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Newtonian capacity and quasi-balayage

W. K. HAYMAN – L. KARP – H. S. SHAPIRO

Riassunto: Per varie applicazioni (analisi di regolarità di frontiere libere, appros-
simazioni in media delle funzioni armoniche su domini illimitati) sono utili le stime,
con funzioni regolari φ a supporto compatto in IRn, che limitino |φ| sulle sfere unitarie
B in termini dell’estremo superiore di |∆φ| in IRn. Stime di questo tipo non esistono
senza assunzioni aggiuntive su φ; in un precedente lavoro è stato però riconosciuto che
se φ è nulla su un sottoinsieme E ⊂ B di volume non nullo, sussiste una limitazione
di questo tipo ed in modo uniforme rispetto ai sottoinsiemi E di volume maggiore di
un valore assegnato. In questo lavoro si ottiene una stima analoga per le funzioni φ
con φ(0) ≤ 1 quando grad(φ) sia nullo su un sottinsieme E ⊂ B la cui capacità new-
toniana superi un valore assegnato. Si indicano varie applicazioni di questo risultato.
La derivazione delle stime di base coinvolge delle idee che hanno un certo interesse in
generale; in particolare le idee di “quasi-balayage” cioè l’allargamento di una misura
dal suo supporto ad un altro compatto, in modo tale che i potenziali delle due misure,
se pure non coincidono su di un intorno dell’infinito (come richiesto dal “balayage”),
siano asintoticamente uguali con un ordine prescritto.

Abstract: For various applications (including: regularity study of free bound-
aries, and approximation in the mean of harmonic functions on unbounded domains
by rapidly decreasing ones) it is desirable to have an estimate, valid for an arbitrary
smooth function φ of compact support in IRn, bounding sup |φ| in the unit ball B in
terms of sup |∆φ| on IRn. Such an estimate cannot exist with no further assumptions
on φ, but in the predecessor of this paper it was shown that if φ vanishes on a subset E
of B with volume |E| > 0, such a bound holds , and uniformly with respect to all sets E
with |E| not less than any prescribed positive constant. In the present paper an analo-
gous estimate is obtained for φ which |φ(0)| ≤ 1, and grad(φ) vanishes on a subset E
of B whose Newtonian capacity exceeds a positive constant. Various applications are
given. The derivation of the basic estimate involves ideas which may have some inde-
pendent interest, in particular “quasi-balayage”, the sweeping-out of a measure from its
support to some other compact set such that the potentials of the two measures, while
not equal on a neighborhood of infinity as required by (true) balayage, are asymptotically
equal to some prescribed degree.
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1 – Introduction

This paper complements and extends some of the results in [14]. Here

is a brief description of the contents. Section 2 presents in a systematic

way a scheme for proving, under suitable hypotheses, that functions of

certain classes can be bounded on large sets in terms of a bound on a

“small” set of suitable kind. Estimates of this kind are the basis of the

method of quasi-balayage, but have independent interest. While Section 2

probably contains nothing that is new in principle, we could not find

references where this material is developed in the form we require.

Section 3 treats the problem of approximating a harmonic function

on an unbounded domain, in L1 metric, by potentials of compactly sup-

ported signed measures which are O(|x|−m) at infinity, for some (large) m.

We show that such approximation is possible when the complement of the

domain is “sufficiently large”. The technique employed can equally well

be used to study approximation of harmonic functions on bounded do-

mains, by ones which have a zero of high order at a given boundary

point. Later, in Section 5, we continue the discussion of approximating

harmonic functions by rapidly decreasing ones, from a more general point

of view, whereby the approximating functions are not required a priori

to be potentials of compactly supported measures.

Sections 2 and 3 do not use the notion of quasi-balayage, and can

be read independently of the earlier paper [14]. In Section 4, quasi-

balayage is described, and used to obtain an estimate for a C1 function

of compact support on IRn with a sufficiently rich set of critical points,

in terms of a bound on its Laplacian. We prove also a closely related

estimate for functions of polynomial growth at infinity, of a type that

has been found useful in studying the regularity of free boundaries in

obstacle problems, Hele-Shaw flows and related problems, as well as the

approximation problem in Section 5.

Characteristic for our main results is a condition that the complement

of some domain in IRn be sufficiently “large”. In [14] this was achieved

usually by imposing a condition (there called “rich complement”) of posi-

tive density, defined in terms of Lebesgue volume measure. In the present
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paper we replace this kind of density by one computed in terms of Newto-

nian capacity, which leads to an essential strengthening of corresponding

results of [14].

2 – Preliminary results

2.1 – The Λ-operation

Let F be a closed bounded set in Euclidean n-dimensional space IRn

(in practice, it shall usually be a ball, sphere, or cube), and C(F ) the

Banach space of real-valued continuous functions on F , endowed with

the usual norm

(2.1) kfk = kfk1 = kfkC(F ) := max
x∈F

|f(x)| , f ∈ C(F ) .

Occasionally we will want to adapt the considerations about to be pre-

sented to analogous situations where F is in Cn, and/or the functions

comprising C(F ) are complex-valued, or vector-valued with values in

IRm or Cm; insofar as only trivial changes are needed to achieve these

modifications we shall feel free to use such adaptations without further

discussion.

Let {Em}1
m=1 be a sequence of non-empty subsets of F . From this

sequence we construct a set E#, also denoted by Λ{Em} that plays an

important role in this paper:

(2.2) Λ{Em} = E# :=
1\

M=1

clos
h 1[

m=M

Em

i
.

Here clos[ · ] denotes closure. Observe that Λ is very similar to the usual

“lim inf” operation in set theory, except for the insertion of the closure op-

eration before taking intersections. Since F is compact, E# is a nonempty

closed subset of F . We take note of some elementary properties of the

Λ-operator.

Proposition 2.3. E# is identical with the set E defined as follows:

x ∈ E if and only if there is a sequence 1 ≤ m1 < m2 < . . . , and points

xi ∈ Emi
such that xmi

→ x.
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Proof. Suppose first that x ∈ E. Then, since for each M , all but a

finite number of the xi belong to
S1

m=M Em =: TM , x belongs to clos[TM ]

and hence to
T1

M=1 clos [TM ] = E#.

Conversely, if x ∈ E#, then for each M there is a point xM in TM

at distance less than 1/M from x, and xM is in some Em with m ≥ M .

Thus, since F is compact, we may recursively pick a sequence {xM} and

xM → x such that xM belongs to one of the Em. Moreover, for fixed M we

may choose m as large as we please, hence without loss of generality can

arrange that the rank m of the chosen set Em containing xM , is at each

stage larger than those for the previously considered points xj (j < M).

This shows that x ∈ E.

Proposition 2.4. If for two sequences {Em}1
1 and {E0

m}1
1 we

have Em ⊂ E0
m for every m, then Λ{Em} ⊂ Λ{E0

m}.

Proof. Obvious.

Proposition 2.5. Λ{Em} depends only on the sets Em, not upon

their ordering.

Proof. Let {Fm} denote a permutation of the sequence {Em}. For

each M ,
S1

m=M Fm ⊃
S1

j=J Ej where J is chosen as the least integer such

that all the sets F1, F2, . . . , FM−1, in their capacity as elements of the

sequence {Em}, have subscripts less than J .

Hence,

clos
h 1[

m=M

Fm

i
⊃ clos

h 1[

j=J

Ej

i
⊃ E#

and consequently F#, the intersection of the sets on the left-hand side,

satisfies F# ⊃ E#. By symmetry the reverse inclusion also holds.

2.2 – Some families stable with respect to the Λ-operation

It is important for us to identify certain families E of subsets of F

which are Λ-stable, by which we mean: if Ej ∈ E for j = 1, 2, . . . , then

Λ{Ej} ∈ E .

Proposition 2.6. Let µ denote a positive finite Borel measure on

(the Borel subsets of) F , and suppose that c > 0. The family of all Borel
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subsets E of F such that

(2.7) µ(E) ≥ c

is Λ-stable.

Proof. Observe that, to verify that a family E of subsets of F is

Λ-stable, one has only to check the following three conditions:

(i) E is stable under formation of countable unions.

(ii) E ∈ E =⇒ clos[E] ∈ E .

(iii) The intersection of a countable, monotone decreasing family of closed

nonempty subsets of E is again in E .

It is clear that the family defined by (2.7) has these properties.

Similar results hold for other set functions in place of µ; of special

importance in the present paper is the Newtonian capacity. For each Borel

set E of IRn, we denote by cap (E) the Newtonian capacity for n ≥ 3 and

the logarithmic capacity for n = 2. Thus cap (E) is a non-negative real

number, or +1 (see [10]). We have

Proposition 2.8. Suppose that c > 0. The family of all Borel

subsets E of some given compact set F satisfying

(2.9) cap(E) ≥ c

is Λ-stable (or empty).

The proof follows the same pattern as the preceding one. We require

only two well-known properties of the Newtonian capacity cap (·): mono-

tonicity, that is, cap(E1) ≤ cap(E2) whenever E1 ⊂ E2 (this is evident);

and upper semi continuity, which for our purpose means

cap
≥ 1\

j=1

Kj

¥
= lim

j→1
cap (Kj)

holds for any decreasing sequence {Kj} of compact sets (see e.g. [5; The-

orem 5.5]).
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One can also construct Λ-stable families based on geometric proper-

ties:

Proposition 2.10. For a fixed positive integer k, and c > 0 let

M(k, c) denote the collection of all subsets E of F such that E contains

k points no two of which have mutual distance less than c. (We assume

there is at least one such set). Then, M(k, c) is Λ-stable.

Proof. We need only check that, if {Ej} are closed sets in M(k, c)

such that E1 ⊃ E2 ⊃ . . . , then E := ∩Ej is in M(k, c). Let {xj,1, . . . , xj,k}
denote points of Ej with mutual distance at least c. Since there is clearly

no loss of generality if we replace {Ej} by any infinite subsequence, we

may, and do, assume that xi := limj→1 xj,i exists for i = 1, 2, . . . , k.

Then |xi − xm| ≥ c for i 6= m; moreover for fixed i, and fixed r, all xj,i

belongs to Er as soon as j ≥ r, hence xi ∈ Er. Thus, xi ∈
T

Er = E

(i = 1, 2, . . . ,m).

Proposition 2.11. Let G denote any nonempty closed subset of F .

The collection of all subsets of F which contain a “copy” of G (i.e. σG,

for some rigid motion σ of IRm) is Λ-stable.

Proof. Again, we have only to check that if {Ej} are closed subsets

of F such that E1 ⊃ E2 ⊃ . . . , and each of which contains a copy of G

(say, σj G ⊂ Ej where σj belongs to the group R of rigid motions on IRn),

then σG ⊂ E :=
T

Ej for some σ in R. Since the group R (with the usual

topology) is locally compact and obviously the “translation” component

of σj remains bounded, we may assume w.l.o.g. that σj converges to σ

in R. When ε > 0, let Eε denote the set of points in IRn at distance less

than ε from E. For all sufficiently large j, Ej ⊂ Eε and hence σj G ⊂ Eε

for all large j, so σG ⊂ clos[Eε]. Thus,

σG ⊂
\

ε>0

clos[Eε] = E .
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One can prove any number of similar results. Here is one example in

the direction of generalizing the last proposition. We leave its proof to

the reader:

Proposition 2.12. For some α > 0 and a > 0, let T (a, α) denotes

the set of all triangles in IRn (here, by “triangle”, we mean the closed

convex hull of a set consisting of 3 points) each side of which has length

at least a, and each angle of which is at least α. The family of all sets

which contain an element of T (a, α) is Λ-stable.

Remark. If, in place of {T (a, α)} we consider the family {V (a, α)},
where each element is the set of vertices of one of the allowed triangles,

the corresponding proposition remains true.

2.3 – “Sets of uniqueness” sometimes entail estimates

Let P denote a closed subspace of C(F ). A closed set K of F is a

set of uniqueness for P , if p(x) = 0 for all x in K implies p ≡ 0, for all p

in P .

Our main concern here is when the stronger property

(2.13) kpk := max
x∈F

|p(x)| ≤ C max
x∈K

|p(x)|

holds for all p in P , where C is a constant only depending on K (and,

in interesting cases, as we shall see, even uniform for all sets K in some

specified class). Of course, without further hypotheses, K being a set of

uniqueness for P by no means implies an estimate of type (2.13) (for ex-

ample, if F is the closed unit ball of IRn, n ≥ 2 and P denotes the set of p

in C(F ) which are harmonic in the open ball, then K := {x : |x| ≤ 1/2}
is a set of uniqueness but no estimate (2.13) holds).

The main result of the present section is:

Proposition 2.14. Suppose that P is finite-dimensional, and

that E is a Λ-stable family of subsets of F , each of which is a set of

uniqueness for P . Then, there is a constant CE (depending only on E)

such that for each K in E

(2.15) kpk := max
x∈F

|p(x)| ≤ CE max
x∈K

|p(x)| .
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Proof. Suppose the contrary; then, there exists a sequence {Kj}
in E and corresponding sequence {pj} in P such that

kpjk > j max
x∈Kj

|pj(x)| .

Clearly we may normalize so that kpjk = 1. Since the unit sphere of P

is compact, we can find p in P with kpk = 1 and a subsequence of {pj}
converging (in C(F )) to p. We may, w.l.o.g. assume this is true for the

whole sequence {pj}. Thus, kpj − pk → 0 and

max
x∈Kj

|pj(x)| < 1/j .

Hence, given that ε > 0, we have

max
x∈Kj

|p(x)| < (1/j) + kp− pjk < ε

as soon as j is sufficiently large. Hence for some J

|p(x)| < ε for x ∈
[

j≥J

Kj =: TJ

and so

|p(x)| ≤ ε on clos [TJ ] ,

so a fortiori

|p(x)| ≤ ε on
\

J≥1

clos [TJ ] = Λ{Kj} .

Thus, on the set K# := Λ{Kj}, we have |p(x)| ≤ ε, and ε being arbitrary,

so p = 0 on K#. Since by hypothesis K# is a set of uniqueness for P ,

p ≡ 0, which contradicts the assumption kpk = 1.
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By combining (2.14) with earlier propositions, we now can deduce

any number of concrete estimates. We start with some which are well

known, just for illustrative purposes. In what follows, B(y, r) denotes

{x ∈ IRn : |x− y| < r} and B := B(0, 1), B = clos[B]. By Σn we denote

the unit sphere of IRn, and by Q the cube {0 ≤ x1 ≤ 1, . . . , 0 ≤ xn ≤ 1}.
P [n]

r = Pr will denote the set of polynomials in x1, . . . , xn of degree

at most r, and HP [n]
r = HPr the subset of Pr consisting of harmonic

polynomials.

Proposition 2.16. ([3], [7]) If c > 0 and n, r are given, then there

is a constant C = C(n, r, c) such that

(2.17) max
x∈Q

|p(x)| ≤ C max
x∈K

|p(x)|

holds for every p in P [n]
r and every compact K, where K ⊂ Q and K has

Lebesgue n-dimensional measure at least c.

Proof. Since sets of positive measure are sets of uniqueness for poly-

nomials (indeed, for real analytic functions), (2.16) follows from Propo-

sitions 2.14 and 2.6.

Remark. It is an interesting problem, and by no means completely

understood, to find the sharp quantitative dependence of C (n, r, c) on its

parameters (moreover, although we have placed the action in Q we could

as well have done so in B or other compact set, and then the dependence

of C also on this set is a matter of interest). The same applies to all

the estimates we shall obtain in this paper; thus, our estimates are really

of a “zeroth order”, or rather superficial nature which is to be expected

since they are based only on such general considerations as uniqueness,

and compactness. Still, they suffice for some nice applications. It is our

hope to pursue more precise estimates in future works.

Proposition 2.18. If c > 0 and n, r are given, then there is a

constant C = C(n, r, c) (we use C, C(n, r, c) etc. as generic constants

defined “locally”, there is no implied relation e.g. with the C(n, r, c) of

the preceding proposition) such that

(2.19) max
x∈Σn

|p(x)| ≤ C max
x∈K

|p(x)|



102 W. K. HAYMAN – L. KARP – H. S. SHAPIRO [10]

holds for every p in HP [n]
r and every compact subset K of Σn whose

“hypersurface measure” (= (n− 1)-dimensional Hausdorff measure) is at

least c.

Proof. The proof is analogous to that of (2.17), the only differ-

ence being that we now require the knowledge that a subset K of Σn of

positive “hypersurface measure” is a set of uniqueness for harmonic poly-

nomials. This is so because, roughly speaking, if we introduce local real-

analytic coordinates on Σn, the harmonic polynomial p is real-analytic

in those n− 1 coordinates, and hence vanishes on a relatively open por-

tion of Σn. From this, and the irreducibility over C of the polynomial

x2
1 + · · · + x2

n − 1 one deduces that p vanishes on all Σn, and hence (being

harmonic) identically.

Before moving on to the main results of the paper, we illustrate the

use of (2.14) on a few other examples. The first of these is rather trivial

and included for pedagogic purposes.

Proposition 2.20. Let p(z)=c0+c1z+· · ·+crz
r denote a polynomial

in the complex variable z with complex coefficients and z0, z1, z2, . . . , zr

points of the closed unit disk ID such that |zi − zj| ≥ c > 0 for i 6= j.

Then, there is a constant C = C(r, c) such that

(2.21) max
|z|≤1

|p(z)| ≤ C max{|p(zi)|; i = 0, 1, 2, . . . , r}

Proof. Combine (2.14) and (2.10).

Remark. In this case, a simple direct argument gives a better result:

writing p(z) =
Pr

j=0 p(zj)Qj(z), where Qj are the “Lagrange fundamental

polynomials” for the sequence z0, . . . , zr, one gets (2.21) with C = (2/c)r.

Yet, the abstract technique is useful, we could e.g. obtain analogous esti-

mates to (2.21) for multivariable polynomials where one lacks a complete

theory of interpolating polynomials.

In our next example, which is a special case of an important general

result to be proved later, we broaden the context to vector-valued func-

tions. Here our basic space is C(B, IR3), the continuous functions from

the closed unit ball B of IR3, into IR3 or, what is equivalent the space
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of triples f = (f1, f2, f3) where fi ∈ C(B, IR) and |f(x)| :=
°
f1(x)2 +

f2(x)2 +f3(x)2
¢1/2

. As our finite-dimensional subspace P , we take the set

of gradients of harmonic polynomials h in (x1, x2, x3) of degree at most r,

normalized so that h(0) = 0.

Proposition 2.22. Let T denote a nondegenerate planar triangle.

There is a constant C depending only on r and T such that for every

harmonic polynomial h in (x1, x2, x3) of degree at most r, with h(0) = 0

max
x∈B

|h(x)| ≤ C · max
x∈K

h≥
@1h(x)

¥2

+
≥
@2h(x)

¥2

+
≥
@3h(x)

¥2i1/2

holds, whenever K ⊂ B, and K contains a triangle congruent to T .

Proof. By combining (2.14) and (2.11), all we have to check is that if

gradh vanishes on a triangle (congruently embedded in IR3), h is constant

(and hence zero, since h(0) = 0). And this is clear: for, h is then constant

on the triangle and, being harmonic, is constant on a neighborhood of it

in IR3 (e.g. by the Cauchy-Kovalewskii theorem, see e.g. [6]) and hence

everywhere.

The next result shows that (2.22) extends to sets K with Newtonian

capacity bounded from below ; putting a triangle into K was just one way

of achieving this, that permitted an elementary proof. In order to do that

we need to show that compact sets with positive capacity are uniqueness

sets for harmonic functions; that is, if u is harmonic in a neighborhood

of K and gradu vanishes on K, then u is a constant.

The set {x ∈ K : | gradu(x)| = 0} (| gradu(x)| =
°
(@1u(x))2 +

· · · + (@nu(x))2
¢1/2

) is called the critical set, where in general, u is a

solution to an elliptic partial differential operator. There are many papers

dealing with the “size” of the critical sets. We did not trace who first

proved lemma 2.23 below. We refer to a very elegant proof of Hardt

and Simon [4; lemma 1.9].

Lemma 2.23. [4] Suppose that u is a non-constant harmonic

function in a neighborhood of a compact set K. Then the critical set

{x ∈ K : | gradu(x)| = 0} decomposes into a countable union of subsets

each with a finite (n− 2)-Hausdorff measure.
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We recall that cap(·) denotes the logarithmic capacity in IR2 and the

Newtonian capacity in IRn, n ≥ 3.

Lemma 2.24. Let u be harmonic in a domain ≠ and let K be a

compact subset of ≠ with cap(K) > 0. If | gradu(x)| = 0 for all x in K,

then u is a constant in ≠.

Proof. If u is not a constant, then by lemma 2.23 K = ∪1
j=1Kj,

where Kj has a finite (n− 2)-Hausdorff measure for each j. So by Frost-

man’s comparison theorem (see e.g. [5; theorem 5.14]), cap(Kj) = 0 for

all j. Since the capacity is a subadditive set-function, cap(K) = 0 which

contradicts the assumptions of the lemma.

Remark. If n = 2, then f(z) := @1u(z) − i@2u(z), z = x1 + ix2 is

an analytic function in ≠. Hence, in that case, (2.24) deals with the zero

sets of analytic functions.

Corollary 2.25. If c > 0 and n, r are given, then there is a

constant C = C(n, r, c) such that (B denoting the closed unit ball in IRn)

(2.26) max
x∈B

|p(x)| ≤ C max
ØØØ grad

x∈K
p(x)

ØØØ

holds for every harmonic polynomial p of degree at most r, satisfying

(2.27) p(0) = 0

and every compact subset K of B with cap(K) ≥ c.

Proof. Combine (2.15) and lemma 2.24 (same pattern as in earlier

proofs).

3 – Approximating harmonic functions by rapidly decreasing

ones

In this and the following sections, we present applications of the

estimates in Section 2, especially (2.26). They are the same kind of ap-

plications as in [14] but, owing to the use of “capacitary” estimate (2.26)
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in place of the measure-theoretic (2.17) and (2.19) we get sharper results

all along the line. We begin with an approximation problem.

Let ≠ denote an open, unbounded set ≠ ⊂ IRn. We denote by Lp(≠)

the usual Lebesgue space of measurable functions f on ≠ such that |f |p
is integrable, and by HLp(≠) its subspace of harmonic functions. We

address the question: Can every f in HL1(≠) be approximated arbitrarily

well (in L1(≠)) by elements of HL1(≠) which, moreover are O(|x|−k)

at 1, for some given (large) k?

In general, the answer is no. Here is a simple and instructive example.

(It can be presented in any number of dimensions, we illustrate it in

the three dimensional space). Take for ≠ the set {|x| > 1} in IR3, and

h(x) = H3(x)/|x|7 where H3 denotes an arbitrary nontrivial homogenous

harmonic polynomial of degree 3 (then, as is well known, h is harmonic in

IR3 \ {0}). Thus, h ∈ HL1(≠). We assert that h cannot be approximated

arbitrarily closely in L1(≠) by harmonic functions that are O(|x|−5) at

1. For, every such harmonic function u has an expansion

(3.1) u(x) =
1X

j=4

aj

Hj(x)

|x|2j+1

converging on {x > 1}, where Hj denotes a homogenous harmonic polyno-

mial of degree j. Indeed, by Kelvin transformation u(x) = |x|−1 U(x/|x|2)
where U(y) is harmonic on {|y| < 1}, and it is easy to see that (3.1) is

nothing else than the Taylor expansion of U(y) about y = 0, transformed

by the Kelvin transformation. If a sequence of functions of the form (3.1)

converged to h in L1(≠), then their restrictions to the sphere {|x| = 2}
would converge to the restriction of h to that sphere, in the norm of

L2({|x| = 2}, dσ) where dσ denotes surface measure on that sphere. But,

w.r.t. this norm all summands in (3.1) are orthogonal to h, so this is

impossible. We recall that Hj and Hk are orthogonal for j 6= k, on every

{|x| = r} w.r.t. the (n− 1) dimensional Lebesgue measure.

There is another, “dual” way to present this counterexample which

is, in some ways, more useful to us. We’ll only work it through in IR2.

Again, ≠ is {|x| > 1}. We’ll show that

(3.2) h(x) = r−3 cos 3θ, x1 + ix2 = reiθ
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cannot be approximated arbitrarily closely in L1(≠) by linear combina-

tions of the functions

(3.3) {r−m cosmθ, r−m sinmθ} , m ≥ 4

(or, what comes to the same, by harmonic functions on ≠ that are O(r−4),

or even o(r−3), at 1).

The dual space of L1(≠) is L1(≠), the bounded measurable functions

on ≠. The function

(3.4) f(x) = f(r, θ) := cos 3θ , r > 1

is in L1(≠) and annihilates the functions (3.3) but not h, so these func-

tions do not span h.

Define f̃ ∈ L1(IR2) by

(3.5) f̃(x) =

(
f(x) , x ∈ ≠

0 , |x| ≤ 1

and let us solve the equation (understood distributionally)

(3.6) ∆ṽ = f̃ .

We can obtain a solution ṽ which vanishes for |x| ≤ 1 if we can solve

(3.7) ∆v = f on ≠

with the boundary conditions

(3.8) v = 0, grad v = 0 on {|x| = 1}

and then set

(3.9) ṽ(x) =

(
v(x) , x ∈ ≠

0 , |x| ≤ 1 .

Indeed, the “Cauchy data zero” condition (3.8) implies that it is

correct to compute ∆ṽ “sectionally” so that ∆ṽ = f̃ (mere “Dirichlet
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data zero”, i.e. v = 0 on {|x| = 1} would not suffice for this, ∆ṽ would

pick up an unwanted measure living on the unit circle, in addition to f̃).

The problem (3.7) and (3.8), although in principle “overdetermined”,

has a unique solution. To find it, make the Ansatz

v = v(r, θ) = F (r) cos 3θ

where F is a smooth function on [1,1) such that

(3.10) F (1) = F 0(1) = 0

so that (3.8) will be satisfied. Then

∆v =
@2v

@r2
+ (1/r)

@v

@r
+ (1/r2)

@2v

@θ2
=

=
£
F 00(r) + (1/r)F 0(r)− (9/r2)F (r)

§
cos 3θ ,

so (3.7) will hold with f = cos 3θ if

(3.11) F 00(r) + (1/r)F 0(r)− (9/r2)F (r) = 1 .

Since the solutions to the corresponding homogeneous equation are r3

and r−3, it is easy to check that

(3.12) F (r) =
1

6
r3 − 1

5
r2 +

1

30
r−3

solves (3.11) with the initial conditions (3.10).

Forgetting for a moment the motivation that led us to this result, the

upshot is that we have constructed v on ≠ satisfying

∆v = f on ≠(3.13)

v(x) = O(|x|3), | grad v(x)| = O(|x|2) as x →1(3.14)

and

(3.15) v(x) = 0, grad v(x) = 0, on {|x| = 1} .
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Now, from (3.14) and (3.15) alone it follows that

Z

≠

(∆ v) · u dx = 0

for every harmonic function u on a neighborhood of the closure of ≠ such

that

(3.16) u(x) = o(|x|−3) as x →1

and

(3.17) | gradu(x)| = o(|x|−4) as x →1 ,

and in particular, for all functions (3.3). Note that the estimates (3.14),

(3.16), (3.17) and the application of Green’s identity on ≠R := {1 <

|x| < R} enable us, by letting R → 1, to deduce that
R
≠(∆ v) · u dx =R

≠ v(∆u)dx = 0. Thus, an “obstacle” to spanning L1(≠) by rapidly de-

creasing harmonic functions is the existence of a solution to a certain

overdetermined boundary value problem (3.7), (3.8) with growth restric-

tions at 1 (namely (3.14)). This is a general fact, and keeping it in

mind should simplify the understanding of the more general situation to

be considered shortly.

What “goes wrong” in the preceding counter-example is that the

complement of ≠ is “too small”—indeed it was bounded. But, using the

“Cauchy problem” reformulation we can easily give a counter-example in

which 1 is a boundary point. Namely, look at the domain G := ≠× IR1

where ≠ is, as above, {x ∈ IR2 : |x| > 1}. Thus, G is the exterior of a

circular cylinder. We introduce coordinates so that

G = {x ∈ IR3 : x2
1 + x2

2 > 1} .

We shall show that, in L1(G), the set of harmonic functions u on G

satisfying

(3.18) u(x) = o(|x|−4), | gradu(x)| = o(|x|−5) as x →1, in G ,

do not span HL1(G). In fact, they fail to span the function

(3.19) h(x1, x2, x3) := (x1 − ix2)
3/|x|7 .
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(It is convenient here to work with complex-valued functions; but

one can also present the example adapted to real-valued functions, by

just taking real parts throughout.)

To see this,observe first that

(3.20) ϕ(x1, x2, x3) := (x1 + ix2)
3/(x2

1 + x2
2)

3/2

is bounded (indeed, of constant modulus 1) on G and
R

G hϕdx 6= 0, since

hϕ > 0 on G. Hence, our assertion will follow if we verify

(3.21)

Z

G

hu dx = 0

for all u ∈ HL1(G) satisfying (3.18). Now, by a slight modification of the

calculation just presented,

(3.22) v(x1, x2) :=
≥1

6
r3 − 1

5
r2 +

1

30
r−3
¥
e3iθ, where x1 + ix2 = reiθ

satisfies ∆v = e3iθ as well as (3.14) and (3.15). Hence

V (x1, x2, x3) := v(x1, x2)

satisfies in G,

(3.23) ∆V = ϕ

and

(3.24) V (x) = O(|x|3), | gradV (x)| = O(|x|2) as x →1, in G

as well as

(3.25) V = 0, gradV = 0 on @G .

These estimates, together with a “Green’s identity” argument as before

imply

0 =

Z

G

V ∆u dx =

Z

G

u∆V dx ,
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that is, in view of (3.23) we have proved (3.21) and therewith our asser-

tion.

We turn next to sufficient conditions for the desired approximation,

but need first some preliminary notions and notations.

For a (Schwartz) distribution µ of compact support in IRn, its New-

tonian potential Uµ can be defined either as

(3.26) Uµ = En ∗ µ

where En is the fundamental solution to the Laplace operator:

(3.27) En =

(
c2 log |x| , n = 2

cn|x|2−n , n ≥ 3 ,

cn being suitable constants so that ∆En = −δ in the distributional sense,

or as the unique solution to

(3.28) ∆U = µ

satisfying

(3.29) U(x) ∼ const log |x|, as x →1 (n = 2)

or

(3.30) U(x) → 0, as x →1 (n ≥ 3) .

In [14; Proposition 4.2] it was proved that if µ is a measure with

compact support, then for each nonnegative integer m, the conditions

(3.31) Uµ(x) = O(|x|1−m−n) , x →1

and

(3.32) µ annihilates HPm, in the sense

Z
f dµ = 0, for all f ∈ HPm

are equivalent. Thus, with no extra assumptions Uµ is O(|x|2−n), whereas

if
R

dµ = 0 then Uµ is O(|x|1−n), and if µ annihilates HP2, then Uµ is

O(|x|−1−n), and hence is integrable over IRn.
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From a practical, as well as theoretical point of view, it is very con-

venient to work with potentials as harmonic approximants. The simplest

potentials, those of point masses (in other words x 7→ En(x− y)) are too

slowly decreasing at 1 and we must take linear combinations to generate

harmonic functions of rapid decrease at 1. In this paper we work with

the following special classes of potentials.

Definition 3.33. For an open set ≠, Rm(≠) denotes the class of

potentials of measures compactly supported in IRn \ ≠ and which anni-

hilate HPm. By R#
m(≠) we denote the subset of Rm(≠) containing the

potentials of measures with compact support in IRn \ ≠. (Observe that

the symbol # is used here in a completely different sense than in (2.2).)

Observe that Rm(≠) ⊂ HL1(≠) if m ≥ 2, by (3.31). Of course, for

Rm(≠) to be nonempty, IRn \ ≠ must contain at least 1 + dim(HPm)

points. To avoid trivialities, we shall always assume

Condition 3.34. Every boundary point of ≠ is the limit of a se-

quence of interior points of (IRn \ ≠).

This condition implies that if f belongs to L1(≠) and it annihilates

R#
m(≠), then it annihilates Rm(≠) as well. Hence, under condition 3.34,

R#
m(≠) is dense in Rm(≠) (in the L1(≠) metric), for all m ≥ 2. The func-

tions in R#
m(≠) are nicer, of course, being harmonic on a neighborhood

of ≠.

One can also consider instead of Rm(≠) the broader class of potentials

of distributions Dm compactly supported in IRn\≠ which annihilate HPm.

Thus, Karp and others used Newton kernels En(x − y) from which a

number of terms of the Taylor expansion (w.r.t. y) have been subtracted

off, to achieve rapid decay w.r.t. x for large |x|. This amounts to choosing

elements of Dm based on distributions supported at a single point y. Since

R#
m(≠) is L1(≠)-dense in Dm(≠) for m ≥ 2 and ≠ satisfying (3.34), it is

largely a matter of indifference which of these classes we work with. It is

a result due to Karp [8; Corollary 2.4] that R#
2 (≠) is dense in HL1(≠)

when (3.34) holds. One can also prove the corresponding result for R#
2 (≠)

directly, by methods used in the present paper, but we shall not do so

here.

The analogous theorem for approximation by holomorphic functions

(in an open set of the complex plane) was proved in [1]: Rational functions
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of the form

(3.35) f(z) =

Z
dµ(w)

z − w
(z ∈ ≠)

where µ is a complex measure compactly supported on IR2 \≠ and satis-

fying

(3.36)

Z
dµ(w) =

Z
w dµ(w) = 0 ,

(which implies f(z) = O(|z|−3) and hence is integrable) are dense in

AL1(≠), the space of holomorphic functions in L1(≠). Moreover, it is

enough to allow only discrete measures µ, supported at 3 points. Similar

refinements can be obtained for harmonic approximation. But we leave

this aside now, and formulate one of our main results.

Theorem 3.37. Suppose that ≠ satisfies the following conditions:

(3.38) lim sup
R→1

cap (B(0, R) \ ≠)

cap B(0, R)
> 0

and (3.34). Then, whenever m ≥ 3, R#
m(≠) is dense in R#

2 (≠) in the

metric of L1(≠), and hence in HL1(≠).

Remarks. A condition like (3.38), but with lim inf on the left, has

appeared in works of several authors on potential theory, as a measure

of the “massiveness” of a set (in this case, the complement of ≠), and

various terms have been used for it (“uniformly perfect”—Pommerenke,

“uniformly fat”—J. Lewis: see [11], [12]). It is a stronger requirement

than 1 being a regular point for Dirichlet’s problem. We shall have need

of this “lim inf” condition later in this paper.

In the condition (3.38) it is easy to see that the origin plays no special

role; centering the balls at some other point would give an equivalent

condition.

For the proof we shall require a lemma, of independent interest.

Lemma 3.39. Let p denote a harmonic polynomial in x=(x1, . . . , xn).

Suppose that there is a closed set K ⊂ IRn such that

(3.40) lim sup
R→1

cap (B(0, R) ∩K)

cap (B(0, R))
> 0
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and

(3.41) | grad p(x)| ≤ C(1 + |x|)c for x ∈ K ,

where C, c are positive constants. Then the degree of p is at most c + 1.

Proof. The hypotheses imply there is a sequence {Rj} and Rj →1,

and there is a positive constant a such that

(3.42)
cap (B(0, Rj) ∩K)

cap (B(0, Rj))
≥ a j = 1, 2, . . .

Since our hypotheses remain unchanged if we add a constant to p, we

may assume w.l.o.g. that p(0) = 0. Now, consider the sequence {fj}
where fj(y) := p(Rjy). This is a sequence of harmonic polynomials of

fixed degree and fj(0) = 0. We write Kj = {y ∈ B : Rjy ∈ K}. Then

the left member in (3.42) equals

(3.43)
cap (Kj)

cap (B)

since the ratio of capacities is unaffected by scale change (see e.g [10;

theorem 2.9, p. 158]), so the quantity in (3.43) is at least a.

Since grad fj(y) = Rj grad p(Rjy), we have by (3.41) that

(3.44) | grad fj(y)| ≤ C Rj(1 + Rj)
c for y ∈ Kj .

We now invoke (2.25), which is applicable since cap(Kj) ≥ a for all j,

and obtain

|fj(y)| ≤ C1 Rj(1 + Rj)
c for |y| ≤ 1

where C1 is some new constant (independent of j). Thus,

|p(Rjy)| ≤ C1 Rj(1 + Rj)
c for |y| ≤ 1

so

|p(x)| ≤ C1 Rj(1 + Rj)
c for |x| ≤ Rj .
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Hence, M(R) := max |p(x)| : |x| ≤ R satisfies

(3.45) lim inf
R→1

M(R)

Rc+1
< 1

and it is well known that this implies that the harmonic polynomial p has

degree at most c + 1.

Remark. Just for completeness, here is a very simple proof that

(3.45) implies deg p ≤ c+1 (indeed, for any polynomial p, not necessarily

harmonic). Let p = p0 + p1 + · · · + pr be the decomposition of p into

homogeneous polynomials (r = deg p), so that each pk is either 0 or

homogeneous of degree k. Write x = tξ where |ξ| = 1 and t = |x|, then

(3.46) p(x) =
rX

k=0

pk(ξ)t
k .

For fixed ξ, p(tξ) is a polynomial in t, and since

lim inf
t→1

p(tξ)

tc+1
< 1

(from (3.45)), this polynomial has degree at most c + 1. Consequently,

from (3.46), each pk with k > c + 1 must vanish on the unit sphere, and

hence (being homogeneous) identically.

Proof of Theorem 3.37. By well-known functional analysis (F.

Riesz representation theorem, Hahn-Banach theorem), we have to show

that if f ∈ L1(≠) and

(3.47)

Z

≠

f h dx = 0 when h ∈ R#
m(≠) ,

then

(3.48)

Z

≠

f h dx = 0 when h ∈ R#
2 (≠) .

Define f̃ ∈ L1(IRn) by

(3.49) f̃(x) =

(
f(x) , x ∈ ≠

0 , x ∈ IRn \ ≠ .



[23] Newtonian capacity and quasi-balayage 115

Then by Theorem 4.1 in [8], there exists a solution v to

(3.50) ∆v = f̃ on IRn ,

in the sense of distributions (and, continuously differentiable on IRn) sat-

isfying

|v(x)| ≤ C(1 + |x|)2 log(2 + |x|) ,(3.51)

| grad v(x)| ≤ C(1 + |x|) log(2 + |x|) .(3.52)

Now, (3.47) can be written

(3.53)

Z

IRn
(∆v)Uµdx = 0 ,

for all measures µ which annihilate HPm and which are supported in

IRn \≠. It remains to deduce the corresponding result for µ that annihi-

lates HP2.

Now, for µ which annihilates HP2 we have as x → 1 (see [14; Sec-

tion 4])

Uµ(x) = O(|x|−n−1)(3.54)

| gradUµ(x)| = O(|x|−n−2) .(3.55)

In view of Green’s formula (still valid in this “distributional” setting)

(3.56)

Z

B(0,R)

(∆v)Uµdx−
Z

B(0,R)

(∆Uµ)v dx

is equal to a sum of integrals over the sphere of radius R, which are easily

seen to be estimated by

(3.57) C Rn−1(| grad v| · |Uµ| + |v| · | gradUµ|)

(the functions being evaluated at points of the sphere), and by virtue

of (3.51), (3.52), (3.54), (3.55) we see that (3.57) is O(R−1/2) so, (3.56)

tends to 0 as R →1 and we have

(3.58)

Z

IRn
(∆v)Uµdx =

Z

IRn
v(∆Uµ)dx = −

Z
v dµ .
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So by (3.53) and (3.58), every compactly supported measure µ in IRn \≠
which annihilates HPm, annihilates also v. Now, since HPm is a finite

dimensional subspace of C(IRn \≠) (the space of continuous functions in

IRn \ ≠), C(IRn \ ≠) is a direct sum, with HPm as one of its summands

(see e.g. [13; theorem 4.21]). Therefore, there is a harmonic polynomial

p of degree at most m such that

(3.59) v(x) = p(x) for x ∈ IRn \ ≠ .

We now set K = IRn \≠. Then K satisfies (3.40) and, by (3.59), we have,

if x ∈ K,

| grad p(x)| = | grad v(x)| = O (|x| log |x|)
for large |x|, because of (3.52). Hence, by lemma (3.39) p has degree

at most 2. That is, v coincides on IRn \ ≠ with an element of HP2.

Hence, (3.58) implies that (3.53) holds for all measures µ compactly sup-

ported in IRn \≠ which annihilate HP2. Thus (3.48) holds and the proof

is now completed.

Remark. The condition (3.40), in terms of Newtonian capacity,

while yielding useful results in lemma 3.39 and theorem 3.37 is by no

means necessary, and the search for better conditions leads to interesting

problems concerning harmonic polynomials to which we hope to return.

For example, there even exist countable sets K which, in (3.41) lead to the

same conclusion; indeed, it is easy to see that there are countable sets K,

tending to 1 arbitrarily fast, such that any polynomial (harmonic or

not) that is O(|x|m) on this set has degree at most m: just take a dense

subset {ξj} of the unit sphere, and construct K so that it meets each of

the half-rays from 0 passing through one of the ξj at a sequence of points

tending to 1.

We shall return in Section 5 to the approximation problem discussed

above, and present a different approach.

4 – Quasi-balayage, a priori estimates, and Phragmén-Lindelöf

theorems

What is quasi-balayage, and what is it good for? The “philos-

ophy” of quasi-balayage was explained in [14] and need not be repeated
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here in detail. We shall instead illustrate it with an example: Consider

functions ϕ in C1
c (≠) (the class of infinitely differentiable functions on

some open set ≠ of IRn, with compact support). An important problem

in p.d.e’s is to obtain “a priori estimates” which means typically, to es-

timate some norm of ϕ or of its partial derivatives in terms of some, in

general different, norm of Mϕ where M is some differential operator.

Such estimates are needed for a broad range of applications to questions

of existence, uniqueness, regularity, unique continuation, etc.

Quasi-balayage is a technique specifically designed to permit sup

norm estimation of ϕ (and its derivatives) from sup norm estimates of ∆ϕ.

This is of course a rather narrow problem, but important in various as-

pects of potential theory. Quite probably some of the techniques could

be adapted for other elliptic operators and Lp norms, although that is

for the future. Especially, it is useful in exploiting the vanishing of ϕ on

parts of the space to improve the estimates.

For y ∈ ≠ we have, when ϕ ∈ C1
c (≠),

ϕ(y) = −
Z

IRn
(∆ϕ)(x)E(x− y)dx = −

Z

≠

(∆ϕ)(x)E(x− y)dx

where E denotes the fundamental solution, so

|ϕ(y)| ≤ k∆ϕk1 ·
Z

≠

|E(x− y)|dx .

If the last integral is finite, this gives an estimate controlling the growth

of ϕ(y). However, for sharper estimates (see (4.11) below ) or for “large”

domains, e.g. ≠ a half-space, the integral diverges for every y in ≠ and this

approach gives nothing, even though (as we shall now show) nontrivial

estimates are possible.

Theorem 4.1. Suppose that K is a compact subset of the closed

unit ball B such that cap(K) ≥ a > 0. Then for any ϕ in C1
c (IRn) such

that gradϕ vanishes on K, we have

(4.2) |ϕ(y)| ≤ |ϕ(0)| + C(n, a)k∆ϕk1 when y ∈ B.

Remark. It is important that k∆ϕk1 on the right side refers to

the sup norm of ∆ϕ over all of IRn; it is remarkable that the more
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ambitious inequality where k·k1 is taken only over B is false. So, in order

to appreciate (4.2) let us straight away give such an example, adapted

from [9].

We take n = 2. Let θ be any function in C1
c (IR2) such that θ = 1 on

B ∩ {x1 ≥ 0}, and θ = 0 on B ∩ {x1 ≤ −1/2}, and define

ϕ∏(x) = θ(x)e∏x1 sin∏x2 , ∏ > 0 .

Then

(4.3) ∆ϕ∏ = (∆θ)(e∏x1 sin∏x2) + 2∏e∏x1 [θ1 sin∏x2 + θ2 cos∏x2]

where θi denotes @θ/@xi. If x ∈ B∩{x1 ≥ 0}, then the right side of (4.3)

is 0, so |∆ϕ∏(x)| is bounded in B by C∏ with C independent of ∏. But,

ϕ∏(1/2, 1/2) = e∏/2 sin(∏/2), hence

ϕ∏(1/2, 1/2)

sup
B

|∆ϕ∏|
→ 1

as ∏ → 1 through a suitable sequence. Moreover, all ϕ∏ vanish on

B ∩ {x1 ≤ −1/2}. So, the stronger version of (4.2) is violently false!

Proof of Theorem 4.1. There is clearly no loss of generality in

assuming ϕ(0) = 0. Now, by Corollary 2.25 (used in a very weak way!)

there is a constant C(n, a) such that

(4.4) max
x∈B

|p(x)| ≤ C(n, a)max
x∈K

| grad p(x)|

holds for all p in HP2 with p(0) = 0. By duality (see [14; Section 3] for

details) this implies that for each y in B there is a distribution σ = σy of

order 1 supported in K such that

(4.5) p(y) = hp, δyi = hp, σi

holds for every p in HP2 with p(0) = 0, and the norm of σ is at most

C(n, a). Here δy denotes the Dirac measure at the point y. More con-

cretely, this means there are measures µ1, . . . , µn such that, in (4.5)

hp, σi =
nX

i=1

Z
(@p/@xi)dµi
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with
P

i kµikM ≤ C(n, a). Taking account of the normalization we can

write in place of (4.5)

(4.6) f(y) = hf, σi+ hf, δ0i

for every f in HP2 (we have let p(y) = f(y) − f(0) in (4.5)). Another

way to formulate (4.6) is that the distribution

τ = τy := σy + δ0

has the same action on HP2 as δy. This is the “quasi-balayage”: we

have “swept” δy to a distribution τy living on K ∪ {0}, having the same

action on a (to be sure, very limited!) class of harmonic functions, in this

case HP2.

After these preliminaries, we can now complete the proof of the theo-

rem. By Proposition 10.6 of [14] the potential of δy−τy (which we denote

simply by U∏, ∏ := δy − τy) is integrable over IRn with L1 norm at most

C(n) times the norm of ∏, hence at most C1(n, a). We have

(4.7) ϕ(y) = hϕ, δy − τyi = hϕ, ∏i = −
Z

IRn
(∆ϕ)U∏dx.

(It is important to note here that τy annihilates ϕ because gradϕ vanishes

on supp σy; this aspect of quasi-balayage, sweeping on to a distribution

of order 1 rather than a measure, was discussed theoretically in [14] but

is used for the first time here.)

From (4.7),

|ϕ(y)| ≤ k∆ϕk1
Z

IRn
|U∏(x)|dx ≤ C1(n, a)k∆ϕk1

and the proof is finished.

Remark 1. In this theorem, the capacity hypothesis entered only

very weakly, all we need to impose on K is some condition ensuring

that if grad p vanishes on K when p ∈ HP2, then p is a constant on B

(see Proposition 2.14). It is easy to construct explicitly finite sets with

this property, but even for this simple situation there does not seem to

exist a general theory (in case n = 2 it is of course easy to get sharp



120 W. K. HAYMAN – L. KARP – H. S. SHAPIRO [28]

estimates). In our next theorem, we shall have to do quasi-balayage for

HPm with m in principle large, but even so use of capacity conditions,

although convenient, seems like “overkill”, and it should be a worthwhile

undertaking to seek the basic metrical properties of finite sets which really

are at the root of estimates like (2.26).

Remark 2. By an almost identical argument, using Proposition 10.1

of [14] we obtain, under the hypotheses of theorem (4.1):

(4.8) | gradϕ(y)| ≤ C2(n, a)k∆ϕk1 when y ∈ B .

Corollary 4.9. Let ≠ be an open bounded set such that

(4.10) lim inf
r→0

≥
inf

x∈@≠

cap(B(x, r) ∩ (IRn \ ≠))

cap(B(0, r))

¥
> 0 .

Then for any ϕ in C1
c (≠),

(4.11) |ϕ(y)| ≤ C1d
2(y)k∆ϕk1 ,

and

(4.12) | gradϕ(y)| ≤ C2d(y)k∆ϕk1 ,

where d(y) is the distance from y to IRn \≠, and C1 and C2 are constants

depending only on n and the value of the lim inf in (4.10).

Proof. By the assumptions, there is a positive constant a and a

positive r0 such that

(4.13)
cap(B(y0, r) ∩ (IRn \ ≠))

cap(B(0, r))
≥ a

for all y0 in @≠ and for all r ≤ r0. For each y in ≠ with d(y) ≤ r0, let y0

be the nearest point to y on @≠. Set √(x) = ϕ(rx + y0), then √(0) = 0

and grad√ vanishes on

Kr,y0
:= {x ∈ B(0, 1) : rx + y0 ∈ IRn \ ≠} .
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By an argument used in Section 3 and by (4.13),

cap(Kr,y0
)

cap(B(0, 1)
≥ a for r ≤ r0 .

Hence, by applying the estimate (4.2) we have

sup
B(0,1)

|√(x)| ≤ |√(0)| + C(n, a)k∆√k1 = C(n, a)r2k∆ϕk1 ,

or

sup
B(y0,r)

|ϕ(y)| ≤ C(n, a)r2k∆ϕk1 .

Taking r = d(y) we obtain (4.11) when d(y) ≤ r0. Since ϕ(y) is bounded

by k∆ϕk1, (4.11) holds for all y in ≠ with a larger constant. The proof

of (4.12) is similar.

By duality, every estimate like (4.11) implies an existence theorem:

Corollary 4.14. Suppose that ≠ satisfies the hypotheses of Corol-

lary 4.9. Then, for every measure µ in ≠ satisfying

(4.15)

Z

≠

d(x)2d|µ| < 1

there is u in L1(≠) satisfying (distributionally) ∆u = µ in ≠.

Proof. Applying Proposition 5.1 of [14] to (4.11) gives the existence

of a measure ∫ in ≠ with k∫kM < 1 satisfying ∆∫ = µ. By elliptic

regularity theory ∫ ∈ Lp
loc for p < n

n−2
, so d∫ can be identified as an

element u ∈ L1(≠) ∩ Lp
loc (we also get an estimate for kuk1, which we

omit).

Corollaries 4.9 and 4.14 were proved by Bruna and Ortega-Cer-

dá [2], but instead of (4.10) they assumed that ≠ has a smooth boundary.

They also showed that for nonnegative measures, (4.15) is a necessary

condition. In a similar way we can consider also the case when ≠ is

unbounded and satisfies the capacitary density condition at infinity.
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Corollary 4.16. Suppose that ≠ is an open set and K = IRn \ ≠

satisfies

(4.17) lim inf
R→0

cap(B(0, r) ∩K)

cap(B(0, R))
> 0 .

Then, for every measure µ in ≠ satisfying
Z

≠

(1 + |x|)2d|µ|(x) < 1

there is u in L1(≠) satisfying ∆u = µ.

A very interesting use of a priori estimates is in estimating the size

of zero sets of holomorphic functions, in one or several variables, as well

as the inverse problem of constructing holomorphic functions in various

classes with prescribed zero-sets (cf. [2] for examples, and references). We

illustrate the idea with an example, in one complex dimension. Suppose

that f is holomorphic and non-constant on a domain ≠ in the complex

plane with zeros precisely at the points {zj}, mj denoting the multiplicity

of zj. Then, in the sense of distributions, ∆u = 2πµ where µ is the

measure putting mass mj at zj, and elsewhere zero, and u := log |f |.
This is equivalent to

(4.18) 2π

Z
ϕdµ =

Z
ϕ∆u =

Z
u∆ϕ for all ϕ ∈ C1

c (≠) .

Suppose for example, for some positive continuous w on ≠,

J(f) :=

Z

≠

| log |f(z)kw(z)dA(z) < 1

where dA denotes area measure. Then from (4.18)

2π
ØØØ
Z
ϕdµ

ØØØ ≤
Z

|u∆ϕ|dA ≤ J(f) sup
z∈≠

|∆ϕ(z)|
w(z)

.

Thus, a necessary condition for the existence of a nontrivial f with

J(f) ≤ M having the zero-set described by µ is that the “a priori in-

equality”

(4.19) 2π
ØØØ
Z
ϕdµ

ØØØ ≤ M sup
z∈≠

|∆ϕ(z)|
w(z)
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hold for every ϕ ∈ C1
c (≠). Moreover, with certain additional assump-

tions, the reasoning can be reversed, and from (4.19) follows the existence

of a nontrivial f having J(f) at most M , and with the prescribed zeros.

Estimates of type (4.19) can be obtained using quasi-balayage, although

we won’t pursue that here.

Generally speaking, quasi-balayage is a useful tool for estimating

functions vanishing with their gradient outside the set of interest. It

does not seem useful for estimation problems lacking this feature. Con-

sider, e.g. the Dirichlet problem to construct a solution u to ∆u = f in

some domain ≠ such that u = 0 on @≠ (we may assume ≠ has a smooth

boundary, but may be unbounded, and that f is in some reasonable class,

say L1(≠)). The solvability of this problem is equivalent to

(4.20)

Z

≠

f ϕdx =

Z

≠

(∆u)ϕdx =

Z

≠

u∆ϕdx

where the test class can now be taken as the set of smooth, compactly

supported functions on IRn which vanish on @≠. If, for example a solution

u exists satisfying |u(x)| ≤ w(x), for every f in L1(≠) with kfk1 ≤ 1,

then (4.20) implies the estimate

(4.21)

Z

≠

|ϕ|dx ≤
Z

≠

w(x)|∆ϕ(x)|dx

for all ϕ in the test class just described and, conversely, by standard

functional analysis (see e.g. [14; Proposition 5.1]) (4.21) would imply

the solvability of the Dirichlet problem as formulated. There are two

difficulties in trying to prove (4.21) by the use of quasi-balayage. The

first step is always to express ϕ(y), for y in ≠ as

(4.22) −
Z

IRn
(∆ϕ)(x)U δy−∫y(x)dx

where ∫y is a quasi-balayage measure of δy (relative to HP2) living on @≠,

the set where ϕ is known to vanish. This is already a difficulty, because @≠

may well not permit such quasi-balayage e.g. it could be a halfplane, or

more generally a level set of a nontrivial polynomial in HP2. But, apart

from this, a more serious difficulty is that the estimation of (4.22) involves

bounding |(∆ϕ)(x)| for all x in IRn, not merely in ≠, so we can’t get an
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estimate of type (4.21) unless we can first show that ϕ|≠ can be redefined

outside of ≠ so as to remain in C2(IRn), with appropriate bounds on ∆ϕ

outside ≠; and such an extension problem is probably harder than the

Dirichlet problem itself. The important point to be made here is that,

since ϕ vanishes only simply on @≠ (i.e. grad ϕ need not be zero there)

redefining it as 0 on the exterior domain is not permissible, since then

the distribution ∆ϕ would pick up an unwanted contribution on @≠. In

some very special situations the extension problem is easily dealt with,

e.g. if ≠ is a half-space (say, {xn > 0}) and ϕ = 0 on @≠, then ϕ may be

redefined on IRn \ ≠ so as to have odd symmetry w.r.t. the hyperplane

{xn = 0}. In this way, the estimate (4.21) with ≠ = IRn and w(x) =

C(1+|x|))2·log(2+|x|) due essentially to Karp [8], valid for ϕ in C1
c (IRn),

can be proved also for a half-space ≠ and test functions ϕ vanishing on

@≠—which leads, as already described, to solvability with bounds of a

Dirichlet problem in the half-space. It seems an interesting problem to

try to extend this (by whatever method) to other domains. For a good

survey of the Dirichlet problem in unbounded domains, see [15].

Our final result in this section deals with non-compactly supported

functions. This, which can be regarded as a theorem of Phragmén-

Lindelöf type for solutions of Cauchy’s problem, has significant applica-

tions to the regularity of free boundaries, which will be given elsewhere.

Theorem 4.23. Suppose that u ∈ C1(IRn) and that u satisfies

(i) ∆u ∈ L1(IRn),

(ii) gradu vanishes on a set K satisfying (4.17),

(iii) |u(x)| = O(|x|k), |x| → 1 for some positive k.

Then

|u(y)| ≤ |u(0)| + C1k∆uk1 (1 + |y|)2(4.24)

| gradu(y)| ≤ C2k∆uk1(1 + |y|)(4.25)

hold for all y in IRn. Here C1, C2 are constants depending only on n and

the lim inf in (4.17).
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Proof. The proof follows the same pattern as those of theorem 4.1

and Corollary 4.9, so we only indicate where something additional is

needed. First of all, it is enough to obtain “local” estimates for u(y) and

gradu(y) when y ∈ B, analogous to (4.2) since then the global result

follows by a scaling argument. And, in the proof of the local result only

one novelty arises: to justify the partial integration step

u(y) = hu, δyi =

Z

IRn
u∆U∏ydx =

Z

IRn
(∆u)U∏ydx

where ∏y is δy minus its quasi-balayage distribution onto K, we have to

make sure U∏y decays at 1 fast enough so that, for large |x|,

(4.26) |u(x)| · | gradU∏y(x)| + | gradu(x)| · |U∏y(x)| = o(|x|−n+1) .

Now, hypotheses (i) and (iii) imply, by standard elliptic estimates,

| gradu(x)| = O(|x|k−1) for large |x|. Thus, to ensure (4.26) we only need

choose the “order of quasi-balayage”, that is, do quasi-balayage w.r.t.

HPm, where m is so large that for distributions ∏y annihilating HPm we

have

| gradU∏y(x)| = o(|x|−n−k), |U∏y(x)| = o(|x|−n−k+1)

and these follow for large enough m, see [14; Section 4 and 10].

Remark. The estimates

|u(y)| ≤ |u(y0)| + C1k∆uk1|y − y0|2(4.27)

| gradu(y)| ≤ C2k∆uk1|y − y0|(4.28)

near a finite point y0, analogous to (4.24) and (4.25), hold under the

analogous (to (4.17)) condition

lim inf
r→0

cap(K ∩B(y0, r))

cap B(0, r)
> 0 .

The proofs are similar to the preceding. Note that in this case it suffices

to do the quasi-balayage w.r.t. HP2. See Remark 1 below the proof of

Theorem 4.1.
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5 – Approximation by rapidly decreasing harmonic functions,

continued

We present here concisely another approach to the approximation

problem dealt with in Section 3.

Definition 5.1. For an open connected set ≠ of IRn, and a positive

integer m, Hm(≠) will in this section, denote the set of functions h har-

monic in ≠, and such that h(x) = O(|x|−m−1), | gradh(x)| = O(|x|−m−2)

as |x| → 1.

Theorem 5.2. Suppose that ≠ 6= IRn and that k is a positive

integer. Then the following are equivalent

(a) Hn+k (≠) is dense in HL1(≠).

(b) For every f in L1(≠) we define

(5.3) f̃(x) =

(
f(x) , x ∈ ≠

0 , x 6∈ ≠ .

Then if u is a solution of

(5.4) ∆u = f̃ , on IRn

satisfying

(5.5) u(x) = 0, | gradu(x)| = 0 on IRn \ ≠ ,

and

(5.6) u(x) = O(|x|k+2) , as |x| → 1

we also have

(5.7) u(x) = O(|x|2 log |x|) , as |x| → 1 .
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Note that this theorem gives an equivalent condition for approxima-

bility, in terms of a Phragmén-Lindelöf type condition for solutions to

Cauchy’s problem, similar to those discussed in Section 4.

The proof will be presented elsewhere; let us here only illustrate the

use of this theorem.

Example 5.8. We define ≠ = {x ∈ IRn : |x| > 1}. Let p denote

a nontrivial homogeneous harmonic polynomial of degree m, and let √

be a function in C1(IRn), equal to 0 for |x| ≤ 1 and to 1 for |x| ≥ 2.

Define u = √p. Then u and gradu vanish on IRn \ ≠, ∆u ∈ L1(IRn)

since ∆u(x) = 0 for |x| ≥ 2, but u(x) is not o(|x|m) as |x| → 1. This

shows that (e.g. taking m = k + 2 = 3), u satisfies (5.3) (for some f

in L1(≠)), (5.5), and (5.6), but not (5.7). Thus, by theorem 5.2 we

conclude: Hn+1(≠) is not dense in HL1(≠).

Example 5.9. We define G = {x ∈ IR3 : x2
1 + x2

2 > 1,−1 < x3 <

1}. Let u(x1, x2) be as in the preceding example (for dimension n = 2),

and v(x1, x2, x3) = u(x1, x2). Then, it is easy to check that ∆v ∈ L1(IR3)

and v, in place of u, satisfies (5.5), (5.6) (for k = 1, if we take m = 3)

but not (5.7). We conclude that H4(G) is not dense in HL1(G).

To use theorem 5.2 in the opposite direction, and deduce approx-

imation theorems, we can apply Phragmén-Lindelöf type theorems, as

in the preceding section to show (for domains ≠ with sufficiently large

complement) that (5.7) follows from the remaining properties of u. In

particular, we have:

Proposition 5.10. If the “upper capacitary density” condition

(5.11) lim sup
R→1

cap (B(0, R) \ ≠)

cap (B(0, R))
> 0

holds, then u satisfying ∆u ∈ L1(IRn), (5.5), and (5.6) for any k, also

satisfies (5.7). Consequently, for ≠ satisfying (5.11), and ≠ 6= IRn, Hm(≠)

is dense in HL1(≠) for m ≥ n + 1.
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If ≠ satisfies the stronger condition, analogous to (5.11) but with lim

inf (i.e. its complement has positive “lower capacitary density”) then we

can, assuming the remaining hypotheses of Proposition 5.10, deduce in

place of (5.7) the stronger condition

(5.12) u(x) = O(|x|2) ; x ∈ ≠, |x| → 1

which, as already remarked, is useful in certain problems involving the

regularity of free boundaries. The proofs of Proposition 5.10, and the

analogous assertion concerning (5.12) are implicit in the results in Sec-

tions 3 and 4.
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