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of the heat equation in a dihedral angle
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Riassunto: Si dimostrano stime coercive negli spazi Lp con peso per le soluzioni
degli problemi di Cauchy-Dirichlet e di Cauchy-Neumann per la equazione del calore nel
diedro n-dimensionale con l’angolo d’apertura arbitrario: θ ∈ (0, 2π]. La dimostrazione
e basata sulle stime delle funzioni di Green di questi problemi.

Abstract: We prove coercive weighted Lp-estimates for the solutions of the Diri-
chlet and Neumann initial-boundary value problems for the heat equation in n-dimen-
sional dihedral angle with arbitrary opening angle θ ∈ (0, 2π]. A crucial role in the proof
of this result is played by pointwise estimates of the Green functions of these problems.

1 – Introduction

The present paper which can be considered as a complement to the

article [12] is concerned with Lp-estimates for solutions of the Dirichlet

and of the Neumann initial-boundary value problems in an infinite wedge

Key Words and Phrases: Parabolic initial boundary value problems — Weighted
estimates.
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Dθ ⊂ IRn with the opening angle θ ∈ (0, 2π]:

{
ut − ∆u = f(x, t) , x ∈ Dθ, t > 0 ,

u|t=0 = 0 ,
(1.1)

u|∂Dθ
= 0 ,(1.2)

∂u

∂n

∣∣∣
∂Dθ

= 0 .(1.3)

We assume that Dθ = dθ × IRn−2 = {x ∈ IRn : x′ = (x1, x2) ∈ dθ,

x′′ = (x3, ..., xn) ∈ IRn−2} where dθ is an infinite plane sector which can

be given in the polar coordinates {r = |x′|, ϕ = arctgx2/x1} by the

relations

r > 0 , 0 < ϕ < θ .

We denote by Γ0 and Γ1 the faces of Dθ: Γ0 = γ0 × IRn−2, Γθ =

γ1 × IRn−2, where γ0 = {ϕ = 0, r > 0} and γ1 = {ϕ = θ, r > 0} are

boundary lines of dθ.

The case n = 2, when Dθ = dθ, Γi = γi, i = 0, 1, is not excluded.

The main result of the paper is contained in the following two theo-

rems.

Theorem 1.1. The solution of the problem (1.1), (1.2) satisfies the

inequality

(1.4)

∫ T

0

∫

Dθ

(∣∣∣∂u
∂t

∣∣∣
p

+ |D2
xu|p

)
|x′|pµ dx dt ≤ c

∫ T

0

∫

Dθ

|f |p |x′|pµ dx dt

where p > 1, T is an arbitrary positive number, c is a constant inde-

pendent of T , D2
xu = ( ∂2u

∂xi ∂xj
)i,j=1,...,n and µ is a number satisfying the

condition

(1.5)
2

p′
− min

(π
θ
, 2

)
< µ <

2

p′
,

p′ = p
p−1

.
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Theorem 1.2. The solution of the problem (1.1), (1.2) satisfies the

inequality

(1.6)

∫ T

0

∫

Dθ

(∣∣∣∂u
∂t

∣∣∣
p

+ |D2
xu|p + |∇u|p |x′|−p + |u|p |x′|−2p

)
|x′|µp dx dt ≤

≤ c

∫ T

0

∫

Dθ

|f(x, t)|p |x′|µp dx dt

with the constant independent of T > 0, provided that

(1.7) −π

θ
<

2

p′
− µ <

π

θ
.

Problems (1.1), (1.2) and (1.1), (1.3) may be considered as model

problems arising in the study of the Cauchy-Dirichlet and Cauchy-Neu-

mann problems for the second order parabolic equations in domains with

edges at the boundary. As known from the theory of elliptic equations,

in this case usual coersive Lp-estimates are not always true and it is

necessary to work in weighted spaces. This was made clear by V.A. Kon-

drat’ev [3] who considered elliptic boundary value problems in domains

with conical points at the boundaries for which he proved coercive esti-

mates in weighted W l
2 Sobolev spaces. Much more general results for el-

liptic boundary value problems in domains with irregular boundaries were

obtained in a series of papers of V.G.Maz’ya and B.A. Plamenevsky [6],

[7], [8] (see also the book [9]). The solutions of parabolic initial-boundary

value problems in general also loose regularity at the singular points of the

boundaries (see [2], [4], [5]), therefore it is natural to consider these prob-

lems in some weighted (anisotropic) spaces. “A parabolic analogue” of

V.A. Kondratiev’s results for a certain class of parabolic initial-boundary

value problems in domains with conical points was obtained by V.A. Ko-

zlov [4].

The proof of Theorems 1.1 and 1.2 is based on the representation

formulas for the solutions of problems (1.1), (1.2) and (1.1), (1.3) in

terms of the corresponding Green functions G(x, y, t):

(1.8) u(x, t) =

∫ t

0

∫

Dθ

G(x, y, t−τ) f(y, τ) dy dτ

and on pointwise estimates of these functions and of their derivatives ob-

tained in [12]. Similar estimates for the Green function of initial-boundary
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value problem for the heat equation in Dθ with the boundary conditions

∂u

∂n
+ hi

∂u

∂r

∣∣∣
x∈Γi

= 0 , i = 1, 2, hi = const.

are given in [1]. In the above-mentioned papers by V.A. Kozlov the

Green functions for parabolic initial-boundary value problems considered

there are estimated in a more precise manner than in [12], [1] (these

estimates guarantee the exponential decay of G(x, y, t) for large |x|2/t, or

|y|2/t, while estimates obtained in [12], [1] give only power-like decay).

However, this difference turns out inessential in the proof of coercive

estimates (1.4), (1.6) and of estimates of solutions of the same problems

in weighted Hölder norms obtained in [12].

The paper is written at Centro de Matemática e Aplicações Funda-

mentais of the University of Lisbon whose hospitality is gratefully ac-

knowledged.

2 – Some auxiliary estimates

We present here Lp-estimates of the potential

(2.1) v(x, t) =

∫ t

0

∫

IRn
K(x, y, t−τ) f(y, τ) dy dτ

under different assumptions concerning the kernel K(x, y, t). As for

f(x, t), it is sufficient to assume that it belongs to a certain class of

functions which is dense in usual or weighted Lp space and for which

the integral (2.1) is convergent. In most cases the assumption of the

boundedness and of power-like decay at infinity of f(x, t) is sufficient for

the convergence of the integrals (2.1) considered in this paper. Excep-

tion should be made for the case when K(x, y, t) = ∂2

∂xi ∂xj
Γ(x − y, t) or

K(x, y, t) = ∂Γ(x−y,t)

∂t
. Then the integral in (2.1) is singular and can be

understood, for instance, as

(2.2)
lim
ε→0

∫ t−ε

0

∫

IRn
K(x, y, t−τ) f(y, τ) dy dτ =

=

∫ t

0

∫

IRn
K(x, y, t−τ) [f(y, τ) − f(x, τ)] dy dτ
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which is meaningful for Hölder continuous f(x, t) (in Section 3, we con-

sider singular intergals with f(x, t) vanishing outside a certain dihedral

angle which are also well defined for Hölder continuous f(x, t) decaying

at infinity like power functions).

We estimate the integral (2.1) in the domain IRn × (0, T ) with arbi-

trary T > 0 but the constants in our estimates are independent of T .

We observe first of all that the above-mentioned singular integrals

satisfy the well known inequality

(2.3) ‖v‖Lp(IRn×(0,T )) ≤ c ‖f‖Lp(IRn×(0,T )) .

In addition, it is easy to prove the following elementary proposition.

Proposition 2.1. Let x = (x′, x′′), x′ = (x1, x2), x
′′ = (x3, ..., xn).

Inequality (2.3) holds, if K(x, y, t) = K(x′, y′, x′′− y′′, t) and

(2.4)

∫ ∞

0

∫

IRn−2
|K(x′, y′, z, t)| dz dt ≤ c

|x′ − y′| (|x′| + |y′|) .

Proof. We make use of the boundedness of the integral

Iδ =

∫

IR2

( |x′|
|y′|

)δ dy′

|x′ − y′| (|x′| + |y′|)
with arbitrary δ ∈ (0, 2). By virtue of the Hölder inequality, we have

(2.5)

|v(x, t)| ≤
( ∫ t

0

∫

IRn

( |y′|
|x′|

)εp
|K(x, y, t−τ)| |f(y, τ)|p dy dτ

)1/p
·

·
( ∫ t

0

∫

IRn

( |x′|
|y′|

)εp′
|K(x, y, t−τ)| dy dτ

)1/p′

where ε ∈ (0,min( 2
p
, 2
p′ )). The second integral in (2.5) is not greater than

c Iε p′ , hence,

∫ T

0

∫

IRn
|v(x, t)|p dx dt ≤

≤ (cIεp′)
p−1

∫ T

0

∫

IRn
|f(y, τ)|p dy dτ

∫ t

τ

∫

IRn

( |y′|
|x′|

)εp
|K(x, y, t−τ)| dx dt ≤

≤ cp Ip−1
εp′ Iεp

∫ T

0

∫

IRn
|f(y, τ)|p dy dτ .
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The following propositions concern the estimates of (2.1) in weighted

Lp-norms.

Proposition 2.2. If

(2.6) |K(x, y, t)|≤c(|x− y|2+ |x′|2+ |y′|2+ t)−
n+2−λ

2 |x′|−λ , 0≤λ < 2 ,

then

(2.7)

∫ T

0

∫

IRn
|v|p |x′|pµ dx dt ≤ c

∫ T

0

∫

IRn
|f |p |x′|pµ dx dt

with arbitrary µ satisfying the inequality

(2.8) λ− 2

p
< µ <

2

p′
.

Proof. We choose the number µ1 such that

λ

p′
< µ1 <

2

p′
, µ < µ1 <

2 − λ

p
+ µ

(this is possible in virtue of (2.8)) and we observe that

J1 =

∫ ∞

0

∫

IRn

( |x′|
|y′|

)p′µ1 |K(x, y, t)| dy dt ≤

≤ c |x′|p′µ1−λ

∫

IR2

dy′

(|x′|2 + |y′|2)(2−λ)/2 |y′|p′µ1
= c1 ,

J2 =

∫ ∞

0

∫

IRn

( |y′|
|x′|

)p(µ1−µ)

|K(x, y, t)| dx dt ≤

≤ c |y′|p(µ1−µ)

∫

IR2

dx′

(|x′|2 + |y′|2)(2−λ)/2 |x′|λ+p(µ1−µ)
= c2 .

Hence, arguing as in the preceding proposition, we obtain

|v(x, t)| ≤ c
1/p′
1

( ∫ t

0

∫

IRn

( |y′|
|x′|

)pµ1 |K(x, y, t−τ)| |f(y, τ)|p dy dτ
)1/p
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and

∫ T

0

∫

IRn
|v(x, t)|p |x′|pµ dx dt ≤

≤cp−1
1

∫ T

0

∫

IRn
|f(y, τ)|p|y′|pµdy dτ

∫ T

τ

∫

IRn

( |y′|
|x′|

)p(µ1−µ)

|K(x, t, t−τ)|dy dτ≤

≤ cp−1
1 c2

∫ T

0

∫

IRn
|f(y, τ)|p |y′|pµ dy dτ .

The proposition is proved.

Proposition 2.3. Assume that

(2.9) |K(x, y, t)|≤ c

(|x−y|2+t)
n
2

( |x′|
|x′|+|y′|+

√
t

)λ1
( |y′|
|x′|+|y′|+

√
t

)λ2

where λi ≥ 0, λ1 + λ2 > 0. Then

(2.10)

∫ T

0

∫

IRn
|v(x, t)|p |x′|pµ−2p dx′ dt ≤ c

∫ T

0

∫

IRn
|f(x, t)|p |x′|pµ dx dt

with the parameter µ satisfying the inequalities

−λ2 <
2

p′
− µ < λ1 .

Proof. We prove (2.8) using the same scheme as in the preceding

propositions. We choose the numbers σ and κ such that

0 < σ < µ + λ1 −
2

p′
, 0 < κ <

2

p′
+ λ2 − µ , 0 < σ + κ < λ1 + λ2,

and we estimate v(x, t) with the help of the Hölder inequality in the

following way:

|v(x, t)|≤c
( ∫ t

0

∫

IRn
|f(y, τ)|p

( |y′|
|x′|

)pµ
Rσp

x′ R
κp
y′

dy dτ

(|x−y|2+t−τ)n/2

)1/p
L1/p′ ,
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Rx′ = |x′|/(|x′| + |y′| + √
t−τ), Ry′ = |y′|/(|x′| + |y′| + √

t−τ). Here

L =

∫ t

0

∫

IRn

( |x′|
|y′|

)p′µ
R

(λ1−σ)p′
x′ R

(λ2−κ)p′
y′

dy dτ

(|x− y|2 + t− τ)n/2
≤

≤
∫ t

0

∫

IRn

|x′|p′(µ+λ1−σ) |y′|p′(λ2−κ−µ) dy dτ

(|x′| + |y′| + √
t−τ)(λ1+λ2−σ−κ)p′ (|x− y|2 + t− τ)n/2

≤

≤ c

∫

IR2

|x′|p′(µ+λ1−σ) dy′

|y′|p′(µ−λ2+κ) (|x′| + |y′|)(λ1+λ2−σ−κ)p′−δ |x′ − y′|δ ≤ c1 |x′|2 ,

if δ > 0 is small enough. Hence,

∫ T

0

∫

IRn
|v(x, t)|p |x′|µp−2p dx dt ≤

≤ c

∫ T

0

∫

IRn
|f(y, τ)|p |y′|pµ dy dτ

∫ T

τ

∫

IRn

Lp−1 Rσp
x′ R

κp
y′ dx dt

|x′|2p (|x− y|2 + t− τ)n/2
,

and since the last integral does not exceed

cp−1
1 |y′|pκ

∫ ∞

τ

∫

IRn

dx dt

|x′|2−pσ (|x′|+|y′|+√
t−τ)(σ+κ)p(|x− y|2+t−τ)n/2

≤

≤ c |y′|pκ
∫

IR2

dx′

|x′|2−pσ (|x′| + |y′|)(σ+κ)p−δ1 |x′ − y′|δ1 ≤ c2 ,

if δ1 > 0 is small, it follows that

∫ T

0

∫

IRn
|v|p |x′|µp−2p dx dt ≤ c c2

∫ T

0

∫

IRn
|f |p |x′|µp dx dt ,

and (2.10) is proved.

3 – Proof of Theorem 1.1

Let D2
xG(x, y, t) be an arbitrary second derivative ∂2G

∂xi ∂xj
. The inte-

gral

w(x, t) =

∫ t

0

dτ

∫

Dθ

D2
xG(x, y, t−τ) f(y, τ) dy ≡

≡ lim
ε→0

∫ t−ε

0

dτ

∫

Dθ

D2
xG(x, y, t−τ) f(y, τ) dy
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can be represented as a sum

w(x, t) =

∫ t

0

dτ

∫

S1(x,t−τ)

D2
xG(x, y, t−τ) f(y, τ) dy+

+

∫ t

0

dτ

∫

S2

D2
xG(x, y, t−τ) f(y, τ) dy ≡

≡ w1(x, t) + w2(x, t)

where

S1(x, t−τ) = {y ∈ Dθ : |x− y|2 + t− τ ≤ 1

4
|y′|2} ,

S2(x, t−τ) = {y ∈ Dθ : |x− y|2 + t− τ ≥ 1

4
|y′|2} .

It was proved in [12] that in the case y ∈ S2(x, t−τ) the function

D2
xG(x, y, t−τ) satisfies the inequality (2.6) where λ = 0, if π/θ > 2,

λ = 2 − π/θ, if π/θ < 2, λ arbirarily small, positive, if π/θ = 2. Hence,

|w2(x, t)| ≤ c

∫ t

0

∫

Dθ

|f(y, τ)| dy dτ
(|x− y|2 + |x′|2 + |y′|2 + t− τ)(n+2−λ)/2 |x′|λ ,

and by the proposition 2.2

(3.1)

∫ T

0

∫

Dθ

|w2(x, t)|p |x′|pµ dx dt ≤ c

∫ T

0

∫

Dθ

|f(y, τ)|p |y′|pµ dy dτ

for arbitrary µ satisfying (1.5).

Further, in the case y ∈ S1(x, t−τ) the function D2
xG(x, y, t−τ) was

represented in the form

D2
xG(x, y, t−τ) = D2

xG0(x, y, t−τ) + H(x, y, t−τ)

with H(x, y, t−τ) satisfying the inequality

|H(x, y, t−τ)| ≤ c |y′|−(n+2) ≤ c(|x− y|2 + |y′|2 + |x′|2 + t− τ)−
n+2

2

and with G0 depending on the location of the point y. Let us consider Dθ

as a union of three dihedral angles

Dθ = D
(1)
θ/3 ∪D

(2)
θ/3 ∪D

(3)
θ/3 ,
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where D
(i)
θ/3 = d

(i)
θ/3 × IRn−1,

d
(1)
θ/3 = {r > 0, 0 < ϕ ≤ θ/3} ,

d
(2)
θ/3 = {r > 0, 2θ/3 ≤ ϕ < θ} ,

d
(3)
θ/3 = {r > 0, θ/3 ≤ ϕ < 2θ/3} ,

let IRn−1
i , i = 1, 2, be a n−1-dimensional subspace of IRn containing Γi

and let IRn
i be a half-space with ∂IRn

i = IRn−1
i such that IRn

i ⊃ D
(i)
θ/3. If

y ∈ D
(i)
θ/3, then G0 ≡ G

(i)
0 is the Green function of the Neumann initial-

boundary value problem for the heat equation in the half-space IRn
i , i.e.,

G
(i)
0 (x, y, t−τ) = Γ(x−y, t−τ) + Γ(x−y∗

i , t−τ)

where y∗
i is a point symmetric to y with respect to IRn−1

i . Finally, for

y ∈ D
(3)
θ/3

G0(x, y, t−τ) = Γ(x−y, t−τ) .

Hence, the function w1(x, t) |x′|µ can be represented in the form

w1(x, t) |x′|µ =

∫ t

0

∫

S1

D2
xGf |y′|µ dydτ+

∫ t

0

∫

S1

D2
xGf(|x′|µ − |y′|µ)dydτ =

=
3∑

i=1

( ∫ t

0

∫

D
(i)

θ/3

D2
xG

(i)
0 (x, y, t−τ) f(y, τ) |y′|µ dy dτ+

−
∫ t

0

∫

D
(i)

θ/3
\S1

D2
xG

(i)
0 (x, y, t−τ) f(y, τ) |y′|µ dy dτ+

+

∫ t

0

∫

Si,1

Hi(x, y, t−τ) f(y, τ) |y′|µ dy dτ
)
+

+

∫ t

0

∫

S1

f(y, τ) |y′|µ D2
xG(x, y, t−τ)

|x′|µ − |y′|µ
|y′|µ dy dτ

where Si,1 = S1 ∩D
(i)
θ/3 and Hi(x, y, t−τ) = H(x, y, t−τ), y ∈ D

(i)
θ/3.

We observe that

|D2
xG

(i)
0 (x, y, t−τ)| ≤ c(|x− y|2 + |x′|2 + |y′|2 + t− τ)−

n+2
2
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if y ∈ D
(i)
θ/3\S1, and

|D2
xG(x, y, t−τ)|

∣∣∣|x′|µ − |y′|µ
∣∣∣|y′|−µ ≤ c(|x−y|2 + t− τ)−

n+1
2 |y′|−1 ≤

≤ c(|x−y|2 + t− τ)−
n+1

2 (|x−y|2 + |x′|2 + t− τ)−
1
2 ,

if y ∈ S1. Hence,

|w1(x, t)| |x′|µ ≤
3∑

i=1

∣∣∣
∫ t

0

dτ

∫

D
(i)

θ/3

D2
xG

(i)
0 (x, y, t−τ) f(y, τ) |y′|µ dy dτ

∣∣∣+

+

∫ t

0

∫

Dθ

|K(x, y, t−τ)| |f(y, τ)| |y′|µ dy dτ

where K is a function satisfying inequality (2.4). Making use of (2.3) and

of the Proposition 2.1, we obtain

∫ T

0

∫

Dθ

|w1(x, t)|p |x′|pµ dx dt ≤ c

∫ T

0

∫

Dθ

|f(y, τ)|p |y′|pµ dy dτ ,

and, taking account of (3.1), we conclude that

∫ T

0

∫

Dθ

|w(x, t)|p |x′|pµ dx dt ≤ c

∫ T

0

∫

Dθ

|f(y, τ)|p |y′|pµ dy dτ .

Since the function (1.7) satisfies the equation ∂v
∂t

− ∆v = f , the same

estimate holds for ∂v
∂t

. Theorem 1.1 is proved.

4 – Proof of Theorem 1.2 and some generalizations

The estimate (1.6) for the solution of the problem (1.1), (1.2) is

simpler because it reduces to the estimate of
∫ T

0

∫
Dθ

|u|p |x′|pµ−2p dx dt,

which makes it unnecessary to deal with singular integrals. The Green

function G(x, y, t) for the Dirichlet problem satisfies the inequality (2.9)

with arbitrary λi ∈ (0, π
θ
), i = 1, 2 (in the case of the Neumann problem

λi = 0). The reason of this is that for the solution of the Dirichlet problem

the estimate in the spaces H2k,k
µ (Dθ × (0, T )) of V.A.Kondrat’iev’s type

holds (it is similar to the inequality (1.6) with p = 2 in [1] for the solution
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of the oblique derivative problem), and it can be used in the estimate of

G(x, y, t) (see (3.14) in [1]).

Hence, by virtue of Proposition 2.3,

∫ T

0

∫

Dθ

|u(x, t)|p |x′|pµ−2p dx dt ≤ c

∫ T

0

∫

Dθ

|f(x, t)|p |x′|pµ dx dt

for arbitrary µ satisfying (1.7).

Inequality (1.6) for the derivatives of u(x, t) follows from local esti-

mates of the solution. Let ξ = (ξ3, ..., ξn) ⊂ IRn−2 and

Bp(ξ) = {x = (x′, x′′) ∈ Dθ :
ρ

2
< |x′| < ρ, |xi − ξi| < ρ, i = 3, ..., n} .

As shown, for instance, in [10] (see §19),

∫ T

0

∫

Bρ(ξ)

(∣∣∣∂u
∂t

∣∣∣
p

+ |D2u|p + ρ−p |∇u|p
)
dx dt ≤

≤ c
(
ρ−2p

∫ T

0

∫

B2ρ

|u|p dx dt +

∫ T

0

∫

B2ρ

|f |p dx dt
)
.

Making use of this inequality and of appropriate partition of unity

in Dθ, we easily obtain

∫ T

0

∫

Dθ

(∣∣∣∂u
∂t

∣∣∣
p

+ |D2u|p
)
|x′|pµ dx dt +

∫ T

0

∫

Dθ

|∇u|p |x′|pµ−p dx dt ≤

≤ c
( ∫ T

0

∫

Dθ

|u|p |x′|pµ−2p dx dt +

∫ T

0

∫

Dθ

|f |p |x′|pµ dx dt
)
≤

≤ c

∫ T

0

∫

Dθ

|f |p |x′|pµ dx dt

which concludes the proof of Theorem 1.2.

Inequalities similar to (1.4), (1.6) hold also for higher order norms of

the solutions of problems (1.1), (1.2) and (1.1), (1.3).

Theorem 4.1. The solution of the problem (1.1), (1.3) satisfies the
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inequalities

(4.1)

∑

|j|+2�=2(k+1)

∫ T

0

∫

Dθ

|Dj
xD

�
tu(x, t)|p |x′|pµ dx dt ≤

≤ c
∑

|j|+2�=2k

∫ T

0

∫

Dθ

|Dj
xD

�
tf(x, t)|p |x′|pµ dx dt ,

k = 0, 1, ..., provided that

(4.2) f(x, 0) = 0 , . . . ,
∂k−1f

∂tk−1

∣∣∣
t=0

= 0

and

(4.3) µ > −2

p
, 0 <

2

p′
+ k − µ <

π

θ
.

Theorem 4.2. The solution of the problem (1.1), (1.2) satisfies the

inequalities

(4.4)

∑

|j|+2�≤2(k+1)

∫ T

0

∫

Dθ

|Dj
xD

�
tu(x, t)|p |x′|pµ−2p(k+1)+(|j|+2�)p dx dt ≤

≤ c
∑

|j|+2�≤2k

∫ T

0

∫

Dθ

|Dj
xD

�
tf(x, t)|p |x′|pµ−2pk+(|j|+2�)p dx dt ,

provided that (4.2) holds and

(4.5) −π

θ
<

2

p′
+ k − µ <

π

θ
.

Inequalities (4.1), (4.4) follow easily from (1.4) and (1.6) applied to

derivatives of u with respect to t and xj, j > 2, and from the estimates

∑

|j|=2(k+1)

∫

dθ

|Dj
x′u1(x

′)|p |x′|pµ dx′ ≤ c
∑

|j|=2k

∫

dθ

|Dj
x′f1(x

′)|p |x′|pµ dx′ ,

∑

|j|≤2(k+1)

∫

dθ

|Dj
x′u2(x

′)|p |x′|pµ−2p(k+1)+|j|p dx′ ≤

≤ c
∑

|j|≤2k

∫

dθ

|Dj
x′f2(x

′)|p |x′|pµ−2pk+|j|p dx′
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for the solutions of two-dimensional elliptic problems

( ∂2

∂x2
1

+
∂2

∂x2
2

)
u1 = f1(x

′) , x′ ∈ dθ,
∂u1

∂n

∣∣∣
∂dθ

= 0 ,

( ∂2

∂x2
1

+
∂2

∂x2
2

)
u2 = f2(x

′) , x′ ∈ dθ, u2|∂dθ = 0 .

These estimates hold under conditions (4.3) and (4.5), respectively

(see [11], [6]; for p = 2 the estimate of the Neumann problem is obtained

in [13]).

We note finally that the case of non-homogeneous initial and bound-

ary conditions can be reduced to the case considered here by construction

of auxiliary function satisfying these conditions.
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