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Stability and attractivity for a class of

dissipative phenomena

A. D’ANNA – G. FIORE

Riassunto: Si considerano problemi di valori iniziali e al contorno per una classe
di equazioni non lineari del terzo ordine aventi un termine forzante non autonomo, e
si ottengono nuovi risultati riguardanti la stabilità asintotica delle soluzioni usando il
secondo metodo di Liapunov. La classe include equazioni che si incontrano in Teoria
della Superconduttività, Meccanica Quantistica e Teoria dei Materiali Viscoelastici.

Abstract: We consider initial-boundary-value problems for a class of nonlinear
third order equations having non-autonomous forcing terms and get new asymptotic
stability results by means of the Liapunov second method. The class includes equations
arising in Superconductor Theory, Quantum Mechanics and in the Theory of Viscoelas-
tic Materials.

1 – Introduction

In this paper we study a large class of initial-boundary-value problems

of the form

(1.1)

{
−εuxxt + utt − c2uxx = f(x, t, u, ux, uxx, ut), x ∈]0, 1[, t > t0,

u(0, t) = 0, u(1, t) = 0

Key Words and Phrases: Nonlinear higher order PDE - Stability, boundedness -
Boundary value problems.
A.M.S. Classification: 35B35 - 35G30
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(t0 ≥ 0, ε, c positive constants), with initial conditions

(1.2) u(x, t0) = u0(x), ut(x, t0) = u1(x).

Many papers [1]-[4], [7]-[10] have been devoted to the analysis of the

operator L = −ε∂xxt + ∂tt − c2∂xx, which plays a significant role be-

cause it characterizes noteworthy dissipative phenomena. When f =

−b sinu − aut + F (x, t), where a, b are positive constants, we deal with

the perturbed Sine-Gordon equation related to the classical Josephson

effect in the Theory of Superconductors [6], [11]. On the other hand

it is well known [12] that equation (1.1)1 describes the evolution of the

displacement u(x, t) of the section of a rod from its rest position x in a

Voigt material when an external force f is applied; in this case c2 = E/ρ,

ε = 1/(ρµ), where ρ is the (constant) linear density of the rod at rest, and

E,µ are respectively the elastic and viscous constants of the rod, which

enter the stress-strain relation σ = Eν + ∂tν/µ, where σ is the stress, ν

is the strain.

Now we suppose that (1.1) admits the null solution u(x, t) ≡ 0 and

look for new conditions for the stability and attractivity of the latter,

so as to improve some results found in [2]. As done there, the distance

between the null and a nonnull solution u(x, t) of the problem (1.1)-

(1.2) is introduced as the functional d(u, ut), where for any (ϕ,ψ) ∈
C2

0 ([0, 1]) × C0([0, 1]) we define

(1.3) d2(ϕ,ψ) =

∫ 1

0

(ϕ2 + ϕ2
x + ϕ2

xx + ψ2)dx .

The notions of stability, attractivity and exponential-asymptotic stability

are formulated using this distance. Imposing the condition that ϕ,ψ

vanish in 0, 1 one easily derives that |ϕ(x)|, |ϕx(x)| ≤ d(ϕ,ψ) for any x;

therefore a convergence in the norm d implies also a uniform pointwise

convergence of ϕ,ϕx.

Using the Liapunov second method, we first obtain some preliminary

results involving a class of auxiliary functionals depending on a param-

eter we will choose according to the examined problem. Supposing the

forcing term satisfies suitable conditions, we get a theorem of exponential

stability. The assumptions we shall make at the beginning of Section 3
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will make the cancellation of the term −c2uxx by f impossible (this guar-

antees that the nature of the problem cannot be changed by the choice

of f). We emphasize that these new hypotheses are now less restrictive

than in [2] because they allow the forcing term f to be in a certain sense

unbounded as a function of t. Moreover, this result holds with respect

to a metric stronger than d, which can be introduced when the solutions

are more regular. After that, we consider the case that f is specialized

as a sum of a non-analytic term depending only on u and of ut times

a bounded function. Suitably modifying the above mentioned auxiliary

functionals, a theorem of asymptotic stability in the large is obtained.

For each theorem we give an example of an application.

2 – Preliminaries

We shall say that the null solution is

– uniformly stable if for any ε > 0 there exists a δ(ε) ∈]0, ε[ such that for

any t0 ∈ J = [0,+∞[ the inequality d(u0, u1) < δ implies d(u, ut) < ε

for any t ≥ t0;

– attractive if for any t0 there exist a σ(t0) > 0 such that the inequality

d(u0, u1) < σ implies d(u, ut) → 0 as t → +∞; in particular attractive

in the large if σ(t0) = +∞ for any t0;

– uniformly asymptotically stable (in the large) if it is uniformly stable

and attractive (in the large);

– exponential-asymptotically stable if there exist constants C,D(t0),

δ′(t0)>0 such that d(u0, u1)<δ′ implies d(u,ut)<Dd(u0,u1)e
−C(t−t0)

for any t ≥ t0.

As shown in [2], a set of sufficient conditions for the existence and unique-

ness of the solution of the problem (1.1)-(1.2) in the time interval [0, T ]

is the following:

(2.1) f(x, t, u, p, q, r) is defined and continuous on the set

{(x, t, u, p, q, r) | 0 ≤ x ≤ 1, 0 ≤ t ≤ T, −∞ < u, p, q, r < +∞, T > 0};
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(2.2) there exists a constant µ > 0 such that

|f(x,t,u1,p1,q1,r1)−f(x,t,u2,p2,q2,r2)|≤µ{|u1−u2|+|p1−p2|+|q1−q2|+|r1−r2|};

(2.3) u0, u′
0, u

′′
0 , u1 continuous on 0 ≤ x ≤ 1

and such that u0(0) = u0(1) = u1(0) = u1(1) = 0.

In particular, (2.2) is essential to ensure the uniqueness of the solution.

We shall assume that they are all fulfilled for the class of problems

considered in Section 3. The function f considered in Section 4 does not

satisfy condition (2.2), but however we are able to obtain the stability

properties of the null solution.

To prove our theorems we shall use the Liapunov direct method. We

introduce the Liapunov functional

(2.4) V (ϕ,ψ) =
1

2

∫ 1

0

{(εϕxx − ψ)2 + γψ2 + c2(1 + γ)ϕ2
x}dx,

where γ is an arbitrary positive constant. It turns out that

V ≤ 1

2

∫ 1

0

{ε2ϕ2
xx + ψ2 + εϕ2

xx + εψ2 + γψ2 + c2(1 + γ)ϕ2
x}dx.

Setting

(2.5) c2
2 = max{c2(1 + γ)/2, ε(1 + ε)/2, (1 + ε + γ)/2},

we thus derive

(2.6) V (ϕ,ψ) ≤ c2
2d

2(ϕ,ψ).

Moreover, it is known that

(2.7) ϕ(0) = 0 =⇒
∫ 1

0

ϕ2
x(x)dx ≥

∫ 1

0

ϕ2(x)dx,
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and [5]

(2.8) ϕ(0) = 0, ϕ(1) = 0 =⇒
∫ 1

0

ϕ2
xx(x)dx ≥

∫ 1

0

ϕ2
x(x)dx.

Using (2.7),(2.8) and an argument employed in [2], we get

(2.9) V (ϕ,ψ) ≥ c2
1d

2(ϕ,ψ).

where

(2.10) c2
1 = min{ε2/16, c2(1 + γ)/2, (γ − 1/2)/2}, (γ > 1/2),

Therefore, from (2.6) and (2.9) we find

(2.11)
V

c2
2

≤ d2 ≤ V

c2
1

.

On the other hand, choosing γ = 1 in (2.4) it turns out

(2.12)

V̇ =

∫ 1

0

{
− εc2

2
u2
xx − εu2

xt +
ε

2
u2
t+

− ε

2
(cuxx + f/c)2 − ε

2
(ut − 2f/ε)2 + Af2

}
dx ≤

≤ −
∫ 1

0

{εc2

6
(u2 + u2

x + u2
xx) +

ε

2
u2
t + Af2

}
dx ≤

≤ −c2
3d

2(u, ut) +

∫ 1

0

Af2dx

where we have set

(2.13) A := (ε/2c2) + 2/ε, c2
3 := min

{
εc2

6
,
ε

2

}
,

and we have used (2.7), (2.8). In the sequel we shall set also p := c2
3/c

2
2.
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3 – Stability and attraction region for (1.1)

We introduce the following

Hypothesis 1- Assume that

(3.1) A

∫ 1

0

f2dx ≤ ĝ(t, d2)c2
1d

2

where f is the function of (1.1) and ĝ(t, η) (t > t0, η > 0) is continuous,

nonnegative, non-decreasing in η and such that the limit

(3.2) lim
t→+∞

∫ t

0

ĝ(τ, η/c2
1)dτ

t
=: q(η)

defines a continuous, non-decreasing function q : η∈J → J with q(0)<p.

The assumption that ĝ(t, η) is non-decreasing in η is no real loss of

generality; if originally this is not the case, we just need to replace ĝ(t, η)

by max
0≤θ≤η

ĝ(t, θ) to fulfill this condition.

Theorem 1. Under these assumptions the null solution of the prob-

lem (1.1) is exponential-asymptotically stable and the region of attraction

related to the initial time t0 includes the set

d(u0, u1) <

[
sup

r∈]0,r̄[

r

c2
2

e−M(t0,r)

]1/2

,

where r̄ and M(t0, r) are defined by (3.6) and (3.9).

Proof. From (2.12), using (3.1), (2.11) and the monotonicity in η

of g(t, η) := ĝ(t, η

c2
1
), we find

V̇ (u, ut) ≤ −c3d
2 + ĝ(t, d2)c2

1d
2 ≤

≤ [−p + g(t, V )]V.

By the “comparison principle” (Lemma 24.3 of [13]) V is bound from

above

(3.3) 0 ≤ V (t) ≤ y(t), t ≥ t0
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by the solution y(t) of the Cauchy problem

(3.4) ẏ = [−p + g(t, y)]y, y(t0) = y0 ≡ V (t0) > 0.

We therefore study the latter. Problem (3.4) is equivalent to the integral

equation

(3.5) y(t) = y0 e
−p(t−t0)+

∫ t

t0
g(τ,y(τ))dτ

.

Let

(3.6) r̄ := sup{ρ ≥ 0 | q(ρ) < p}.

The inequality q(0) < p implies r̄ > 0. Chosen a r ∈]0, r̄[, for any η ≤ r

and t0 ∈ J condition (3.2) implies

lim
t→+∞

∫ t

t0

g(τ, η)dτ

t− t0
≤ lim

t→+∞

∫ t

t0

g(τ, r)dτ

t− t0
=

= lim
t→+∞

∫ t

0

g(τ, r)dτ −
∫ t0

0

g(τ, r)dτ

t

t

t− t0
= q(r),

and therefore ∀σ > 0 ∃ t′(σ, r, t0) > t0 such that ∀t > t′

∫ t

t0

g(τ, η)dτ

t− t0
< q(r) + σ.

Choosing σ ≡ p−q(r)

2
and, denoting by t′0(r, t0) the corresponding value of

t′(σ(r), r, t0), we find that for any t > t′0, η ≤ r

∫ t

t0

g(τ, η)dτ

t− t0
< q(r) + σ =

p + q(r)

2
,

whence

(3.7) −p(t− t0) +

∫ t

t0

g (τ, η) dτ < −p− q(r)

2
(t− t0).



198 A. D’ANNA – G. FIORE [8]

On the other hand, as q(r) > 0, for t ∈]t0, t
′
0] and η ≤ r

(3.8) −p(t− t0) +

∫ t

t0

dτg (τ, η) < −p− q(r)

2
(t− t0) + M(t0, r),

where we have set

(3.9) M(t0, r) := max

{
0, max

t0≤t≤t′
0

[
−p− q(r)

2
(t− t0) +

∫ t

t0

g(τ, r)dτ

]}

Looking back at (3.7) we realize that (3.8) actually holds for any t > t0,

because by definition M(t0, r) ≥ 0. Therefore, given any t > t0, if the

solution of (3.4) satisfies y(τ) ≤ r for any τ ∈ [t0, t[ then (3.5) and (3.8)

imply

(3.10) y(t) < y0 e
M(t0,r) e−

p−q(r)
2 (t−t0).

Now it is easy to show first that, indeed,

(3.11) 0 < y0 < re−M(t0,r) ⇒ y(t) < r ∀t ≥ t0.

In fact, if per absurdum there existed t1 > t0 such that

y(τ ; t0, y0) < r for t0 ≤ τ < t1(3.12)

y(t1; t0, y0) = r(3.13)

then (3.10), (3.12) would imply

y(t1) < y0 e
M(t0,r) e−

p−q(r)
2 (t1−t0) < r e−

p−q(r)
2 (t1−t0) < r,

against (3.13). Having proved the bound (3.11), now we can immediately

improve it. We can reconsider the first part of the previous inequality

chain based on (3.10) for any t > t0

y(t) < y0 e
M(t0,r) e−

p−q(r)
2 (t−t0)
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and thus find the implication

(3.14) 0 < y0 < re−M(t0,r) ⇒ y(t) < y0 e
M(t0,r) e−

p−q(r)
2 (t−t0)

for any t > t0. Now (3.3), (3.14) imply

V (t) < V (t0) e
M(t0,r) e−

p−q(r)
2 (t−t0),

provided V (t0) < re−M(t0,r). With the short-hand notation d2(t) ≡
d2(u, ut), we thus find that the assumption

(3.15) d2(t0) < r
e−M(t0,r)

c2
2

implies, because of (2.9) and (2.6),

(3.16) d2(t) < d2(t0)
c2
2

c2
1

eM(t0,r)e−
p−q(r)

2 (t−t0),

i.e. the exponential-asymptotical stability. Finally, from (3.15) we derive

the attraction region includes the set

(3.17) d2(u0, u1) < sup
r∈]0,r̄[

r

c2
2

e−M(t0,r).

Remark 1. This is an alternative to Theorem 3.2 B) of [2], which

gives sufficient conditions for the exponential-asymptotical stability of

the null solution. The hypothesis (3.1) considered here is much weaker

than the one considered there, where it was required that there exists a

positive constant M such that

f2(x, t, ϕ, ϕx, ϕxx, ψ) ≤ M(ϕ2 + ϕ2
x + ϕ2

xx + ψ2),

in that f may well be an unbounded function of t and nonetheless fulfill

(3.1). This is the case for the following

Example 1. Let f = b(t) sinϕ, with a function b(t) such that the

limit limt→+∞(
∫ t

0 b
2(τ)dτ)/t be finite and smaller than p; then we can



200 A. D’ANNA – G. FIORE [10]

set ĝ(t, η) ≡ b2(t). For instance we could take b2 a continuous function

that vanishes everywhere except in intervals centered at equally spaced

points, where it takes linearly increasing maxima but keeps the integral

constant, e.g.

(3.18) b2(t) = b0





n2(t− n + 1/n) if t ∈ [n− 1/n, n],

n− n2(t− n) if t ∈]n, n + 1/n],

0 otherwise,

with b0 < p and n = 2, 3, . . .

Remark 2. Under the assumption that the problem (1.1), (1.2)

admits solutions u(x, t) having also continuous derivative uxtt, then one

can replace (1.3) by the metric

(3.19) d2
1(ϕ,ψ) = d2(ϕ,ψ) +

∫ 1

0

ψ2
xdx,

(2.4) by the functional

(3.20) V1(ϕ,ψ) = V (ϕ,ψ) +
ε

2

∫ 1

0

{εψ2
x − 2c2ψϕxx}dx

and verify that Theorem 1 holds with respect to the metric d1.

4 – Stability and attractivity for a non-analytic forcing term

We now specialize the function f of (1.1) as

f = F (u) − a(x, t, u, ux, ut, uxx)ut,

where F ∈ C(IR) and a ∈ C(]0, 1[×[0,+∞[×IR4), and examine the par-

ticular problem

(4.1)

{
Lu = F (u) − a(x, t, u, ux, ut, uxx)ut, x ∈]0, 1[, t > t0

u(0, t) = 0, u(1, t) = 0,
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with initial conditions (1.2). We shall use use the modified Liapunov

functional

(4.2)

W (ϕ,ψ) =
1

2

∫ 1

0

{
(εϕxx − ψ)2 + γψ2 + c2(1+γ)ϕ2

x}dx
}

+

− (1+γ)

∫ 1

0

(∫ ϕ(x)

0

F (z)dz

)
dx

where γ > 1/2 for the moment is an unspecified parameter.

Theorem 2. The null solution of the problem (4.1) is uniformly

asymptotically stable in the large under the following assumptions:

there exist τ ∈ [0, 1[ and D > 0 such that, for any ϕ,ψ(4.3)

0 ≤ −
∫ 1

0

(∫ ϕ(x)

0

F (z)dz

)
dx ≤ D

γ + 1
dτ+1(ϕ,ψ);

∫ 1

0

F (ϕ(x))ϕxx(x)dx ≥ 0 for any ϕ ∈ C2
0 ([0, 1]);(4.4)

the function a satisfies inf a > −ε, sup a < +∞.(4.5)

Proof. Reasoning as in section 3.4 of reference [2], we get

(4.6)

W (ϕ,ψ) ≥ 1

2

∫ 1

0

{(εϕxx − ψ)2 + γψ2 + c2(1 + γ)ϕ2
x}dx =

=
1

2

∫ 1

0

{(εϕxx − 2ψ)2/4+(εϕxx − ψ)2/2 + (γ − 1/2)ψ2+

+ c2(1 + γ)ϕ2
x + ε2ϕ2

xx/4}dx ≥

≥ 1

2

∫ 1

0

{(γ − 1/2)ψ2 + c2(1 + γ)ϕ2
x + ε2ϕ2

xx/4}dx ≥

≥ 1

2

∫ 1

0

{(γ−1/2)ψ2 + c2(1+γ)(ϕ2+ϕ2
x)/2+ε2ϕ2

xx/4}dx≥

≥ k1d
2(ϕ,ψ),

where

(4.7) k1 :=
1

2
min

{
γ − 1

2
,
ε2

4
,
c2(1 + γ)

2

}
.
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Moreover, taking the derivative of W and reasoning as we have done

for (2.12), we obtain

Ẇ (u, ut) = −
∫ 1

0

{c2εu2
xx + εγu2

xt + a(1 + γ)u2
t + εF (u)uxx − εauxxut}dx.

From this, considering inequalities (2.7), (2.8) it follows

(4.8)
Ẇ (u, ut) ≤ −

∫ 1

0

{(3/4)c2εu2
xx + [εγ + a(1 + γ − εa/c2)]u2

t+

+ εF (u)uxx + ε[(c/2)uxx − (a/c)ut]
2}dx.

Because of (4.4), the third and fourth terms at the right-hand side are

nonnegative and therefore by (2.7), (2.8)

Ẇ (u, ut) ≤ −
∫ 1

0

{(3/4)c2εu2
xx + [εγ + a(1 + γ − εa/c2)]u2

t}dx ≤

≤ −
∫ 1

0

{c2/4ε(u2
xx + u2

x + u2) + [εγ + a(1 + γ − εa/c2)]u2
t}dx.

Owing to (4.5) we choose

γ = [1 + sup
∣∣a(aε/c2 − 1)

∣∣]/(ε + inf a) +
1

2
,

so that the coefficient of u2
t at the right-hand side becomes ≥ 1 and we

find

(4.9) Ẇ (u, ut) ≤ −k3d
2(u, ut),

where k3 := min{c2/4ε, 1}.
Finally, taking into account formula (4.2), assumption (4.3), and not-

ing that (εϕxx − ψ)2 ≤ ε2ϕ2
xx + ψ2 + ε(ϕ2

xx + ψ2), it follows

(4.10) W (ϕ,ψ) ≤ c2
2d

2(ϕ,ψ) + Ddτ+1(ϕ,ψ).

Hence we find

(4.11) d2 ≥ min

{
W

2c2
2

,

(
W

2D

) 2
τ+1

}
,
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which considered in (4.9) gives

(4.12) Ẇ (u, ut) ≤ −k3 min

{
W

2c2
2

,

(
W

2D

) 2
τ+1

}
≤ 0.

The right-hand side is smaller than zero for any nonnull choice of the

initial conditions, what we shall assume in the sequel. By (4.12) W is a

decreasing function of t. This implies in particular that W (t) < W (t0)

for t > t0, whence, by (4.6), (4.10),

(4.14) d2(t) ≤ W (t)

k1

<
W (t0)

k1

≤ 2 max{c2
2d

2(t0), Ddτ+1(t0)},

implying the uniform stability of the null solution.

We now show that for any choice of the initial conditions W decreases

to zero (at least) as a power of t for t → +∞. If at t = t0

(4.14)
W

2c2
2

≥
(
W

2D

) 2
τ+1

,

then, by the monotonicity of W (t), for all t ≥ t0 this will be true and

(4.12) will become

(4.15) Ẇ (u, ut) ≤ −k3

(
W

2D

) 2
τ+1

;

by the comparison principle it will follow

W (t) ≤ y(t),

where y(t) is the solution of the Cauchy problem

ẏ(t) = −k3

(
y

2D

) 2
τ+1

, y(t0) = W (t0),

namely

(4.16) W (t) ≤ y(t) =
1

[W (t0) + E(t− t0)]
1+τ
1−τ

,
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where E := k3

(2D)
2

τ+1

1−τ
1+τ

> 0. Clearly y(t) is decreasing and goes to zero

as 1/t
1+τ
1−τ when t → +∞. Recalling (4.6), we find

(4.17) d2(t) ≤ W (t)

k1

≤ 1

k1[W (t0) + E(t− t0)]
1+τ
1−τ

for t ≥ t0, implying the attractivity of the null solution in this case. If on

the contrary

W (t0)

2c2
2

<

(
W (t0)

2D

) 2
τ+1

,

(4.12) will imply for some time

Ẇ (u, ut) ≤ −k3W

and by the comparison principle an (at least) exponential decrease of W .

Hence there will exist a T > t0 such that

W (T )

2c2
2

=

(
W (T )

2D

) 2
τ+1

,

after which (4.12) will take again the form (4.15) and thus imply

(4.18) d2(t) ≤ W (t)

k1

≤ 1

k1[W (T ) + E(t− T )]
1+τ
1−τ

for t ≥ T . This implies the attractivity in the large of the null solution.

Example 2. An example of a forcing term fulfilling the conditions

(4.3), (4.4) is the non-analytic one

(4.19) F (u) = −k sign(u)|u|τ 0 < τ ≤ 1, k = const > 0.

In fact, in this case (4.3) is fulfilled since

−
∫ 1

0

(∫ ϕ(x)

0

F (z)dz

)
dx =

k

τ + 1

∫ 1

0

|ϕ(x)|τ+1dx ≥ 0,
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and, by Schwarz inequality and (2.7), (2.8)

∫ 1

0

|u|τ+1dx ≤
(∫ 1

0

u2dx

) τ+1
2

≤

≤
(

1

3

∫ 1

0

(u2 + u2
x + u2

xx)dx

) τ+1
2

≤ 1

3
τ+1
2

dτ+1(u, ut);

(4.4) is fulfilled since, integrating by parts,

(4.20)

∫ 1

0

F (u)uxx(x)dx=−k

∫ 1

0

sign(u)|u|τuxx(x)dx=τk

∫ 1

0

u2
x

|u|1−τ
dx≥0.

Remark 3. This result should be compared with Theorem 3.3. in

reference [2]: the claim is the same, but the hypotheses are adapted to

cover the case of a non-analytic forcing term.
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