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Direct and inverse fluid-structure interaction problems

D. NATROSHVILI – S. KHARIBEGASHVILI

Z. TEDIASHVILI

Riassunto: Si sviluppa il metodo del potenziale per il problema tridimensionale
dell’interazione fluido-corpo elastico. Si studiano i problemi di esistenza e unicità della
soluzione e si riconosce la risolubilità del problema diretto per numeri d’onda arbitrari
e per un’arbitraria onda incidente. Si rappresentano le soluzioni con integrali di tipo
potenziale e se ne studiano le proprietà strutturali. Si dimostra che il campo scalare
è determinato univocamente nel dominio esterno, mentre il campo vettoriale elastico
è determinato nel dominio interno a meno dei modi di Jones. Sulla base di questi
risultati si riconosce l’unicità della soluzione del problema inverso.

Abstract: The potential method is developed for the fluid-structure interaction
three-dimensional problems. The uniqueness and existence questions are investigated
and the solvability of the direct problem is shown for arbitrary wave numbers and for
arbitrary incident wave functions. The solutions are represented by potential type inte-
grals and their structural properties are studied. It is shown that the scalar field in the
exterior domain is defined uniquely, while the elastic vector field in the interior domain
is defined modulo Jones modes. On the basis of these results the uniqueness theorem
for a solution to the inverse fluid-structure interaction problem is proved.

– Introduction

Direct and inverse problems connected with the interaction between

vector fields of different dimension have received much attention in the
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mathematical and engineering scientific literature and have been inten-

sively investigated for the past years. They arise in many physical and

mechanical models describing the interaction of two different media where

the whole process is characterised by a vector-function of dimension k in

one medium and by a vector-function of dimension n in another one (for

example, fluid-structure interaction where a streamlined body is an elastic

obstacle, scattering of acoustic and electromagnetic waves by an elastic

obstacle, interaction between an elastic body and seismic waves, etc.).

Quite many authors have considered and studied in detail the direct

problems of the interaction between an elastic isotropic body, which oc-

cupies a bounded region ≠+ and where a three-dimensional elastic vector

field is to be defined, and some isotropic medium (fluid say), which occu-

pies the unbounded exterior region, the complement of ≠+ with respect to

the whole space, where a scalar field is to be defined. The time-harmonic

dependent unknown vector and scalar fields are coupled by some kine-

matic and dynamic conditions on the boundary @≠+, which lead to var-

ious type of non-classical interface problems of steady oscillations for a

piecewise homogeneous isotropic medium. An exhaustive information in

this direction concerning theoretical and numerical results can be found

in [1], [2], [3], [4], [5], [8], [9], [11], [12], [14], [15], [16], [22], [23],[26], [34],

[36], [37], [38], [39], [40].

Some particular cases where the elastic body under concideration is

anisotropic have been treated in [33], [18], [19].

In the present paper we generalise the results of the above cited works

into two directions: first, in the direct problems the both interacting me-

dia are assumed to be anisotropic and, second, the corresponding inverse

problems of the wave scattering theory are considered. To the authors’

best knowlege such kind of inverse problems have not been treated in the

scientific literature even for the isotropic case.

When studying these problems there arise difficulties due to the

above-mentioned anisotropy property of media in question, since for the

both fields we need non-trivial analogues of the classical Rellich’s lem-

ma [41], [30]. Moreover, in the resonance case, i.e., when there exist Jones

modes for exceptional values of the oscillation parameter, we analyse the

cokernels of the corresponding pseudodifferential operators and establish

efficient conditions of solvability for the non-homogeneous transmission

problems. In particular, we have shown that the direct scattering prob-
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lems are solvable for arbitrary values of the frequency parameter and for

arbitrary incident wave functions.

On the basis of these results and applying the approach developed

in [7] and [24], we have proved the uniqueness of solution to the inverse

fluid-structure interaction (scattering) problem.

1 – Preliminary material. Formulation of direct and inverse

problems

1.1 – Elastic field

Let ≠+ ⊂ IR3 be a bounded domain (diam≠+ < +1) with a smooth,

connected, nonselfintersecting boundary S = @≠+ and ≠− = IR3\≠+,

≠+ = ≠+ ∪ S.

The region ≠+ is supposed to be filled up by a homogeneous anisotro-

pic medium with the elastic coefficients ckjpq = cpqkj = cjkpq, k, j, p, q =

1, 2, 3, and the density ρ1 = const > 0.

The homogeneous system of steady state oscillation equations of the

linear elasticity reads as follows

(1.1) C(D,ω)u(x) := C(D)u(x) + ρ1ω
2u(x) = 0 ,

where u = (u1, u2, u3)
> is the complex-valued displacement vector (am-

plitude), ω > 0 is the oscillation (frequency) parameter,

C(D,ω) : = C(D) + ρ1ω
2I3,

C(D) : = [ckjpqDjDq]3×3, D = (D1,D2,D3), Dj =
@

@xj

;

here and in what follows I3 stands for the unit 3 × 3 matrix, the super-

script > denotes transposition, and the summation over repeated indices

is meant from 1 to 3, unless otherwise stated.

The stress tensor {σkj} and the strain tensor {εkj} are related by

Hook’s law

σkj = ckjpqεpq, εkj = 2−1(Dkuj + Djuk) .
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As usual, the quadratic form corresponding to the potential energy is

assumed to be positive definite in the symmetric real variables εkj = εjk

(see, e.g., [13])

(1.2) E(u, u) = σkjεkj = ckjpqεkjεpq ≥ δ1εkjεkj, δ1 = const > 0 .

Due to the symmetry relations of the elastic constants we also have

(1.3) E(u, u) = σkjεkj = ckjpqεkjεpq ≥ δ1[ε0kjε
0
kj + ε00kjε

00
kj] ,

where an overbar denotes complex conjugation, and where εkj = ε0kj +

i ε00kj are complex variables (complex strain tensor) corresponding to the

complex vector u = u0 + i u00, i =
√
−1.

The inequality (1.2) implies the positive definiteness of the matrix

C(ξ) for ξ ∈ IR3\{0}:

C(ξ)≥ · ≥ = Ckp(ξ)≥p≥k ≥ δ2|ξ|2|≥|2, δ2 = const > 0 ,

where ≥ is an arbitrary three-dimensional complex vector ≥ ∈ C3. Throu-

ghout the paper a · b =
Pm

k=1 akbk denotes the scalar product of two

vectors in Cm.

Further we introduce the stress operator

T (D,n) = [Tkp(D,n)]3×3 , Tkp(D,n) = ckjpqnjDq ,

where n = (n1, n2, n3) is a unit vector.

The k-th component of the stress vector acting on a surface element

with the unit normal vector n is calculated by the formula

(1.4) σkjnj = ckjpqnjDpuq = [T (D,n)u]k .

We note that throughout the paper we will use the following notations

(when this causes no confusion):

a) if all elements of a vector v = (v1, · · · , vm)> (matrix N = [Nkj]m×p)

belong to one and the same space X, we will write v ∈ X (N ∈ X) instead

of v ∈ [X]m (N ∈ [X]m×n);

b) if K : X1 × · · · × Xm → Y1 × · · · × Yp and X1 = · · · = Xm,

Y1 = · · · = Yp, we will write K : X → Y instead of K : [X]m → [Y ]p;

c) by ||u||X we denote the norm of the element u in the space X.
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1.2 – Scalar field

We assume that the exterior domain ≠− is connected and it is filled up

by a homogeneous anisotropic (fluid) medium with the constant density

ρ2 > 0. Further, let some physical process (the propagation of acous-

tic waves say) in ≠− be described by a complex-valued scalar function

(scalar field) w(x) being a solution of the homogeneous “wave equation”

(generalized Helmholtz equation)

(1.5) a(D,ω)w(x) := a(D)w(x) + ρ2ω
2w(x) = 0, x ∈ ≠− ,

where a(D) = akjDkDj, the real constants akj = ajk define a positive

definite matrix ea = [akj]3×3, i.e.,

ea≥ · ≥ = akj≥j≥k ≥ δ3|≥|2 , δ3 = const > 0 ,

for arbitrary ≥ ∈ C3.

Denote by Sω the characteristic surface (ellipsoid) given by the equa-

tion

Φa(ξ,ω) := eaξ · ξ − ρ2ω
2 = 0, ξ ∈ IR3 .

For an arbitrary vector η ∈ IR3 with |η| = 1 there exists only one point

ξ(η) ∈ Sω such that the outward unit normal vector n(ξ(η)) to Sω at

the point ξ(η) has the same direction as η, i.e., n(ξ(η)) = η. Note that

ξ(−η) = −ξ(η) ∈ Sω and n(−ξ(η)) = −η.
It can be easily verified that

(1.6) ξ(η) = ω
√
ρ2 (ea−1η · η)−1/2 ea−1η ,

where ea−1 is the matrix inverse to ea.

Now we are in the position to define the class Som(≠−) of complex-

valued functions satisfying the generalized Sommerfeld type radiation

conditions (see [41], [18], [19]).

A function w belongs to Som(≠−) if w ∈ C1(≠−) and for sufficiently

large |x|

(1.7) w(x) = O(|x|−1) , Dkw(x)− iξk(η)w(x) = O(|x|−2) , k = 1, 2, 3 ,

where ξ(η) ∈ Sω corresponds to the vector η = x/|x| (i.e., ξ(η) is given

by (1.6) with η = x/|x|).
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The conditions (1.7) are equivalent to the classical Sommerfeld ra-

diation conditions for the Helmholtz equation if the a(D) is the Laplace

operator (see, for example, [42], [6]). In the sequel elements of the class

Som(≠−) will also be referred to as radiating functions.

We have the following analogue of the classical Rellich’s lemma (for

details see [18])

Lemma 1.1. Let w ∈ Som(≠−) be a solution of (1.5) in ≠− and let

lim
R→+1

Im
nZ

ΣR

w(x) @nw(x) dΣR

o
= 0 ,

where ΣR is the sphere centered at the origin and radius R, and @n denotes

the co-normal differentiation

@n = akjnkDj .

Then w = 0 in ≠−.

Note that, if w is a solution of the homogeneous equation (1.5), then

w is an analytic function of the real variable x in the domain ≠−. More-

over, if, in addition, w ∈ C1(≠−) ∩ Som(≠−), then the following integral

representation formula holds (cf. [41], [19])

(1.8)

Z

S

∞(x− y,ω)[@nw(y)]−dSy −
Z

S

[@n(y)∞(y − x,ω)] [w(y)]−dSy =

=

(
w(x) for x ∈ ≠− ,

0 for x ∈ ≠+ ,

where

(1.9) ∞(x,ω) = −exp{iω√ρ2(ea−1x · x)1/2}
4π|ea|1/2(ea−1x · x)1/2

, |ea| = det ea ,

is a radiating fundamental function (solution) to the equation (1.5) (see,

e.g., Lemma 1.1 in [19], [28]), the symbols [ · ]± denote limits on S from

≠± and n(y) is the outward unit normal vector to S at the point y ∈ S.
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For sufficiently large |x| we have the following asymptotic represen-

tation

(1.10)

∞(x− y,ω) = c(ξ)
exp{iξ · (x− y)}

|x| + O(|x|−2) ,

c(ξ) = − |eaξ|
4πω (ρ2|ea|)1/2

,

where y varies in a bounded subset of IR3 and ξ = ξ(η) ∈ Sω corre-

sponds to the direction η = x/|x|; the asymptotic formula (1.10) can be

differentiated any times with respect to x and y.

From formula (1.8) with the help of (1.10) we get the asymptotic

representation (for sufficiently large |x|) of a radiating solution to the

equation (1.5)

(1.11) w(x) = w1(ξ)
exp{iξ · x}

|x| + O(|x|−2) ,

where

w1(ξ) = c(ξ)

Z

S

exp{−iξ · y}{[@nw(y)]− + i (eaξ · n(y))[w(y)]−} dSy

with ξ and c(ξ) as in (1.10); w1(ξ) is the so-called far field pattern of the

radiating solution w(x) (cf. [7]).

1.3 – Formulation of direct and inverse interaction problems

First we set the direct fluid-structure interaction problem.

Let a total wave field in ≠− is represented as a sum of incident and

scattered fields

wtot(x) = winc(x) + wsc(x) ,

where the incident field winc is taken in the form of a plane wave

(1.12) winc(x) = winc(x; d) = ei x·d, x ∈ IR3, d ∈ Sω ,

while the scattered field (scattered acoustic pressure) wsc(x) = wsc(x; d)

is a radiating solution of equation (1.15); here d = (d1, d2, d3) denotes the

direction of propagation of the plane wave (cf. [17]).
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Problem P (dir). Find a regular vector of displacements u ∈ C2(≠+)∩
C1(≠+) and a regular radiating function wsc ∈ C2(≠−) ∩ C1(≠−) ∩
Som(≠−) which are solutions of equation (1.1) and (1.5), respectively,

and satisfy the following (kinematic and dynamic) coupling conditions

on S = @≠±:

[u(x) · n(x)]+ = b1 [@nwtot(x)]− = b1 [@nwsc(x)]− + f0(x) ,(1.13)

[T (D,n)u(x)]+ = b2 [wtot(x)]−n(x) = b2 [wsc(x)]−n(x) + f(x) ,(1.14)

where T (D,n)u is the stress vector given by formula (1.4), @nw =

apqnpDqw is the co-normal derivative, throughout this paper n(x) de-

notes the unit outward normal vector to S at the point x ∈ S, and

(1.15) b1 = [ρ2ω
2]−1 , b2 = −1 .

Here the boundary scalar function f0 and the vector-valued function f(x)

are defined as follows:

f0(x) = f0(x; d) = b1 @nwinc(x; d) ,(1.16)

f(x) = (f1(x), f2(x), f3(x))> = f(x; d) = b2 winc(x; d)n(x) .(1.17)

As it follows from the above statement, in the direct problem the do-

mains ≠+ and ≠− are fixed and we look for the displacement vector u

and the radiating scalar function wsc (scattered field).

The inverse fluid-structure acoustic interaction problem consists in

finding the surface S (i.e., the scatterer ≠+) if the corresponding far field

pattern wsc
1(·; d) is known for several or all direction vectors d ∈ Sω. More

precise mathematical formulation of the inverse problem reads as follows:

Problem P (inv). Find an elastic scatterer ≠+ with a compact, con-

nected, nonselfintersecting, smooth boundary surface S provided that the

conditions of Problem P (dir) are satisfied on S and the far field pattern

wsc
1(·; d) is a known function

wsc
1(ξ; d) = G(ξ; d) , ξ ∈ Sω ,

for several (or all) direction vectors d ∈ Sω; here G(·; d) is a given function

of ξ on Sω and ξ corresponds to the vector η = x/|x| (see (1.6)).
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In the both problems the oscillation parameter ω is an arbitrarily

fixed positive number. The investigation of the inverse problem becomes

complicated due to the fact that, in general, the direct interaction prob-

lem for arbitrary scatterer ≠+ is not unconditionally solvable for all ω.

For exceptional values of the parameter ω, i.e., for those values of ω

for which the corresponding homogeneous direct problem possesses non-

trivial solutions (Jones modes), the boundary data f0 and f , involved

in the equations (1.13) and (1.14), have to satisfy special compatibility

(necessary) conditions ([19]). However, as we shall show below for the

functions given by (1.16) and (1.17) these necessary conditions are ful-

filled and Problem P (dir) is always solvable. Moreover, the scalar field

wsc is defined uniquely in ≠− for arbitrary ω, while the elastic field u, in

general, is defined modulo Jones modes (see Section 2).

We will study the above problems by the potential (boundary integral

equations) method. The properties of the corresponding potential type

operators partly can be found in [29], [30], [31], [18], [19], [33], but for the

readers convenient and self-containedness of the paper we bring needed

material in the forthcoming subsections.

1.4 – Scalar potentials. Steklov-Poincaré type relations

Let us introduce the single- and double-layer scalar potentials related

to the operator a(D,ω):

Va(g)(x) =

Z

S

∞(x− y,ω) g(y) dSy , x ∈ IR3\S ,

Wa(g)(x) =

Z

S

[@n(y)∞(y − x,ω)] g(y) dSy , x ∈ IR3\S ,

where g is a scalar density function.

In what follows we essentially will use the following properties of

these potentials (for details see [18], [19]).

Lemma 1.2. Let S ∈ Ck+1+α0 with integer k ≥ 0 and 0 < α < α0 ≤
1, 0 ≤ m ≤ k.

Then
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i) the operators Va and Wa have the mapping properties:

Va : Cm+α(S) → Cm+1+α(≠+) ,

: Cm+α(S) → Cm+1+α(≠−) ∩ Som(≠−) ,

Wa : Cm+α(S) → Cm+α(≠+) ,

: Cm+α(S) → Cm+α(≠−) ∩ Som(≠−) ;

ii) for arbitrary g ∈ Cm+α(S) and z ∈ S the following jump relations

hold on S:

[Va(g)(z)]± =

Z

S

∞(z − y,ω) g(y) dSy =: Ha g(z), m ≥ 0 ,

[@n(z)Va(g)(z)]± = ∓2−1g(z) +

Z

S

[@n(z)∞(z − y,ω)] g(y) dSy =

=: [∓2−1I + K(1)
a ] g(z), m ≥ 0 ,

[Wa(g)(z)]± = ±2−1g(z) +

Z

S

[@n(y)∞(y − z,ω)] g(y) dSy =

=: [±2−1I + K(2)
a ] g(z), m ≥ 0 ,

[@n(z)Wa(g)(z)]+ = [@n(z)Wa(g)(z)]− =: La g(z), m ≥ 1 ,

where I stands for the identical operator;

iii) the operators

Ha : Cm+α(S) → Cm+1+α(S) ,

K(1)
a , K(2)

a : Cm+α(S) → Cm+α(S) ,

La : Cm+1+α(S) → Cm+α(S) ,

are bounded; moreover, Ha has a weakly singular kernel-function of type

O(|x−y|−1), while K(1)
a and K(2)

a have weakly singular kernel-functions of

type O(|x− y|−2+α0) on S for k = 0 and O(|x− y|−1) for k ≥ 1, and La

is a singular integro-differential operator;

iv) the operators Ha, ∓2−1I + K(1)
a , ±2−1I + K(2)

a and La are elliptic

pseudodifferential operators of order −1, 0, 0, and 1, respectively, with

the index zero;
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v) the principal homogeneous symbols of the above operators read:

σ(Ha)(x, eξ) = −(2π)−1

Z +1

−1

d ξ3
apq (Bξ)p (Bξ)q

< 0 ,

σ(±2−1I + K(1)
a )(x, eξ) = σ(±2−1I + K(2)

a )(x, eξ) = ±2−1 ,

σ(La)(x, eξ) = −[4σ(Ha)(x, eξ)]−1 > 0 ,
eξ = (ξ1, ξ2) ∈ IR2\{0}, x ∈ S, ξ = (ξ1, ξ2, ξ3) ∈ IR3 ;

here

B(x) =




l1(x) m1(x) n1(x)

l2(x) m2(x) n2(x)

l3(x) m3(x) n3(x)




with det B(x) = 1, where n(x) is the exterior (with respect to ≠+) unit

normal vector, while l(x) = (l1(x), l2(x), l3(x)) and m(x) = (m1(x),

m2(x), m3(x)) are orthogonal unit vectors in the tangent plane at the

point x ∈ S;

vi) the following operator equations

HaK(1)
a = K(2)

a Ha , LaK(2)
a = K(1)

a La ,

HaLa = −4−1I + [K(2)
a ]2 , LaHa = −4−1I + [K(1)

a ]2 ,

hold in appropriate functional spaces.

Lemma 1.3. Let g ∈ C1+α(S) with S ∈ C2+α0 , 0 < α < α0 ≤ 1, and

(1.18) w(x) = Wa(g)(x)− i Va(g)(x), x ∈ ≠− .

If w vanishes in ≠−, then g = 0 on S.

Further, let

N : = (−2−1 I + K(2)
a ) − iHa ,(1.19)

M : = La − i (2−1 I + K(1)
a ) .(1.20)

These operators are generated by the limiting values on S (from ≠−) of

the potential (1.18) and its co-normal derivative.
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Lemma 1.4. Let S, k, α, α0, and m be as in Lemma 1.2.

Then

i) the operators

N : Cm+1+α(S) → Cm+1+α(S)

and

M : Cm+1+α(S) → Cm+α(S)

are isomorphisms;

ii) the exterior Dirichlet boundary value problem (BVP)

a(D,ω)w(x) = 0 in ≠− , w ∈ C(≠−) ∩ Som(≠−) ,

[w(z)]− = ϕ(z) on S , ϕ ∈ C(S) ,

is uniquely solvable and the solution is representable in the form

w(x) =
≥
Wa − i Va

¥
(N−1ϕ)(x), x ∈ ≠− .

If ϕ ∈ Cm+α(S), then w ∈ Cm+α(≠−) ∩ Som(≠−).

iii) the exterior Neumann BVP

a(D,ω)w(x) = 0 in ≠− , w ∈ C1(≠−) ∩ Som(≠−) ,

[@nw(z)]− = √(z) on S , √ ∈ Cα(S) ,

is uniquely solvable and the solution is representable in the form

w(x) =
≥
Wa − i Va

¥
(M−1√)(x) , x ∈ ≠− .

If √ ∈ Cm+α(S), then w ∈ Cm+1+α(≠−) ∩ Som(≠−).

iv) the Dirichlet and the Neumann data for an arbitrary radiating

solution w of the equation (1.5) are related on S by the following Steklov-

Poincaré type equations

[@nw]− = MN−1[w]−, [w]− = NM−1[@nw]− .
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1.5 – Robin type problem. Properties of plane waves

Let us consider the interior Robin type BVP

a(D,ω)w(x) = 0 in ≠+, w ∈ C1(≠+) ,(1.21)

[@nw(z)− i w(z)]+ = µ(z) on S, µ ∈ Cα(S) .(1.22)

If we look for a solution to this problem in the form of a single-layer

potential w(x) = Va(g)(x), we arrive at the Fredholm integral equation

on S

Pag := (−2−1I + K(1)
a − iHa) g = µ ,

where Pa is an invertible integral operator with a weakly singular kernel.

By standard arguments we can easily prove the following assertion

(cf. [24]; see also the proof of Lemma 2.3 below).

Lemma 1.5. i) The BVP (1.21)-(1.22) is uniquely solvable.

ii) If S ∈ Ck+1+α0 and µ ∈ Ck+α, then the solution w of the BVP

(1.21)-(1.22) belongs to the space Ck+1+α(≠+). Moreover, for ≠+
0 ∈ ≠+

there holds the uniform estimate

|w(x)| ≤ c ||[@nw − iw]+||X , x ∈ ≠+
0 ,

where X stands for one of the spaces C(S), Ck+α(S), and L2(S), and the

constant c is independent of w.

iii) An arbitrary solution w ∈ C1+α(≠+) of the equation (1.21) is

uniquely representable in the form

w(x) = Va(P−1
a [@nw − i w]+)(x) , x ∈ ≠+ .

From Lemma 1.5 it follows that the plane wave exp{i d · x}, where

d ∈ Sω, can be uniquely represented in the form

ei d·x = Va(P−1
a [(@n(≥) − i)ei d·≥ ]+S )(x) , x ∈ ≠+ .

Note that exp{i d · x} with d ∈ Sω is a non-radiating solution to the

homogeneous equation (1.5) in IR3.



70 D. NATROSHVILI – S. KHARIBEGASHVILI – Z. TEDIASHVILI [14]

Let

P (S) : = {(@n(x) − i) ei d·x, x ∈ S, d ∈ Sω} ,

Psp(S) : =
n mX

q=1

cq p(x; d(q)) : p(x; d(q))∈P (S), cq∈C, d(q)∈Sω, m∈IN
o
,

Psp(IR
3) : =

n mX

q=1

cq ei d(q)·x, x ∈ IR3, cq ∈ C, d(q) ∈ Sω, m ∈ IN
o

;

here IN and C are the sets of all natural and complex numbers, respec-

tively.

Lemma 1.6. The set P (S) is complete in L2(S).

Proof. Let f ∈ L2(S) and

(1.23)

Z

S

[(@n(y) − i)ei d·y] f(y) dSy = 0

for all d ∈ Sω.

Let us consider the function

w(x) = (Wa − i Va)(f)(x), x ∈ IR3\S .

Clearly, we have

w(x) = c(ξ)
exp{i ξ · x}

|x|

Z

S

[(@n(y) − i)e−i ξ·y] f(y) dSy + O(|x|−2)

as |x| → +1, where ξ ∈ Sω corresponds to x and c(ξ) is defined by (1.10).

By (1.23) we then conclude

w(x) = O(|x|−2) ,

which implies w(x) = 0 in ≠− due to Lemma 1.1. Therefore, we obtain

[w(x)]− = N f = 0 on S .

By ellipticity of the operator N we have the inclusion f ∈ C1+α(S),

whence by Lemma 1.4 we arrive at the equation f = 0 on S. This

completes the proof.
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Lemma 1.7. Let ≠+ be a bounded domain with C2 boundary such

that ≠− be connected and let w ∈ C1(≠+) ∩ C2(≠+) be a solution to the

equation (1.21) in ≠+.

Then there exists a sequence vm ∈ Psp(IR
3) such that vm → w and

Dβvm → Dβw as m → 1 uniformly on compact subsets of ≠+ (β =

(β1,β2,β3) is an arbitrary multiindex).

Proof. From Lemma 1.6 it follows that there exists in Psp(S) a

sequence of type

mX

q=1

cq (@n(x) − i) exp{i d(q) · x} , x ∈ S ,

which converges (in the L2-sense) to the function [(@n(x)−i)w]+ ∈ C(S) ⊂
L2(S).

We set

vm(x) =
mX

q=1

cq ei d(q)·x , x ∈ ≠+ .

Hence,

(@n(x) − i)vm(x) → [(@n(x) − i)w(x)]+ in L2(S) .

By Lemma 1.5 the functions vm and w can be represented in the form

vm(x) = Va(P−1
a [(@n − i)vm]+)(x) , x ∈ ≠+ ,

w(x) = Va(P−1
a [(@n − i)w]+)(x) , x ∈ ≠+ .

Now, let ≠+
0 ⊂ ≠+ and x ∈ ≠+

0 . Denote by δ the distance between ≠+
0

and S = @≠+. The above representations of vm and w together with

Lemma 1.5 then imply

|Dβw(x)−Dβvm(x)| ≤
≤ c1(δ) ||P−1

a [(@n − i)vm]+ − P−1
a [(@n − i)w]+||L2(S) ≤

≤ c2(δ) ||[(@n − i)vm]+ − [(@n − i)w]+||L2(S) → 0

as m → +1 (uniformly in ≠+
0 ) for arbitrary multiindex β.
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Corollary 1.8. Let x0 6∈ ≠+. Then there exists a sequence vm ∈
Psp(IR

3) such that (for arbitrary multiindex β)

Dβvm(x) → Dβ∞(x− x0,ω)

uniformly in ≠+, i.e., for arbitrary k ∈ IN ∪ {0} and α ∈ (0; 1)

||vm(x)− ∞(x− x0,ω)||
Ck+α(≠+)

→ 0

as m →1.

1.6 – Vector-valued potential operators of the theory of steady state elastic

oscillations

Let

(1.24) ΦC(ξ,ω) := det C(iξ,ω) = det [ρ1ω
2I3 − C(ξ)] , ξ ∈ IR3 ,

be a characteristic polynomial of the operator C(D,ω).

We assume that the following two conditions are fullfiled (cf. [41],

[29], [30]):

I0. ∇ξΦC(ξ,ω) 6= 0 at real zeros of the polynomial (1.24);

II0. The Gaussian curvature of the surface, defined by the real zeros

of the polynomial ΦC(ξ,ω), does not vanish anywhere.

From the above conditions I0 and II0 it follows that the real zeros

of the polynomial ΦC(ξ,ω) form nonselfintersecting, closed, convex two-

dimensional surfaces Sω,1, Sω,2, Sω,3, enveloping the origin of co-ordina-

tes. For an arbitrary unit vector η = x/|x| with x ∈ IR3\{0}, there exists

only one point on each Sω,j, namely ξj = (ξj
1, ξ

j
2, ξ

j
3) ∈ Sω,j such that the

outward unit normal vector n(ξj) to Sω,j at the point ξj has the same

direction as η, i.e., n(ξj) = η. In this case we say that the points ξj

(j = 1, 2, 3) correspond to the vector η.

A function (vector, matrix) u is said to belong to the class SK(≠−) if

u ∈ C1(≠−) and for sufficiently large |x| the following relations hold (no

summation over j in the last equation):

(1.25)
u(x) =

3X

j=1

uj(x),

uj(x) = O(|x|−1), Dku
j(x)− i ξj

ku
j(x) = O(|x|−2), k = 1, 2, 3 ,
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where the point ξj ∈ Sω,j corresponds to the vector η = x/|x|. These

conditions are the generalized Sommerfeld-Kupradze type radiation con-

ditions in the anisotropic elasticity. It is easy to verify that in the isotropic

case the conditions (1.25) coincide with the well-known Sommerfeld-

Kupradze radiation conditions (for details see [25], [29], [30]).

Denote by Γ(· , ω) ∈ SK(IR3\{0}) the fundamental matrix of the

operator C(D,ω). By means of the Fourier transform method and the

limiting absorption principle this matrix has been constructed and inves-

tigated in [29] (see also [41], [30]). The matrix reads as

Γ(x,ω) = lim
ε→0+

F−1
ξ→x[C

−1(−i ξ,ω + i ε)] ,

where F−1 stands for the generalized Fourier inverse transform. Note

that for the isotropic case this matrix can be written explicitely in terms

of elementary functions (see [25]).

Further, we construct single- and double-layer vector potentials:

VC(g)(x) =

Z

S

Γ(x− y,ω) g(y) dSy ,

WC(g)(x) =

Z

S

[T (Dy, n(y))Γ(y − x,ω)]> g(y) dSy .

Properties of these potentials and boundary operators generated by them

are studied in [29], [30].

For a regular solution u to the equation (1.1) in ≠+ we have the

following integral representation

(1.26) u(x) = WC([u]+)(x)− VC([Tu]+)(x) , x ∈ ≠+ .

For x ∈ ≠− the right-hand side is zero.

The similar representation holds also for a radiating regular solution

to the equation (1.1) in ≠−:

u(x) = VC([Tu]−)(x)−WC([u]−)(x) , x ∈ ≠− .

For x ∈ ≠+ the right-hand side is zero.

The analogue of Rellich’s lemma in this case reads as follows.
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Lemma 1.8. Let u ∈ SK(≠−) be a solution of (1.1) in ≠− and let

lim
R→+1

Im
nZ

ΣR

(Tu)k(u)k dΣR

o
= 0 ,

where ΣR is the same as in Lemma 1.1.

Then u = 0 in ≠−.

This lemma implies that the exterior homogeneous BVPs (with given

zero displacements or zero stresses on the boundary) have only the trival

solution (see [29], [30]).

Further, we set

HC g(z) : =

Z

S

Γ(z − y,ω) g(y) dSy,(1.27)

K(1)
C g(z) : =

Z

S

[T (Dz, n(z))Γ(z − y,ω)] g(y) dSy ,(1.28)

K(2)
C g(z) : =

Z

S

[T (Dy, n(y))Γ(y − z,ω)]> g(y) dSy ,

LC g(z) : = [T (Dz, n(z))WC(g)(z)]±, z ∈ S .

Note that the potential and boundary operators VC , WC , HC , K(1)
C , K(2)

C ,

and LC have quite the same jump and mapping properties as the corre-

sponding scalar operators considered in Subsection 1.4 (see Lemma 1.2).

Moreover, the matrix operators HC , ±2−1I3+K(1)
C , ±2−1I3+K(2)

C , and LC

are elliptic pseudodifferential operators of index zero. In particular, the

principal symbol matrices of the operators −HC and LC are positive def-

inite (for details see [29], [30], [33], [20], [21]).

The HC is an integral operator on S with a weakly singular kernel

of type O(|x− y|−1), K(1)
C and K(2)

C are singular integral operators on S,

while LC is a singular integro-differential operator on S.

2 – The direct fluid-structure interaction problem

2.1 – Uniqueness theorem. Jones modes and Jones eigenfrequencies

We denote by J(≠+) the set of values of the frequency parameter

ω > 0 for which the following boundary value problem

C(D,ω)u(x) = 0, x ∈ ≠+,

[T (D,n)u(x)]+ = 0, [u(x) · n(x)]+ = 0, x ∈ S,
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admits a nontrivial solution. Such solutions (vectors) are called Jones

modes, while the corresponding values of ω are called Jones eigenfrequen-

cies (cf. [26], [18]). The space of Jones modes corresponding to ω we

denote by Xω(≠
+). Note that J(≠+) is at most enumerable, and for each

ω ∈ J(≠+) the space of associated Jones modes is of finite dimension

(see [29]). Clearly, if u ∈ Xω(≠
+), then u ∈ Xω(≠

+).

Let us consider the homogeneous version of the direct problem (f0 = 0

and f = 0 in (1.13) and (1.14)).

Theorem 2.1. Let a pair (u,wsc) be a solution of the homoge-

neous direct problem (1.1), (1.5), (1.13) and (1.14), with b1 and b2 given

by (1.15).

Then wsc = 0 in ≠− and u ∈ Xω(≠
+).

Proof. It is verbatim the proof of Theorem 4.1 in [33].

Corollary 2.2. Let ω 6∈ J(≠+). Then the homogeneous direct

problem possesses only the trivial solution.

2.2 – Existence results

In what follows we assume that S ∈ Ck+1+α0 with integer k ≥ 0 and

0 < α < α0 ≤ 1.

First we prove the following assertion.

Lemma 2.3. Let @≠+ = S ∈ C1+α0. Then an arbitrary solution

u ∈ C1+α(≠+) of equation (1.1) is representable in the form of a single-

layer potential.

Proof. Let u ∈ C1+α(≠+) be a solution of equation (1.1). The

vector function

(2.1) [T (D,n)u(x)]+ − i [u(x)]+ =: F (x)

then belongs to the space Cα(S).

Let us consider the following boundary value problem

C(D,ω)u(x) = 0 in ≠+ ,(2.2)

[T (D,n)u(x)]+ − i [u(x)]+ = Φ(x), x ∈ S ,(2.3)

where Φ = (Φ1,Φ2,Φ3) ∈ Cα(S) is an arbitrary vector-function.
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We look for a solution to the BVP (2.2)-(2.3) in the form of a single-

layer potential

u(x) = VC(g)(x) , x ∈ ≠+ ,

where g = (g1, g2, g3)
> is a sought for density.

The boundary condition (2.3) then leads to the system of singular

integral equations of normal type with index equal to zero

(2.4) [− 2−1I3 + K(1)
C − iHC ] g = Φ ,

where K(1)
C and HC are given by (1.28) and (1.27), respectively.

Further we show that the operator

(2.5) PC := −2−1I3 + K(1)
C − iHC : Cα(S) → Cα(S)

is invertible.

To this end we first prove that the homogeneous BVP (Φ = 0) has

only the trivial solution.

Applying Green’s identity we arrive at the equation

Z

≠+
{E(u, u)− ω2 |u|2} dx =

Z

S

[Tu]+ · [u]+ dS ,

which due to (2.3) with Φ = 0 implies

Z

≠+
{E(u, u)− ω2 |u|2} dx = i

Z

S

|[u]+|2 dS ;

here E(u, u) is a real non-negative function given by (1.3).

From this equation it follows: [u(x)]+ = 0 on S. Therefore, [Tu]+ = 0

on S, again due to (2.3). With the help of the general integral repre-

sentation (1.3), we conclude that u = 0 in ≠+, which shows that the

homogeneous BVP in question has only the trivial solution.

Let g0 ∈ Cα(S) be an arbitrary solution to the homogeneous sys-

tem (2.4) (Φ = 0). The potential VC(g0) ∈ C1+α(≠+) then solves the

homogeneous BVP (2.2)-(2.3) and therefore

VC(g0)(x) = 0 , x ∈ ≠+ .
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Using the continuity property of single-layer potentials, we have

[VC(g0)(x)]+ = [VC(g0)(x)]− = 0 .

Evidently, VC(g0)(x) ∈ C1+α(≠−)∩ SK(≠−) and this potential solves the

homogeneous Dirichlet type exterior BVP (with zero dicplacements on S).

By Theorem 4.2 in [30], we then get VC(g0)(x) = 0 in ≠− and taking into

consideration the equation [TVC(g0)]
− − [TVC(g0)]

+ = g0, we conclude

that g0 = 0 on S, i.e., kerPC is trivial.

Since PC is an elliptic pseudodifferential operator of order 0 with

zero index, it follows that the operator (2.5) is invertible. Therefore,

from (2.4) we have

g = P−1
C Φ = P−1

C {[T (D,n)u]+ − i [u]+} .

In turn, this proves that an arbitrary solution u ∈ C1+α(≠+) to equa-

tion (1.1) can be represented in the form of single-layer potential

u(x) = VC(P−1
C F )(x) , x ∈ ≠+ ,

with F given by (2.1).

This completes the proof.

Further, we show that the nonhomogeneous problem P (dir) is solv-

able for arbitrary incident wave and for arbitrary value of the oscillation

parameter ω.

Let us look for a solution to the problem in the following form:

u(x) = VC(g)(x) , x ∈ ≠+ ,(2.6)

wsc(x) = Wa(g4)(x)− i Va(g4)(x), x ∈ ≠− ,(2.7)

where g = (g1, g2, g3)
> ∈ Cα(S) and g4 ∈ C1+α(S) are sought for densi-

ties.

The boundary conditions (1.13) and (1.14) lead to the system of

equations

(−2−1I3 + K(1)
C )g(x)− b2 n(x)N g4(x) = f(x),(2.8)

(HC g(x)) · n(x)− b1 M g4(x) = f0(x), x ∈ S,(2.9)
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where K(1)
C , HC , N , M, f , and f0 are given by (1.28), (1.27), (1.19),

(1.20), (1.17), and (1.16), respectively. The constants b1 and b2 are de-

fined by (1.15).

It can easily be shown that this system is equivalent to the following

one

g4 = b−1
1 M−1{(HC g) · n}− b−1

1 M−1f0,(2.10)

g + P−1
C {iHC g − b2 b−1

1 nN M−1[(HC g) · n]} =

(2.11) = P−1
C (f − b2 b−1

1 nN M−1f0).

Note that, in the latter equation, the second term in the left-hand side

represents an integral operator with a weakly singular kernel function of

type O(|x− y|−1).

The matrix operator generated by the left-hand sides of(2.8) and(2.9)

reads as

K :=

"
[−2−1I3 + K(1)

C

i
3×3

[− b2n(x)N ]3×1h
nj(HC)jk]1×3 −b1M

#

4×4

.

Therefore, the system (2.8) and (2.9) can be rewritten in the matrix form

(2.12) K G = F ,

where G = (g1, g2, g3, g4)
> and F = (f1, f2, f3, f0)

>.

From the results outlined in Subsection 1.4 and 1.6 it follows that K
is an elliptic pseudodifferential operator on S (in the sense of Douglis-

Nirenberg) with zero index and has the mapping property

K : [Ck+α(S)]3 × [Ck+1+α(S)] → [Ck+α(S)]4 .

Let us introduce the scalar integral operator

Rϕ(x) :=

Z

S

1

|x− y| ϕ(y) dSy .

The operator

R : Ck+α(S) → Ck+1+α(S)
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is an isomorphism (see [18], Lemma 3.3; [32]). Moreover, it is a for-

mally self-adjoint, elliptic, equivalent lifting pseudodifferential operator

of order −1.

Further, let

Q :=

∑
[I3]3×3 [0]3×1

[0]1×3 R
∏

4×4

and eK := QK .

Clearly, eK is a matrix singular integral operator of normal type with zero

index ([25], [10], [27]). It is evident that the equation (2.12) is equivalent

to the system of singular integral equations

(2.13) eK G = eF, eF = QF = (f1, f2, f3,R f0)
> ,

which is obtained from (2.12) by applying the operator Q to the both

sides.

Note that

eK : Ck+α(S) → Ck+α(S) [L2(S) → L2(S)] .

The formally adjoint operator to eK with respect to the complex L2-scalar

product is defined by the relation

h eK G,HiS = hG, eK∗ HiS ,

where G = (g1, g2, g3, g4)
> and H = (h1, h2, h3, h4)

> are complex-valued

vector-functions, and

hG,HiS :=

Z

S

4X

k=1

Gk Hk dS .

With the help of the equalities [K(1)
a ]∗ = K(2)

a , H∗
a = Ha, L∗

a = La,

[K(1)
C ]∗ = K(2)

C , R∗ = R, it can be shown that the homogeneous adjoint

equation to (2.13)

(2.14) eK∗ H = 0 , H = (h, h4)
> , h = (h1, h2, h3)

> ,
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is equivalent to the system of singular integral equations

(−2−1I3 + K(2)
C )h + HC n R h4 = 0 ,(2.15)

− b2[−2−1I+K(1)
a −iHa] (h · n)−b1[La−i(2−1I+K(2)

a )]Rh4 =0.(2.16)

In fact, this system coincides with the equation eK∗ H = 0.

Lemma 2.4. Let H = (h1, h2, h3, h4)
> ∈ C1+α(S) be a solution of

equation (2.14) (i.e., of the system (2.15)-(2.16)).

Then

(h · n) = 0 , h4 = 0 ,

where h = (h1, h2, h3)
>.

If h is nontrivial, then it represents the restriction on S of some

Jones mode and vice versa: if u ∈ Xω(≠
+), then ([u]+S , 0)> ∈ ker eK∗.

Moreover, dimker eK∗ = dimker eK = dimker K = dimker Xω(≠
+).

Proof. Let us construct the potential type functions

u(x) = WC(h)(x) + VC(nRh4)(x), x ∈ ≠− ,

w(x) = −b2 Va(h · n)(x)− b1 Wa(Rh4)(x) , x ∈ ≠+ .

It is evident, that uj, w ∈ C1(≠±), and [u(x)]− = 0 and [(@n−i)w(x)]+ = 0

on S, due to (2.15) and (2.16).

By Theorem 4.2 in [30] and Lemma 1.5 we conclude that u(x) = 0 in

≠− and w(x) = 0 in ≠+. Therefore,

(2.17)

[u]+ − [u]− = [u]+ = h,

[Tu]+ − [Tu]− = [Tu]+ = −nRh4 ,

[w]+ − [w]− = −[w]− = −b1 Rh4,

[@nw]+ − [@nw]− = −[@nw]− = b2 h · n ,

which imply

(2.18) [Tu]+ = −b−1
1 [w]− n , [u · n]+ = −b−1

2 [@nw]− .

This is a similar problem to Problem P (dir). One can easily show that the

conditions (2.18) yield: u ∈ Xω(≠
+) and w = 0 in ≠− (cf. Theorem 2.1).
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From these results together with the invertibility of the operator R and

equation (2.17) the conditions (2.13) follow immediately.

Thus we have shown that h is the restiction of some Jones mode

on S. The inverse assertion easily follows from the general representation

formula (1.26).

The last statement of the lemma is a consequence of the equivalence

of (2.12) and (2.13), Lemma 2.3 and the fact that the index of K equals

to zero. This completes the proof.

Corollary 2.5. i) If ω 6∈ J(≠+), then the system (2.8)-(2.9) is

uniquely solvable for arbitrary f and f0.

ii) Let ω ∈ J(≠+). The equation

(2.19)

Z

S

f(y) · h(y) dS =

Z

S

3X

j=1

fj(y)hj(y) dS = 0 ,

where h = (h1, h2, h3)
> is the restriction on S of an arbitrary Jones

mode, represents a necessary and sufficient condition for the system (2.8)-

(2.9) (i.e., for the equation (2.12)) to be solvable in the space [Cα(S)]3 ×
C1+α(S), provided that fj, f0 ∈ Cα(S), S ∈ C2+α0.

Note that, if f(x) = n(x)ϕ(x), where ϕ is some scalar function and,

as above, n is the unit normal vector to S, then the condition (2.19) is

automatically satisfied.

Theorem 2.6. The direct scattering problem P (dir) is solvable for

arbitrary incident wave winc and for arbitrary value of the oscillation

parameter ω.

Moreover, a solution is representable in the form of (2.6) and (2.7),

where g4 and wsc are defined uniquely, while g and u are defined uniquely

if ω 6∈ J(≠+) and, if ω is exceptional (ω ∈ J(≠+)), then g is defined

modulo vector-functions of kerK and u is defined modulo Jones modes

(Xω(≠
+)).

When ω is an exceptional value, then the vector (−1
2
I3 + K(1)

C ) g and

the normal component of the vector HC g are determined uniquely.
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Proof. For arbitrary incident wave and for arbitrary value of the os-

cillation parameter the solvability of the nonhomogeneous problem P (dir)

with interface conditions (1.13)-(1.17) follows from Lemmata 2.3, 2.4,

and corollary 2.5, since the problem is equivalently reduced to the sys-

tem (2.8)-(2.9).

It is evident that, if ω 6∈ J(≠+), then kerK is trivial and due to

Theorem 2.1 and corollary 2.2 the problem P (dir) is uniquely solvable.

In this case the solution is representable in the form of (2.6) and (2.7),

where (g, g4)
> is a unique solution of the system (2.8)-(2.9).

Let ω ∈ J(≠+), i.e., the problem P (dir) is solvable but not uniquely.

An arbitrary solution of the problem is again representable in the form

of (2.6)-(2.7), where (g, g4)
> solves the system (2.8)-(2.9).

To prove the last assertion of the theorem one needs to consider the

homogeneous version of the above mentioned system and show that, if

G = (g, g4)
> ∈ kerK = ker eK, then

g4 = 0, (−2−1I3 + K(1)
C ) g = 0 , HC g · n = 0 .

In turn , this follows from Theorem 2.1, Lemma 1.3 and the structure of

the system (2.8)-(2.9).

It is evident that the far field pattern wsc
1(ξ) corresponding to the

scalar field (2.7), is defined uniquely as well and

(2.20) wsc
1(ξ) = c(ξ)

Z

S

[(@n(y) − i)e−iξ·y] g4(y) dSy ,

where ξ ∈ Sω corresponds to the vector η = x/|x| and c(ξ) is given

by (1.10).

Corollary 2.7. Let G = (g1, g2, g3, g4)
> be a solution to the

equation (2.13), i.e., to the system (2.8)-(2.9).

Then

k g4 kL2(S)≤ C1 k F̃ kL2(S)≤ C2{k f kL2(S) + k f0 kL2(S)} ,

k g4 kCk+1+α(S)≤ C3 k F̃ kCk+1+α(S)≤ C4{k f kCk+1+α(S) + k f0 kCk+α} ,

where Cj (j = 1, 4) do not depend on g4, f, f0.
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The proof is a consequence of the following – more general assertion.

Lemma 2.8. Let a Banach space X be the direct product of two

Banach spaces X1 and X2, i.e., X = X1 ×X2 with the norm k x kX=k
x1 kX1

+ k x2 kX2
,where x = (x1, x2) ∈ X, xk ∈ Xk, k = 1, 2.

Let T : X → Y be a linear continuous operator from X into Banach

space Y (with the norm k · kY ) and assume that the linear equation

(2.21) Tx = y ,

where y ∈ Y is a given element and x ∈ X is an unknown, is normally

solvable, i.e., the range R(T ) is closed in Y .

Moreover, let ker T ⊂ X1×{θ2} where θk, k = 1, 2, are zero elements

of Xk.

If x = (x1, x2) ∈ X is a solution of equation (2.21) then there exists

a constant c > 0, independent of y, such that

k x2 kX2
≤ c k y kY = c k Tx kY .

Proof. Denote by T1 and T2 the restrections of the operator T onto

the spaces X1 × {θ2} and {θ1} × X2. In fact, the operators T1 and T2

uniquely induce linear continuous operators from Xk into Y for which we

keep the same notation, i.e., T1x1 := T1(x1, θ2) and T2x2 := T2(θ1, x2).

Evidently, Tx = T1x1 + T2x2 for x = (x1, x2).

For simplicity we also use the notation x1 and x2 for the elements

(x1,θ2) and (θ1,x2) and assume T (x1,θ2)=T1(x1,θ2)=T1x1 and T (θ1,x2)=

T2(θ1, x2) = T2x2.

Further, we introduce the quotient space Z = X1/ ker T = {[x1]} en-

dowed with the norm k [x1] kZ= infξ∈ker T k x1 + ξ kX1
. Since kerT is

closed, Z is a Banach space.

Due to our notation kerT = kerT1.

By standard approach the linear continuous operator T1 : X1 → Y

in the natural way induces the corresponding linear operator eT1 : Z =

X1/ ker T1
→ Y which is also continuous with respect to the corresponding

norms.

Note that Y0 = R(T ) is a Banach space with the norm induced by

the Y -norm.
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Now, let us construct the operator T0 : Z×X2 → Y0 = R(T ), where

T0(z, x2) = eT1z + T2x2 .

It is evident that Z×X2 is a Banach space and T0 is a one-to-one operator.

Therefore, due to the Banach theorem for arbitrary (z, x2) ∈ Z×X2 there

holds the inequality

(2.22) k (z, x2) kZ×X2
=k z kZ + k x2 kX2

≤ c1 k T0(z, x2) kY

with a constant c1 > 0 independent of (z, x2).

Let x = (x1, x2) be an arbitrary element of X and let z ∈ Z cor-

responds to the element x1 ∈ X1. By applying (2.22) and the equality

T0(z, x2) = T1x1 + T2x2 = T (x1, x2) = Tx we get

k x2 kX2
≤k z kZ + k x2 kX2

≤ c1 k T0(z, x2) kY = c1 k Tx kY ,

which completes the proof.

Corollary 2.9. Let (u,wsc) be a solution to Problem P (dir). Then

k wsc kCk+1+α(≠−)≤ C5{k f kCk+1+α(S) + k f0 kCk+α(S)} ,

where C5 > 0 does not depend on f, f0, w
sc.

Proof. It follows from properties of single- and double-layer poten-

tials and corollary 2.7.

Corollary 2.10. Let g be a solution to the equation (2.11). If

{g(q)}N
q=1 is a complete system of linearly independent solutions to the

homogeneous version of system (2.11) and g(0) is a particular solution to

the nonhomogeneous system (2.13), orthogonal to all of g(q) (q = 1, n),

then

k g(0) kL2(S)≤ C6{k f kL2(S) + k f0 kL2(S)} ,

k g(0) kC(S)≤ C7{k f kC(S) + k f0 kC(S)} ,

k g(0) kCk+1+α(S)≤ C8{k f kCk+1+α(S) + k f0 kCk+α(S)} ,

where the constants C6, C7, and C8 are independent of f, f0, g
(0).
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The proof follows form the assertion.

Lemma 2.11. Let X and Y be Banach spaces, T : X → Y be a

linear continuous operator, and the equation

(2.23) Tx = y

be normally solvable.

Moreover, let dimkerT = N < 1, {ej}N
j=1 be a basis in kerT , and

{fj}N
j=1 be a corresponding biorthogonal system in the adjoint space X∗,

i.e., fj ∈ X∗ and fi(ej) = δij, where δij is the Kronecker’s delta.

If x is an arbitrary solution of the equation (2.23), then ex = x −PN
i=1 fi(x)ei is a particular solution of the same equation satisfying the

inequality

(2.24) k ex kX≤ C9 k y kY ,

where C9 does not depend on x and y.

Proof. It is well-known that, if X0 = kerT and X1 = ∩N
i=1 ker fi,

then X is a direct sum of the spaces X0 and X1: X = X0 ⊕X1 (see [35],

Ch. 4). Denote by T1 the restriction of the operator T onto the subspace

X1 ⊂ X and let Y1 := R(T ) be the range of the operator T , i.e., Y1 =

T (X). Since equation (2.23) is normally solvable, Y1 is a closed subset of

Y and due to the Banach theorem the bijective operator T1 : X1 → Y1

possesses a continuous inverse operator T−1
1 : Y1 → X1. Moreover, there

holds an inequality

(2.25) k T−1
1 z kX≤ C10 k z kY for all z ∈ Y1 = R(T ) ,

where C10 does not depend on z.

Further, if x is an arbitrary solution of equation (2.23), then ex =

x −PN
i=1 fi(x)ei is also a solution to the same equation, and, evidently,

ex ∈ X1 and ex = T−1y with y ∈ Y1. If we put z = y and T−1
1 z = ex

in (2.25) we get the inequality (2.24).
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3 – Inverse problem. Uniqueness theorem

This section deals with the uniqueness of solution to the inverse fluid-

structure interaction problem (see Subsection 1.3).

Theorem 3.1. Let ≠+
j , j = 1, 2, be two bounded elastic scatter-

ers with C2+α0−smooth boundaries @≠+
j = Sj and with simply connected

complements ≠−
j = IR3 \ ≠+

j , and let for a fixed wave number ω the far

field patterns w(j)sc
1 (· ; d) for the both scatterers coincide for all incident

directions d ∈ Sω.

Then ≠+
1 = ≠+

2 .

Proof. Step 1. We denote the elastic vector field in the do-

main ≠+
j by u(j)(x; d) and the scattered scalar field in the domain ≠−

j

by w(j)sc(x; d) =: w(j)(x; d), j = 1, 2.

In the both cases the incident field is represented in the form of a

plane wave (see (1.12)). Thus, the pair (u(j), w(j)) is a solution to Problem

P (dir) for the scatterer ≠+
j (j = 1, 2) with a fixed oscillation parameter ω

(see (1.13)-(1.17)).

Let ≠+
1 6= ≠+

2 and ≠−
12 = IR3 \ {≠+

1 ∪ ≠+
2 }.

Since w(1)(x; d) and w(2)(x; d) are radiating solutions of the equa-

tion (1.5) in ≠−
12 and have the same far field patterns w(1)

1 (ξ; d) = w(2)
1 (ξ; d)

for all d ∈ Sω, we conclude that

(3.1) w(1)(x; d) = w(2)(x; d) in ≠−
12 ,

due to the asymptotic relation (1.11) and Lemma 1.1.

Step 2. Let us consider Problem P (dir) with the domains ≠+
j , ≠−

j

(j = 1, 2), where the incident field is taken in the form winc(x) = vm(x) ∈
Psp(IR

3), i.e., f0(x) = b1@n(x)vm(x), f(x) = b2 vm(x)n(x). The corre-

sponding elastic field in ≠+
j and the scattered field in ≠−

j we denote by

u(j,m)(x) and w(j,m)(x), respectively. From the conditions of Theorem 3.1

and the equality (3.1) it follows that

w(1,m)
1 (ξ) = w(2,m)

1 (ξ), ξ ∈ Sω, and w(1,m)(x) = w(2,m)(x), x ∈ ≠−
12 .

Step 3. Let x0 be an arbitrary point in ≠−
12 and let us consider

Problem P (dir) with the same domains ≠+
j , ≠−

j (j = 1, 2), where the
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interface data are given as follows

f0(x) = f0(x;x0) := b1 @n(x)∞(x− x0;ω) ,(3.2)

f(x) = f(x;x0) := b2 ∞(x− x0;ω)n(x) ;(3.3)

here ∞(· ;ω) is the fundamental function defined by (1.9). The corre-

sponding elastic field (in ≠+
j ) and scalar scattered field (in ≠−

j ) we denote

by u(j)(x;x0) and w(j)(x;x0).

Due to Lemma 1.8 there exists a sequence vm ∈ Psp(IR
3) such that

(for arbitrary multi-index β)

(3.4) Dβvm(x) → Dβ∞(x− x0;ω)

uniformly in ≠+
1 ∪ ≠+

2 .

Applying the linearity of the direct problem, equation (2.20), corol-

lary 2.7 and the results obtained in step 2, we get

|w(1)
1 (ξ;x0)−w(2)

1 (ξ;x0)|= |w(1)
1 (ξ;x0)−w(1,m)

1 (ξ)+w(2,m)
1 (ξ)−w(2)

1 (ξ;x0)|≤
≤ |w(1)

1 (ξ;x0)−w(1,m)
1 (ξ)|+|w(2)

1 (ξ;x0)−w(2,m)
1 (ξ)|≤

≤ C {||∞(x− x0;ω)− vm(x)||C1+α(S1)+

+ ||∞(x− x0;ω)− vm(x)||C1+α(S2)} → 0

as m → 1; here w(j,m)
1 (ξ) denotes the far field pattern of the scattered

field w(j,m)(x) corresponding to the function vm ∈ Psp(IR
3), involved

in (3.4).

This implies w(1)
1 (ξ;x0) = w(2)

1 (ξ;x0) and, consequently,

(3.5) w(1)(x;x0) = w(2)(x;x0) in ≠−
12 .

Step 4. Since ≠+
1 6= ≠+

2 , there exists a point x∗ ∈ @(≠+
1 ∪ ≠+

2 ) such

that the closed ball B(x∗, 2δ) centered at x∗ and radius 2δ > 0 does not

intersect either ≠+
1 or ≠+

2 . Without restriction of generality, we assume

that B(x∗, 2δ) ∩ ≠+
2 = ∅. Evidently, S∗

1 := @≠+
1 ∩ B(x∗, 2δ) ⊂ S1 and

dist{B(x∗, δ) , ≠+
2 } ≥ δ.

Further we choose a sequence xp ∈ B(x∗, δ)∩≠−
12 on the normal line

to S1 at the point x∗ ∈ S∗
1 such that |x∗ − xp| → 0 as p →1.
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Now let us consider the problem described in step 3 with the point xp

in the place of x0.

For the domains ≠+
1 and ≠−

1 , the interface conditions of type (1.13)

on S1 reads as follows:

[u(1)(x;xp) ·n(x)]+S1
= b1[@n(x)w

(1)(x;xp)]−S1
+b1@n(x)∞(x−xp;ω) , x ∈ S1 .

Taking into account the fact that w(2)(·;xp) is bounded in B(x∗, δ) ⊂ ≠−
2

together with its derivatives uniformly with respect to xp ∈ B(x∗, δ) (see

corollary 2.9) and applying the equation (3.5) with xp in the place of x0,

we arrive at the inequality

ØØ[u(1)(x;xp) · n(x)]+S∗
1
−b1[@n(x)∞(x−xp;ω)]S∗

1

ØØ≤ |b1[@n(x)w
(1)(x;xp)−S∗

1
| =

= |b1[@n(x)w
(2)(x;xp)−S∗

1
|≤C,

where C does not depend on u(1) and xp.

In particular,

(3.6) |[u(1)(x∗;xp) ·n(x∗)]+−b1[@n(x∗)∞(x
∗−xp;ω)]| ≤ C, p = 1, 2, 3, · · · .

Step 5. Here we prove that

(3.7) |[u(1)(x∗;xp) · n(x∗)]+| ≤ C | log |x∗ − xp| |

with a constant C > 0 independent of xp and u(1). Note that u(1)(x;xp)

and w(1)(x;xp) can be represented in the form (2.6) and (2.7), where the

densities g and g4 are to be defined from the system (2.8)-(2.9), which

is equivalent to the system (2.10)-(2.11), with f0 and f given by (3.2)

and (3.3). The right-hand side vector-function in (2.11) can be estimated

as O(|x− xp|−1) (x ∈ S1) (see [31], Theorem 2.1).

Moreover,

g(x;xp) = g(0)(x;xp)−
NX

q=1

cqg
(q)(x) ,

where cq (q = 1, N) are arbitrary constants, {g(q)}N
q=1 is a complete (or-

thonormal) system of linearly independent solutions of the corresponding
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homogeneous equations, and g(0) is a fixed particular solution of (2.11)

orthogonal to this system. Remark, that V (g(q)) ∈ Xω(≠
+) (q = 1, N) if

ω ∈ J(≠+). Applying corollary 2.10 it can be shown that g(0)(x;xp) =

O(|x− xp|−1). Therefore,

|[u(1)(x;xp) · n(x)]+| = |[VC(g(·;xp))(x) · n(x)]+| =

= |[VC(g(0)(·;xp))(x) · n(x)]+| =

= |[HCg(0)(·;xp) · n(x)]+| ≤
≤ |[HCg(0)(·;xp)| ≤ C

ØØ log |x− xp|
ØØ , x ∈ S1,

where C does not depend on xp and g(0). In particular (3.7) holds.

Step 6. The inequality (3.7) contradicts to the inequality (3.6), since

@n(x∗)∞(x
∗ − xp;ω) =

1

4π|ea1/2| [ea−1n(x∗) · n(x∗)]3/2

1

|x∗ − xp|2 + O(1) ,

and the left-hand side in (3.6) is not bounded as xp approaches x∗.

This completes the proof.
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