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D-bounded sets in probabilistic

normed spaces and in their products

B. LAFUERZA-GUILLÉN

Riassunto: Si assegna una condizione sufficiente (ma non necessaria) affinché
una famiglia di sottoinsiemi D-limitati di uno spazio probabilistico normato abbia la
struttura di spazio lineare con operazioni di addizione e di moltiplicazione opportune.
Si introduce poi la nozione nuova di τ -prodotto e si da una condizione sufficiente per
la D-limitatezza del τ -prodotto.

Abstract: The paper is divided into three sections, Section 1 being the introduc-
tion. In Section 2, a sufficient, but not necessary, condition is given for the family of
D-bounded subsets in a Probabilistic Normed space (briefly, PN space) to be a linear
space when it is endowed with suitably defined operations of addition and multiplica-
tion by a scalar. Finally, in Section 3, τ -products of PN spaces are introduced and a
sufficient condition is given for D-boundedness in τ -products.

1 – Introduction

The new concept of boundedness in PN spaces is motivated by the

hope of extending the applications to Statistics that motivated Šerstnev

in his original introduction of PN spaces. It may also turn out to be

relevant to the study of “physical quantities”, whenever one or more of
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them are not defined sharply. PN spaces may provide us with a set of

tools suitable to study the geometry of nuclear physics, for instance.

By D-bounded we shall mean “distributionally bounded” in the sense

of [7].

Definition 1. A Probabilistic Normed Space, briefly a PN space,

is a quadruple (V, ν, τ, τ ∗) in which V is a linear space, τ and τ ∗ are

continuous triangle functions with τ ≤ τ ∗ and ν, the probabilistic norm,

is a map ν : V → ∆+ such that

(N1) νp = ε0 if, and only if, p = θ, θ being the null vector in V ;

(N2) ν−p = νp for every p ∈ V ;

(N3) νp+q ≥ τ(νp, νq) for all p, q ∈ V ;

(N4) νp ≤ τ ∗(ναp, ν(1−α)p) for every α ∈ [0, 1] and for every p ∈ V .

If, instead of (N1), we only have νθ = ε0, then we shall speak of a

Probabilistic Pseudo Normed Space, briefly a PPN space. If the inequality

(N4) is replaced by the equality νp = τM(ναp, ν(1−α)p), then the PN space

is called a Šerstnev space and, as a consequence, a condition stronger

than (N2) holds, namely

∀λ �= 0 ∀ p ∈ V νλp = νp
( j

|λ|
)

Here j is the identity map on IR, i.e. j(x) := x (x ∈ IR).

We recall that a set A in a PN space (V, ν, τ, τ ∗) is said to be bounded

if its probabilistic radius RA belongs to D+, where

RA =

{
l− inf{νp(x) : p ∈ A}, if x ∈ [0,+∞[;

1, if x = +∞ .

Definition 2. By setting F ≤ G whenever F (x) ≤ G(x) for every

x ∈ IR+ and F,G ∈ ∆+, one introduces a natural ordering in ∆+.

Definition 3. Let τ1, τ2 be two triangle functions. Then τ1 domi-

nates τ2, and we write τ1 � τ2, if for all F1, F2, G1, G2 ∈ ∆+, one has

τ1(τ2(F1, G1), τ2(F2, G2)) ≥ τ2(τ1(F1, F2), τ1(G1, G2)) .
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Notice that since τ1 is associative one has τ1 � τ1, so that “dominates”

is reflexive but its transitivity is still an open question.

2 – The structure of the set of all D-bounded subsets in a PN

space

If A is a bounded set then αA need not be bounded set, but this will

hold under suitable conditions, as is shown in the next theorem.

Theorem 1. Let (V, ν, τ, τ ∗) and A be a PN space and a nonempty

D-bounded subset respectively. The set αA := {αp : p ∈ A} is also

D-bounded for every fixed α ∈ IR if D+ is a closed set under τ , i.e.

τ(D+ ×D+) ⊆ D+.

Proof. Because of (N2), it suffices to consider the case α ≥ 0. If

either α = 0 or α = 1, then αA is D-bounded. If α ∈ (0, 1), then, for

every p ∈ A one has (see [5])

ναp ≥ νp .

Since νp ≥ RA, it follows that

ναp ≥ RA .

If α > 1, let k = [α] + 1. We know that (see [2]) that

ναp ≥ νkp .

Now, let us denote by Gα the function τk−1(RA, . . . , RA); one has by

induction

νkp(x) ≥ τ(ν(k−1)p, νp)(x) ≥ τ(τ(ν(k−2)p, νp), νp)(x) ≥ · · · ≥
≥ τk−1(νp, . . . , νp)(x) ≥ τk−1(RA, . . . , RA)(x)

and hence ναp ≥ Gα. Finally, one can say that

RαA ≥ Gα

for every p ∈ A and for every fixed real scalar α, and since Gα belongs to

D+, then αA is D-bounded.
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Example 1. In particular, if A is a D-bounded set in the Menger PN

space (V, ν, τT , τT∗), then the set αA is D-bounded for every previously

fixed α ∈ IR.

Example 2. Let us recall that among the triangle functions one has

the function defined via

T(F,G)(x) := T (F (x), G(x)) ,

for all F , G in ∆+ and for all left-continuous t-norm T .

Now, if (V, ν, τ, τ ∗) is a PN space with τ ≡ T, then one has also the

same result because of

T(D+ ×D+) ⊆ D+ .

Analogously, in the following theorem one shows the condition under

which the sum of two bounded sets can also be bounded.

Theorem 2. Let (V, ν, τ, τ ∗) and A, B be a PN space and two

nonempty D-bounded subsets of V respectively. Then the set given by

A + B := {p + q : p ∈ A, q ∈ B}

is D-bounded if D+ is a closed set under τ .

Proof. By (N3) one has, for all p ∈ A, q ∈ B,

νp+q ≥ τ(νp, νq) ≥ τ(νp, RB) ≥ τ(RA, RB)

and hence

RA+B ≥ τ(RA, RB) ,

and the assertion follows from the fact that D+ is closed under τ .

Under the same conditions for the sets A, B, if (V, ν, τT , τT∗) is

Menger PN space for some t-norm T , and its t-conorm T ∗, then the

set A + B is in D+.

We denote the set of all D-bounded sets in a PN space (V, ν, τT , τT∗)

by PD+(V ).

Theorem 3. Let (V, ν, τ, τ ∗) be a PN space. The triple (PD+(V ),+,·)
is a real linear space if τ(D+ ×D+) ⊆ D+.
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Proof. It suffices to apply the previous two theorems.

The following results will be needed later in Theorem 6. In both of

them it is not assumed that τ(εc, εd) is in D+; in fact and in general it is

not in D+.

Theorem 4. The quadruple (V, ν, τ,M) where V is a normed linear

space, M the maximal triangle function, and ν, the probabilistic norm, is

a map ν : V → ∆+ such that νθ = ε0, νp := εa+‖p‖
a

if p �= θ, (a > 0), and

τ(εc, εd) ≤ εc+d, (c > 0, d > 0) is a PN space that is neither a topological

vector space (briefly, TVS) nor a Šerstnev space.

Proof. (N1) and (N2) are obvious.

(N3)
νp+q = εa+‖p+q‖

a
≥ εa+‖p‖+‖q‖

a
≥

≥ εa+‖p‖
a +

a+‖q‖
a

≥ τ(εa+‖p‖
a

, εa+‖q‖
a

) = τ(νp, νq) .

(N4) For every α ∈]0, 1[,

Min(εa+α‖p‖
a

(x), εa+(1−α)‖p‖
a

(x)) ≥
≥ εa+‖p‖

a
(x) = νp(x) .

Besides, the PN space in this theorem is not a TVS because, if αn is a

sequence in IR, with limn→+∞ αn = 0, then one has

lim
n→+∞

ναnp = lim
n→+∞

εa+αn‖p‖
a

= ε1 �= ε0 .

Furthermore,

τM(ναp, ν(1−α)p) = τM(εa+|α|‖p‖
a

, εa+(1−α)‖p‖
a

) =

= ε 2a+‖p‖
a

≤ εa+‖p‖
a

= νp .

Now, for every x > 0 such that x ∈]1 + ‖p‖
a
, 2 + ‖p‖

a
[ one has

τM(ναp, ν(1−α)p)(x) < νp(x)

so that the space considered is not a Šerstnev space.
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Theorem 5. Let τ be a triangle function such that τ(εc, εd) ≤ εc+d,

(c > 0, d > 0). The quadruple (V, ν, τ,M) where V is a normed linear

space, M the maximal triangle function, and ν, the probabilistic norm, is

a map ν : V → ∆+ defined by

νp := ε ‖p‖
a+‖p‖

for every p ∈ V and for a fixed a > 0, with νp(+∞) = 1, is a PN space,

a TVS but not a Šerstnev space.

Proof. (N1) and (N2) are obvious.

(N3) For every p, q ∈ V since the function x �→ x
a+x

, x > 0 is nondecreas-

ing, then one has

νp+q = ε ‖p+q‖
a+‖p+q‖

≥ ε ‖p‖+‖q‖
a+‖p‖+‖q‖

≥

≥ τ(ε ‖p‖
a+‖p‖+‖q‖

, ε ‖q‖
a+‖p‖+‖q‖

) ≥ τ(ε ‖p‖
a+‖p‖

, ε ‖q‖
a+‖q‖

)
= τ(νp, νq) .

(N4) If α ∈]0, 1[, then

Min(ε α‖p‖
a+α‖p‖

(x), ε (1−α)‖p‖
a+(1−α)‖p‖

(x)) ≥

≥ ε ‖p‖
a+‖p‖

(x) = νp(x) .

Now, if {λn} ⊂ IR+ is such that limn→+∞(λn) = 0, then

lim
n→+∞

νλnp = lim
n→+∞

ε λn‖p‖
a+λn‖p‖

= ε0

and hence the PN space of this theorem is a TVS.

Furthermore, for all p ∈ V and for all λ ∈]0, 1[,

τM(νλp, ν(1−λ)p)(x) =

= sup{ε
(

λ‖p‖
a+λ‖p‖ )

(x− u) ∧ ε
(

(1−λ)‖p‖
a+(a+(1−λ)‖p‖) )

(u) : u > 0} .

Let us assume u > (1−λ)‖p ‖
a+(1−λ)‖p‖ ; since τM(εa, εb) = εa+b, then

τM(νλp, ν(1−λ)p) = ε a‖p‖+2λ(1−λ)‖p‖2
a2+a‖p‖+λ(1−λ)‖p‖2

.
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Now, one has

τM(νλp, ν(1−λ)p) ≤ νp .

If

x ∈
] ‖p‖
a + ‖p‖ ,

a‖p‖ + 2λ(1 − λ)‖p‖2

a2 + a‖p‖ + λ(1 − λ)‖p‖2

[
,

then νp(x) = 1 > τM(νλp, ν − (1 − λ)p)(x) so that (V, ν, τ,M) is not a

Šerstnev space.

The following example shows that it is not necessary for D+ to be

closed under τ for the set (PD(V ),+, ·) to be a linear space.

Example 3. Let (V, ν, τ, τ ∗) be the same PN space as in Theorem 4

(or 5). Then the following statements hold:

(1) The bounded subsets in V with regard to the classical norm of V

coincide with the certainly bounded subsets in V for the probabilistic

norm, ν;

(2) In both cases — Theorems 4 and 5 — (PD(V ),+, ·) is a linear space.

Example 4. If we take the probabilistic norm as in Theorem 5 and

assume V = IR and that A is a nonempty classically bounded set in IR

such that ‖p‖ ≤ s, this is, A is bounded with respect to the classical norm,

then RA = ε( s
a+s ) ∈ D+, and hence, A is D-bounded for the probabilistic

norm. Now, if A = IR one has

RIR = l− inf{ε
(

‖p‖
a+‖p‖ )

} = ε1 ∈ D+ ,

and consequently, IR is D-bounded.

In a similar way, the sets in IR given by [0,+∞], {2n : n ∈ Z} or any

finite interval are D-bounded.

We must say, however, that depending on the probabilistic norm, we

can have IR as a D-unbounded set. Taking the probabilistic norm as in

Theorem 4, one has

RIR = l− inf{ε
(
a+‖p‖

a )
} = ε+∞ /∈ D+ ,

from what it follows that IR is not D-bounded.
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Theorem 6. Let (V, ν, τ, τ ∗) be a PN space. Then, the triple

(PD(V ),∪,∩)

is a net if D+ is closed under τ.

Proof. It suffices to consider that RA∪B ≥ τ(RA, RB) (see [6],

p. 188). Hence, RA∪B is in D+. If moreover, we recall that RA∩B ≥ RA

(or RA∩B ≥ RB), one has that A ∩ B is a bounded set, and the proof is

ended.

Lemma 1. The finite intersection of subsets of V is D-bounded if,

and only if, at least one is D-bounded.

Lemma 2. For all equilateral PN space (V, F,M), with F ∈ ∆+ the

following equality holds

card(PD(V )) = card(P(V )) .

Lemma 3. Let (V, ν, τ, τ ∗) be a general PN space. Then the inequal-

ity

card(PD(V )) ≤ card(P(V ))

holds.

3 – The τ-product of two PN space and D-boundedness defined

in finite τ-products

Definition 4. Let (V1, ν1, τ, τ
∗) and (V2, ν2, τ, τ

∗) be two PN spaces

under the same triangle functions τ and τ ∗. Let τ1 be a triangle function.

The τ1-product of the two PN spaces is the quadruple

(V1 × V2, ν1τ1ν2, τ, τ
∗)

where

ν1τ1ν2 : V1 × V2 −→ ∆+
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is a probabilistic seminorm given by

(ν1τ1ν2)(p, q) := τ1(ν1(p), ν2(q))

for all (p, q) ∈ V1 × V2.

Theorem 7. Let (V1, ν1, τ, τ
∗), (V2, ν2, τ, τ

∗) and τ1 be two PN

spaces under the same triangle functions and a triangle function respec-

tively. Assume that τ ∗ � τ1 and τ1 � τ , then the τ1-product (V1 ×
V2, ν1τ1ν2) is a PN space under τ and τ ∗.

Proof. We are going to check whether the above probabilistic semi-

norms satisfy the four axioms of a PN space.

(N1) Let θ and θ′ the null vectors of V1 and V2, respectively; then

(ν1τ1ν2)(θ, θ
′) = τ1(ν1(θ), ν2(θ

′)) = τ1(ε0, ε0) = ε0,

and (p, q) �= (θ, θ′) ⇔ p �= θ or q �= θ′ ⇔ (ν1(p), ν2(q)) �= (ε0, ε0) ⇔
(ν1τ1ν2)(p, q) �= ε0.

(N2) is obvious.

(N3)

(ν1τ1ν2)((p, q) + (p′, q′)) = (ν1τ1ν2)(p + p′, q + q′) =

= τ1(ν1(p + p′), ν2(q + q′)) ≥
≥ τ1(τ(ν1(p), ν1(p

′)), τ(ν2(q), ν2(q
′))) ≥

≥ τ(τ1(ν1(p), ν2(q)), τ1(ν1(p
′), ν2(q

′))) =

= τ((ν1τ1ν2)(p, q), (ν1τ1ν2)(p
′, q′)).

(N4)

(ν1τ1ν2)(p, q) = (τ1(ν1(p), ν2(q)) ≤
≤ τ1[τ

∗(ν1(αp), ν1((1 − α)p)), τ ∗(ν2(αq), ν2((1 − α)q))] ≤
≤ τ ∗[τ1(ν1(αp), ν2(αq)), τ1(ν1((1 − α)p), ν2((1 − α)q))] =

= τ ∗[(ν1τ1ν2)(α(p, q)), (ν1τ1ν2)((1 − α)(p, q))] ,

for every α ∈ [0, 1].
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Corollary 1. The T-product (V1×V2, ν1Tν2) of the two PN spaces

(V1, ν1, τT ,M) and (V2, ν2, τT ,M) is a PN space under τT and M.

Proof. It is easy from the previous Theorem and Lemma 12.7.4

in [12].

We wonder whether the τ1-product of two PN spaces characterized

in Theorem 1 coincides with the τ1-product of corresponding PM spaces.

The following theorem gives an answer in the affirmative to this question.

Corollary 2. Let (V1, F,M) and (V2, G,M) be two equilateral PN

spaces with d.d.f.’s F and G respectively. Then, their M-product is an

equilateral PN space with a d.d.f. given by M(F,G). In particular, if

F ≡ G, the M-product is an equilateral PN space with the same d.d.f. F .

Proof. It suffice to notice that

(ν1Mν2)(p, q) = M(ν1(p), ν2(q)) = M(F,G)(p, q) .

Theorem 8. Let (V1 × V2, ν1τ1ν2, τ, τ
∗) be the τ1-product of the PN

spaces (V1, ν1, τ, τ
∗) and (V2, ν2, τ, τ

∗), where τ ∗ � τ1 and τ1 � τ . Let

PD(V1 ×V2) denote the set of all D-bounded subsets in V1 ×V2. Then the

following statements hold:

(a) If A and B are D-bounded subsets in the PN spaces (V1, ν1, τ, τ
∗)

and (V2, ν2, τ, τ
∗) respectively, then their cartesian product A × B is

a D-bounded subset of the τ1-product (V1 × V2, ν1τ1ν2, τ, τ
∗);

(a) The triple PD(V1×V2,+, ·) is a real linear space if D+ is closed under

both τ and τ1.

Proof. Let A1, A2 and B1, B2 be D-bounded subsets in V1 and V2

respectively. It follows from the monotonicity of τ1 that

inf{(ν1τ1ν2)(p, q) : (p, q) ∈ A1 ×B1} =

= inf{τ1(ν1(p), ν2(q)) : (p, q) ∈ A1 ×B1} = τ1(RA1
, RB1

) .

Therefore RA1×B1
= τ1(RA1

, RB1
) ∈ D+, and by theorem 1 we know that

α(A1 ×B1) is D-bounded for all fixed α ∈ IR.
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Analogously, τ(RA1
, RA2

) and τ(RB1
, RB2

) are in D+. Now,

(ν1τ1ν2)((p1, q1) + (p2, q2)) = (ν1τ1ν2)(p1 + p2, q1 + q2) =

= τ1(ν1(p1 + p2), ν2(q1 + q2)) ≥ τ1(τ(RA1
, RA2

), τ(RB1
, RB2

))

is in D+ for every (p1, q1), (p2, q2) in A1 ×B1, A2 ×B2 respectively.
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