5(∏

2
3 − ∏2

1 + K2∏2
1) .

If in eqs. (6.4) and (6.6) we take θ = 0, we obtain σ4 = σ6 = 0. These

results also follow trivially from the constitutive equation (3.4). However,

by differentiating the equations with respect to θ and taking θ = 0, we

obtain the universal relations

(6.11)
K∏2

2{(σ3 − σ2)[(∏
2
1 − ∏2

2)(∏
2
3 − ∏2

1) + ∏2
1K

2(∏2
1 − ∏2

2)]+

+ (σ1 − σ3)K
2∏4

1} =
dσ4

dθ

ØØØ
θ=0

A ,

(6.12)
K2∏2

1∏
2
2{(σ1 − σ3)(∏

2
2 − ∏2

3 −K2∏2
1)+

+ (σ3 − σ2)(∏
2
1 − ∏2

3 −K2∏2
1)} =

dσ6

dθ

ØØØ
θ−0

A ,

where A is given by (6.9).

Allowing for differences of notation, the relation (6.10) is equivalent

to the relation (4.9). This is not surprising since both relations apply to

deformations in which the direction of shear is a principal direction of

the pure homogeneous deformation and the plane of shear is a principal

plane. We note, however, that the relations (4.15) and (4.16) are not

equivalent to (6.11) and (6.12). This reflects the fact that the approach

to the deformation is along different paths.

7 – Transversely isotropic elastic materials

We now suppose that the elastic material has transverse isotropy. We

choose the reference system x to have its 3-axis normal to the plane of

isotropy. Then the strain energy W , per unit initial volume, is a function

of the five strain invariants Iµ (µ = 1, . . . , 5), where I1, I2, I3 are given [6]

by eqs. (3.3) and

(7.1) I4 = C33, I5 = C3ACA3 ,

and C = kCABk is defined in (3.2).
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The Cauchy stress σ = kσijk is now given by

(7.2) σ = α1c + α2∞ + α4φ + α5√ + α3δ ,

where α1, α2, α3 are given by (3.5),

(7.3) α4 = 2I
−1/2
3 W4, α5 = 2I

−1/2
3 W5 ,

and the notation Wµ = @W/@Iµ is used. ∞ = c2 and c is given by (3.2).

φ = kφijk, √ = k√ijk are defined by

(7.4) φij =
@xi

@x3

@xj

@x3

, √ij =
@xi

@x3

@xk

@x3

ckj +
@xj

@x3

@xk

@x3

cki .

We adopt the notation (3.6) with analogous meanings for ∞∫ , δ∫ , σ∫ , φ∫
and √∫ .

The matrix equation (7.2) may be regarded as six linear simultaneous

equations in the five quantities α1, . . . , α5. With the assumption that the

expressions for the six stress components are linearly independent, we can

eliminate α1, . . . , α5 to obtain the universal relation

(7.5) ∆ = 0 ,

where

(7.6) ∆ = −

ØØØØØØØØØØØØØ

σ1 σ2 σ3 σ4 σ5 σ6

c1 c2 c3 c4 c5 c6

∞1 ∞2 ∞3 ∞4 ∞5 ∞6

φ1 φ2 φ3 φ4 φ5 φ6

√1 √2 √3 √4 √5 √6

1 1 1 0 0 0

ØØØØØØØØØØØØØ

.

This can be rewritten as

(7.7) ∆ =

ØØØØØØØØØØØ

σ1 − σ3 σ2 − σ3 σ4 σ5 σ6

c1 − c3 c2 − c3 c4 c5 c6

∞1 − ∞3 ∞2 − ∞3 ∞4 ∞5 ∞6

φ1 − φ3 φ2 − φ3 φ4 φ5 φ6

√1 − √3 √2 − √3 √4 √5 √6

ØØØØØØØØØØØ

.
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If the material has a direction of inextensibility parallel to the 3-axis

of the reference system, then

(7.8) I4 = 1

and, in the constitutive equation (7.2), α4 is arbitrary if the deformation

is specified. The relation (7.5), with (7.7), remains valid, in general.

In the next three sections we apply the universal relation (7.5) to the

three deformations discussed, for an isotropic material, in Sections 4, 5

and 6. Each of these consists of a simple shear superposed on a pure

homogeneous deformation. We adopt a rectangular cartesian reference

system x whose axes are parallel to the principal directions of the pure

homogeneous deformation and whose 3-axis is parallel to the axis of ro-

tational symmetry of the material.

8 – Transverse isotropy - special case I

In this section we suppose that the transversely isotropic material

undergoes the deformation considered in Section 4. The deformation is

described, in the rectangular cartesian coordinate system x, by eqs. (4.1).

It follows (cf. eqs. (4.3)) that

(8.1)
c1 − c3 = ∏2

1 + K2
1 − ∏2

3, c2 − c3 = ∏2
2 + K2

2 − ∏2
3 ,

c4 = K2∏3, c5 = K1∏3, c6 = K1K2 ,

(8.2)

∞1 − ∞3 = (∏2
1 + K2

1)2 + K2
1K2

2 − ∏2
3(∏

2
3 + K2

2) ,

∞2 − ∞3 = (∏2
2 + K2

2)2 + K2
1K2

2 − ∏2
3(∏

2
3 + K2

1) ,

∞4 = K2∏3(∏
2
2 + ∏2

3 + K2) ,

∞5 = K1∏3(∏
2
1 + ∏2

3 + K2) ,

∞6 = K1K2(∏
2
1 + ∏2

2 + ∏2
3 + K2) ,

(8.3)
φ1 − φ3 = K2

1 − ∏2
3, φ2 − φ3 = K2

2 − ∏2
3 ,

φ4 = K2∏3, φ5 = K1∏3, φ6 = K1K2 ,
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(8.4)

√1 − √3 = 2K2
1(∏2

1 + K2)− 2∏2
3(∏

2
3 + K2

2) ,

√2 − √3 = 2K2
2(∏2

2 + K2)− 2∏2
3(∏

2
3 + K2

1) ,

√4 = K2∏3[2(∏2
3 + K2) + ∏2

2] ,

√5 = K1∏3[2(∏2
3 + K2) + ∏2

1] ,

√6 = K1K2[2(∏2
3 + K2) + ∏2

1 + ∏2
2] .

With these expressions we find (see Appendix I, eq. (12.8)) that ∆, de-

fined in (7.7), is given by

(8.5) ∆ = K1K2∏3∏
2
1∏

2
2(∏

2
1 − ∏2

2){∏2
1K2σ5 − ∏2

2K1σ4 − (∏2
1 − ∏2

2)∏3σ6} .

With (7.5), we obtain the single universal relation (cf. eq. (4.14))

(8.6) ∏2
1K2σ5 − ∏2

2K1σ4 = (∏2
1 − ∏2

2)∏3σ6 .

If ∏1 = ∏2, so that the 12-plane remains isotropic after the pure

homogeneous deformation, equation (8.6) becomes

(8.7) σ5/K1 = σ4/K2 ;

the shearing force is parallel to the direction of shear, as is also evident

on physical grounds.

9 – Transverse isotropy - special case II

We now suppose that the deformation is described by eqs. (5.1).

Then c is given by eqs. (5.3). From eqs. (5.1), (5.3) and (7.4), we obtain

(9.1)
c3 = φ3 = ∏2

3, 2∞3 = √3 = 2∏4
3, φ∫ = √∫ = 0 (∫ 6= 3) ,

c4 = c5 = ∞4 = ∞5 = 0 .

We see that the relation (7.5), with (7.7), is now satisfied identically.

Accordingly we return to the constitutive equation (7.2). This yields,

with (9.1),

(9.2)

σ1 = α1c1 + α2∞1 + α3, σ2 = α1c2 + α2∞2 + α3 ,

σ3 = α3 + (α1 + α4)∏
2
3 + (α2 + 2α5)∏

4
3 ,

σ6 = α1c6 + α2∞6, σ4 = σ5 = 0 .
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We note that

(9.3) ∞1 = c2
1 + c2

6, ∞2 = c2
2 + c2

6, ∞6 = c6(c1 + c2) .

We now substitute for ∞1, ∞2, ∞6 in the expressions (9.2) for σ1, σ2, σ6 and

eliminate α1, α2, α3 from the resulting equations to obtain the universal

relation (cf. eq. (5.4))

(9.4) (σ1 − σ2)c6 = (c1 − c2)σ6 .

10 – Transverse isotropy - special case III

We now suppose that the deformation is described by eqs. (6.1). Then

c is given by eqs. (6.3). From eqs. (6.1), (6.3) and (7.4) we obtain

(10.1)
c1 = ∏2

1, c2 = ∏2
2, c3 = ∏2

3 + K2(a2∏2
1 + b2∏2

2) ,

c4 = bK∏2
2, c5 = aK∏2

1, c6 = 0 ,

(10.2)

∞1 = ∏4
1(1 + a2K2), ∞2 = ∏4

2(1 + b2K2) ,

∞3 = {∏2
3 + K2(a2∏2

1 + b2∏2
2)}2 + K2(a2∏4

1 + b2∏4
2) ,

∞4 = ∏2
2bK{∏2

2 + ∏2
3 + K2(a2∏2

1 + b2∏2
2)} ,

∞5 = ∏2
1aK{∏2

1 + ∏2
3 + K2(a2∏2

1 + b2∏2
2)} ,

∞6 = ∏2
1∏

2
2abK2 ,

(10.3) φ3 = ∏2
3, φ∫ = 0 (∫ 6= 3) ,

(10.4)

√3 = 2∏2
3{∏2

3 + K2(a2∏2
1 + b2∏2

2)} ,

√4 = ∏2
2∏

2
3bK, √5 = ∏2

1∏
2
3aK ,

√1 = √2 = √6 = 0 .

With these expressions we obtain from (7.7) (see Appendix II, eqs. (13.1)

and (13.3))

(10.5) ∆ = K2ab∏2
1∏

2
2∏

4
3(∏

2
2 − ∏2

1){(∏2
1 − ∏2

2)σ6 + K(a∏2
1σ4 − b∏2

2σ5)} .
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With (10.5) we obtain from (7.5) the universal relation

(10.6) (∏2
1 − ∏2

2)σ6 = K(b∏2
2σ5 − a∏2

1σ4) .

If θ = 0, so that the plane of shear is a principal plane for the pure

homogeneous deformation, equation (10.6) becomes

(10.7) (∏2
2 − ∏2

1)σ6 = K∏2
1σ4 .

11 – Beatty’s procedure

Beatty [4] obtained universal relations for an isotropic material us-

ing a different procedure from that adopted here. From the constitutive

equation (3.4) it follows that

(11.1) σc = cσ .

This yields, in our notation, the three universal relations

(11.2)

c6(σ1 − σ2) = (c1 − c2)σ6 + c5σ4 − c4σ5 ,

c4(σ2 − σ3) = (c2 − c3)σ4 + c6σ5 − c5σ6 ,

c5(σ3 − σ1) = (c3 − c1)σ5 + c4σ6 − c6σ4 .

Beatty concludes that any other universal relation can be obtained from

these.

We note that each of eqs. (11.2) involves four terms in the stress

components, while the relations we have derived involve only three. We

can, however, recover our relations (3.12)-(3.14) by eliminating a pair of

the stress components σ4, σ5, σ6 from (11.2). For example, we can obtain

the relation (3.12) by eliminating σ5 and σ6 from (11.2) and making the

substitution

(11.3) σ1 − σ2 = (σ1 − σ3)− (σ2 − σ3) .

Again, we can obtain the relation (3.17) by multiplying eqs. (11.2) by

c4c5, c5c6 and c6c4 respectively and adding the resulting equations.
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The relation (11.1), which provides the three universal relations (11.2),

is valid only when the material is isotropic. Beatty discusses a material in

which the possible deformations are constrained by a single direction of

inextensibility. If the 3-axis of the rectangular cartesian reference system

is taken as the direction of inextensibility in the undeformed material,

Beatty’s constitutive equation has the form

(11.4) σ = t + qφ ,

where q is undetermined if the deformation is specified and t, called by

Beatty the extra stress, is given by (cf. (3.4))

(11.5) t = α1c + α2∞ + α3δ ,

where the α’s are given in terms of a strain-energy function W by eqs. (3.5)

and W is a function of the three strain invariants I1, I2, I3 defined in

eqs. (3.3). The extra stress t evidently satisfies a relation analogous

to (11.1) and therefore yields three independent relations, which can be

obtained from (11.2) by replacing σ∫ by t∫ (∫ = 1, . . . , 6).

The constitutive equation (11.4) is a particular case of the constitu-

tive equation (7.2) with α4 = q undetermined and α5 = 0. By eliminating

α3, we obtain (cf. eqs. (3.15) and (3.16))

(11.6)

c∫α1 + ∞∫α2 + φ∫q = σ∫ (∫ = 4, 5, 6) ,

(c1 − c3)α1 + (∞1 − ∞3)α2 + (φ1 − φ3)q = σ1 − σ3 ,

(c2 − c3)α1 + (∞2 − ∞3)α2 + (φ2 − φ3)q = σ2 − σ3 .

We can eliminate the α’s and q from any four of these five equations to

obtain a universal relation. In this way five universal relations can be

obtained and it is easily shown, by an argument similar to that used in

Section 3, that any two of these imply the others. Two such universal

relation are

(11.7)

ØØØØØØØØ

σ1 − σ3 σ2 − σ3 σµ σ∫
c1 − c3 c2 − c3 cµ c∫
∞1 − ∞3 ∞2 − ∞3 ∞µ ∞∫
φ1 − φ3 φ2 − φ3 φµ φ∫

ØØØØØØØØ
= 0 (µ, ∫ = 4, 5; 4, 6) .



[19] Universal relations for elastic materials 53

We note that these universal relations involve the actual stress rather

than the extra stress.

12 – Appendix I

In this section we show how the result in equation (8.5) can be ob-

tained from eqs. (7.7) and(8.1)-(8.4). This is done by making repeated

use of the fact that addition or subtraction of two rows or two columns

in a determinant does not alter its value. Also, multiplying the elements

of a row or of a column by the same constant multiplies the value of the

determinant by that constant.

Accordingly, in the determinant ∆ defined in equation (7.7), we

(i) multiply row 3 by 2 and subtract from it row 5,

(ii) divide columns 3, 4 and 5 by ∏3K2, ∏3K1 and K1K2 respectively,

(ii) subtract column 3 from columns 4 and 5,

(iv) divide columns 4 and 5 by ∏2
1 − ∏2

2 and ∏2
1 respectively,

(v) subtract column 4 from column 5.

In this way, we obtain, with the expressions (8.1)-(8.4),

(12.1) ∆ =
1

2
K2

1K2
2∏

2
3∏

2
1(∏

2
1 − ∏2

2)∆̄ ,

where

(12.2) ∆̄ =

ØØØØØØØØØØØØØØØ

σ1 σ2 σ4 σ5 σ6

c1 c2 1 0 0

b∞1 b∞2 ∏2
2 1 0

φ1 φ2 1 0 0

√1 √2 √4 1 0

ØØØØØØØØØØØØØØØ

,

with the definitions

(12.3) σ1 = σ1 − σ3, σ2 = σ2 − σ3

and analogous definitions for c1, c2, ∞1, ∞2, φ1, φ2, √1, √2, and

(12.4) b∞1 = 2∞1 − √1, b∞2 = 2∞2 − √2 .
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Also,

(12.5)

√4 = 2(∏2
3 + K2) + ∏2

2,

σ4 =
σ4

K2∏3

,

σ5 =
1

∏2
1 − ∏2

2

≥ σ5

K1∏3

− σ4

K2∏3

¥
,

σ6 =
1

∏2
1

≥ σ6

K1K2

− σ4

K2∏3

¥
− 1

∏2
1 − ∏2

2

≥ σ5

K1∏3

− σ4

K2∏3

¥
.

In the determinant ∆̄, defined in (12.2), we

(i) subtract row 4 from row 2,

(ii) subtract row 5 from row 3.

We thus obtain

(12.6) ∆̄ = σ6

ØØØØØØØØ

c1 − φ1 c2 − φ2 0

b∞1 − √1 b∞2 − √2 ∏2
2 − √4

φ1 φ2 1

ØØØØØØØØ
.

By expanding the determinant and substituting from eqs. (12.4), (12.5)

and (8.1)-(8.4), we obtain

(12.7) ∆̄ = 2∏2
1∏

2
2(∏

2
2 − ∏2

1)σ6 .

It follows from eqs. (12.1), (12.7) and the expression for σ6 in eqs. (12.5)

that

(12.8) ∆ = K1K2∏3∏
2
1∏

2
2(∏

2
1 − ∏2

2){∏2
1K2σ5 − ∏2

2K1σ4 − (∏2
1 − ∏2

2)∏3σ6} .

13 – Appendix II

In this section we show how the result in equation (10.5) can be

obtained from equation (7.7).

In the determinant ∆, defined in (7.7), we

(i) divide columns 4, 5 and 6 by ∏2
2bK, ∏2

1aK and ∏2
1∏

2
2abK2 respectively,

(ii) subtract column 4 from column 5,
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(iii) divide column 5 by ∏2
1 − ∏2

2,

(iv) subtract column 5 from column 6.

Using the expressions in (10.1)-(10.4) for c∫ , ∞∫ , φ∫ and √∫ (∫ =

4, 5, 6), we obtain

(13.1) ∆ = ∏2
1∏

2
2abK2{(∏2

1 − ∏2
2)σ6 + K(a∏2

1σ4 − b∏2
2σ5)}∆̄ ,

where

(13.2) ∆̄ =

ØØØØØØ

c1 − c3 c2 − c3 1

φ1 − φ3 φ2 − φ3 0

√1 − √3 √2 − √3 ∏2
3

ØØØØØØ
.

With the expressions in (10.1), (10.3), (10.4) for c∫ , φ∫ , √∫ (∫ = 1, 2, 3),

we obtain

(13.3) ∆̄ = ∏4
3(∏

2
2 − ∏2

1) .
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