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The limit class of Gehring type G∞∞∞

in the n-dimensional case

L. BASILE – L. D’APUZZO – M. SQUILLANTE

Riassunto: Si stabilisce un teorema di propagazione per una classe di funzioni
verificanti una diseguaglianza limite di tipo Gehring estendendo al caso n-dimensionale
un precedente risultato degli autori. Fondamentale per tale estensione è la caratteriz-
zazione di tali funzioni mediante disuguaglianze inverse di tipo Chebychev; tale carat-
terizzazione è ottenuta utilizzando un teorema di ricoprimento stabilito da Bojarski,
Sbordone e Wik in [3].

Abstract: We consider a class of functions verifying a limit case of Gehring
inequalities and we state a propagation theorem that extends a previous result of the
authors to the n-dimensional case. A crucial property to get this extension is a char-
acterization of the functions in terms of Chebychev reverse inequalities; the main tool
for obtaining this characterization is a covering lemma stated by Bojarski, Sbordone
and Wik in [3].

1 – Introduction

The functional classes related to Gehring and Muckenhoupt condi-

tions have been widely investigated (see, for instance [4], [7], [14], [17];

these conditions and the limit cases have been considered in some recent

papers ([1], [2], [3], [5], [10], [11], [13], [16]). Let us recall some definitions
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chev inequality.
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and notations; through the paper, interval stands for an open bounded

rectangle with sides parallel to the coordinate axes; furthermore, for a

given real function defined over a set X, fY stands for the restriction of

f to Y , for every Y ⊆ X.

In the sequel, we will consider classes of non negative measurable

functions defined over open bounded intervals of Rn. The class Ap =

Ap(I0; k), k ≥ 1, is the class of functions that verify the inequality

(1.1)
(∫

I

f(x)dx
)(∫

I

f(x)−
1

p−1dx
)p−1

≤ k ,

for every interval I contained in the open bounded interval I0, where∫
I f dx stands for the mean value of f over I: 1

|I|
∫
I f dx.

The Muckenhoupt class A1 = A1(I0; c), c ≥ 1 is the class of the

functions that verify, for every interval I ⊆ I0, the inequality

(∫

I

f(x)dx
)
≤ c ess inf

I
f(x) .

In [2] it has been introduced the Gehring limit class G∞ = G∞(I0; c),

c > 1, of the functions f verifying the inequality

(1.2) ess sup
I

f(x) ≤ c

∫

I

f(x)dx ,

for every interval I ⊆ I0. We have proved a theorem concerning, in

the one dimensional case, the propagation of the inequalities (1.2) to

inequalities of kind (1.1). The main tool in the proof is the increasing

rearrangement f∗ of a function f : indeed, if f is in G∞, then f∗ is in

G∞ too, with the same constant. This argument fails to be true in the

n-dimensional case (n ≥ 2) as can be shown by a counter-example that

uses an argument of [3] and the implication f ∈ A1 ⇒ 1/f ∈ G∞.

Our goal in this paper is to extend the above result to the n-dimen-

sional case. Indeed we prove the following

Theorem 1. Let f be in G∞(I0; c), that is f verifies the inequal-

ity (1.2) for every interval I ⊆ I0; then f is in Ap(I0;
1
c
(p−1
p−c

)p−1) for every

p > c. The constant 1
c
(p−1
p−c

)p−1 and the lower bound c for the exponents

cannot be improved.
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This theorem states for the class G∞ a result corresponding to one

stated for the class A1 in [3] in the one-dimensional case and extended

in [10] to the n-dimensional case.

The class G∞ is related to the class A1 by the implication f ∈ A1 ⇒
1/f ∈ G∞, but the reverse implication does not hold (see remark (2.8)

in [2]): this justifies the interest for investigating the properties of the

class G∞ as in the above theorem.

To get our result, in the same line of thinking of [10], but applying

a covering lemma proved in [3], we obtain a characterization of G∞ in

terms of a reverse Chebychev type inequality.

The method we follow doesn’t yield, immediately, the propagation

when the inequalities (1.2) are satisfied over cubes, because we should

need a suitable covering lemma and a related characterization in terms

of reverse Chebychev inequalities that are not available at the moment;

propagation results, without the optimality for the exponent, related to

the condition A1 over spheres and cubes have been obtained in [11]; the

similar problem for the class G∞ is an open question.

2 – Characterization of G∞

In the following, µ(n)(·) stands for the n-dimensional measure of

a measurable subset of Rn; if f is a non negative measurable func-

tion defined over a set X, the notation {f < λ} stands for the set

{x ∈ X : f(x) < λ}.
The following lemmas will be useful to obtain the characterization of

G∞ in terms of Chebychev like inequalities.

Lemma 1 [3]. Let E be a measurable bounded set of R; then for

every ε > 0 there exists a sequence (Iν)
∞
ν=1 of subintervals with mutually

disjoint interiors such that

i) |E ∩⋃
ν Iν | = |E|

ii) (1 − ε)|Iν | ≤ |Iν ∩ E| < |Iν | ν = 1, 2, . . .

Lemma 2. Let f be a nonnegative measurable function over a

measurable set X of Rn of finite measure. Then the inequality

(2.1) λ|{f < λ}| ≤ c

∫

{f<λ}
f dx c > 1



210 L. BASILE – L. D’APUZZO – M. SQUILLANTE [4]

holds for every λ ≤ ess sup f if and only if the inequality

f(x)|{f < f(x)}| ≤ c

∫

{f<f(x)}
f dt

holds a.e. in X.

Proof. Fix a representative of f(x), call it f and denote by f(X)

its range. Of course, it is enough to prove the “if” part of the statement,

by choosing λ �∈ f(X), λ ∈ [0, ess sup f ].

Suppose λ �= ess sup f and set λ∗ = sup{y ∈ [λ, ess sup f ] : t �∈ f(X)

∀ t ∈ [λ, y]}.
If λ∗ ∈ f(X) then

λ|{x : f(x) < λ}| ≤ λ∗|{x : f(x) < λ∗}| ≤ c

∫

{f<λ∗}
f dx = c

∫

{f<λ}
f dx .

If λ∗ �∈ f(X) then we can consider a sequence (λn)n∈N such that

λn ∈ f(X) and λn → λ∗: indeed it is enough to choose λn ∈ [λ∗, λ∗ +

1/2n] ∩ f(X) ∀n ∈ N .

Then we get

λ|{x : f(x) < λ}| ≤ λ∗|{x : f(x) < λ∗}| = lim
n

λn|{x : f(x) < λn}| ≤

≤ c lim
n

∫

{f<λn}
f dt = c

∫

{f≤λ∗}
f dx = c

∫

{f<λ}
f dx ,

from which (2.1) immediately follows.

Suppose now λ = ess sup f �∈ f(X). If λ < +∞ then consider a

sequence (λn)n∈N such that λn ∈ [λ− 1/2n, λ] ∩ f(X) ∀n ∈ N .

Obviously λn → λ and {x : f(x) < λ} =
⋃

n{x : f(x) < λn}. Then

we get

λ|{x : f(x) < λ}| = lim
n

λn|{x : f(x) < λn}| ≤

≤ c lim
n

∫

{f<λn}
f dx ≤ c

∫

{f<λ}
f dx .

If λ = +∞ (2.1) follows in a similar way by choosing a suitable sequence

(λn)n∈N in f(X).
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Lemma 3. Let I0 = (a1, b1) × · · · × (an, bn) be an open interval of

Rn and f in G∞(I0; c). Then, for a.e. xn ∈ (an, bn), the function f(·, xn)

lies in G∞(J0; c), where J0 = (a1, b1) × · · · × (an−1, bn−1).

Proof. Let J be an open (n− 1)-dimensional subinterval of J0 and

x̄n ∈ (an, bn). Choose δ > 0 such that Iδ = (x̄n − δ, x̄n + δ) ⊆ (an, bn). As

f lies in G∞(I0; c) it is

ess sup
J×Iδ

f ≤ c

|J × Iδ|

∫

J×Iδ

f dx =
c

|J × Iδ|

∫

Iδ

∫

J

f(·, xn)dµ
(n−1)dxn =

= c

∫

Iδ

∫

J

f(·, xn)dµ
(n−1)dxn ;

therefore for a.e. x̄n ∈ (an, bn)

ess sup
J

f(·, x̄n) ≤ ess sup
J×Iδ

f ≤ c

∫

Iδ

∫

J

f(·, xn)dµ
(n−1)dxn

and, by Lebesgue differentiation theorem, we get, for δ → 0,

ess sup
J

f(·, x̄n) ≤ c

∫

J

f(·, x̄n)dµ
(n−1) ∀ x̄n ∈ (an, bn) a.e.

The following theorem give a characterization of the functional class

G∞ in terms of reverse Chebychev inequalities; it states a new result also

in the one-dimensional case.

Theorem 2. Let I0 = (a1, b1) × · · · × (an, bn) be an open interval

of Rn. Then the following propositions are equivalent:

a) f is in G∞(I0; c)

b) for every open subinterval I of I0 and for every λ ≤ ess sup
I

f it results

(2.2) λ|{fI < λ}| ≤ c

∫

{fI<λ}
f dx

c) for every open subinterval I of I0 and for a.e. every x ∈ I it results

f(x)|{fI < f(x)}| ≤ c

∫

{fI<f(x)}
f dt
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Proof. The equivalence between b) and c) immediately follows by

Lemma 2; then we have just to prove that a) is equivalent to b). Let I

be a subinterval of I0; by (2.2) we get

c

∫

I

f dx = c
[ ∫

{fI≥λ}
f dx +

∫

{fI<λ}
f dx

]
≥

≥ cλ|{fI ≥ λ}| + λ|{fI < λ}| ≥ λ|I|

and this ensures, for λ = ess supI f , that f lies in G∞(I0; c).

Conversely, let us suppose that f belongs to G∞(I0; c); we shall prove

the validity of (2.2) by induction on the dimension n.

In the case n = 1, let I be a subinterval of I0, λ ≤ ess supI f , E =

{x ∈ I : f(x) < λ} = {fI < λ} and D the set of the density points of

I − E = {x ∈ I : f(x) ≥ λ}.
If |E| = |I|, then λ = ess supI f and (2.2) follows.

If |E| < |I| then we apply Lemma 1 to E and we get

(2.3) λ|I ∩ Iν | ≤ ess sup
I∩Iν

f |I ∩ Iν | ≤ c

∫

I∩Iν

f dx , for every ν .

Indeed by the strict inequality in ii) it results |Iν − E| > 0 for every

ν = 1, 2 . . . ; if it is also |Iν ∩ I − E| = |{fIν ≥ λ}| > 0 then

λ ≤ ess sup
Iν

f, ν = 1, 2 . . . ,

and so, because f is in G∞(I0; c), (2.3) follows.

Let now |Iν ∩ I − E| = |{fI∩Iν ≥ λ}| = 0: by the strict inequality in

ii) and the maximality of the intervals Iν =]aν , bν [ (see proof of Lemma 1

in [3]), if we consider, for h ∈ N , the interval Ihν =]aν − 1
2h
, bν + 1

2h
[, then

we get |Ihν ∩ I − E| = |{fI∩Ihν
≥ λ}| > 0 and λ ≤ ess sup

I∩Ihν

f ; so

λ|I ∩ Iν | ≤ ess sup
I∩Ihν

f |I ∩ Ihν | ≤ c

∫

I∩Ihν

f dx

and for h → +∞ we obtain (2.3) again.
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Moreover the conditions i) and ii) in the Lemma 1 ensure that

(2.4)

(1 − ε)
∣∣∣
⋃

ν

Iν
∣∣∣ ≤

∑

ν

|Iν ∩ E| =
∑

ν

|I ∩ Iν ∩ E| =

=
∣∣∣
⋃

ν

Iν ∩ E
∣∣∣ = |E| ≤

∣∣∣I ∩
⋃

ν

Iν
∣∣∣

and from inequalities (2.4) and (2.3)

λ|E|≤λ
∣∣∣I ∩

⋃

ν

Iν
∣∣∣=λ

∑

ν

|I ∩ Iν |≤c
∑

ν

[ ∫

I∩Iν∩E

f dx +

∫

I∩Iν−E

f dx
]

=

=c
[ ∫

⋃
ν
Iν∩E

f dx+

∫

I∩
⋃

ν
Iν−E

f dx
]
=c

[ ∫

E

f dx+

∫
⋃

ν
Iν−E

f dx
]
;

as |⋃ν Iν −E| → 0 for ε → 0 because of (2.4), the above inequality gives

λ|E| ≤ c

∫

E

f(x)dx ,

that is (2.2) is verified in the one dimensional case.

Let now I0 be an open interval of Rn, n ≥ 2, and f in G∞(I0; c).

Let us suppose the validity of (2.2) in the dimension n − 1. Given I =

(a1, b1)× · · · × (an, bn) and λ ≤ ess supI f . We apply Lemma 1 to the set

E = {xn ∈ (an, bn) : fI(·, xn) < λ} and we find that, for every ν

(2.5) |Iν − E| = |{xn ∈ Iν : fI(·, xn) ≥ λ}| > 0 ;

further, if we set I(n−1) = (a1, b1) × · · · × (an−1, bn−1), we get

(2.6)

(1 − ε)
∣∣∣
⋃

ν

(I(n−1) × Iν)
∣∣∣ ≤

∣∣∣
⋃

ν

(I(n−1) × (Iν ∩ E))
∣∣∣ =

=
∣∣∣I(n−1) ×

(⋃

ν

Iν ∩ E
)∣∣∣ = |I(n−1) × E| ≤

∣∣∣
⋃

ν

(I(n−1) × Iν)
∣∣∣ .

Because of (2.5), for every ν, it is |I(n−1) × (Iν − E)| = |{fI(n−1)×Iν
≥

λ}| > 0 and so λ ≤ ess supI(n−1)×Iν
f .
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Then, by i) in Lemma 1 and as f is in G∞(I0; c)

λ|I(n−1) × E| ≤ λ
∣∣∣I(n−1) ×

⋃

ν

Iν
∣∣∣ = λ

∑

ν

|I(n−1) × Iν | ≤

≤
∑

ν

ess sup
I(n−1)×Iν

f |I(n−1) × Iν | ≤ c
∑

ν

∫

I(n−1)×Iν

f dx =

=c

∫
⋃

ν
(I(n−1)×Iν)

f dx=c
[∫

⋃
ν
(In−1×(Iν∩E))

f dx+

∫
⋃

ν
(In−1×(Iν−E))

f dx
]
.

By i) in Lemma 1 and as |⋃ν I
(n−1) × (Iν − E)| → 0 for ε → 0 because

of (2.6), by the above inequality we get

λ|I(n−1) × E| ≤ c

∫

I(n−1)×E

f dx ,

that is

(2.7) λ

∫

I(n−1)×E

χ{f<λ}dx ≤ c

∫

I(n−1)×E

f dx .

On the other hand the formula (2.2) is true in the n− 1 dimensional case

and this fact, with Lemma 3, ensures that

(2.8)

λ

∫

I(n−1)×((an,bn)−E)

χ{f<λ}dx =

=

∫

(an,bn)−E

dxn · λ
∫

I(n−1)
χ{f<λ}dµn−1 ≤

≤
∫

(an,bn)−E

dxn · c
∫

I(n−1)
fχ{f<λ}dµn−1 =

= c

∫

I(n−1)×((an,bn)−E)

fχ{f<λ}dx .

By (2.7) and (2.8) it follows

λ|{fI < λ}| = λ

∫

I

χ{f<λ}dx ≤ c

∫

{fI<λ}
f dx .



[9] The limit class of gehring type G∞ . . . 215

Remark 1. An alternative way to get the implication a) ⇒ b) in

the one dimensional case is suggested by the proof of Lemma 3.4 of [10]

as it follows.

Let I be a subinterval of I0, λ = ess supI f , E = {x ∈ I : f(x) < λ} =

{fI < λ} and D the set of the density points of I−E = {x ∈ I : f(x) ≥ λ}.
If |E| = |I|, then λ = ess supI f and (2.2) follows.

Suppose |E| < |I|. Then for every ε ∈]0, |I − E|[, we consider an

open set Uε ⊂ I containing the set E
⋃

[(I −E)−D] with |Uε| < |E|+ ε.

Since Uε is open there are countably many pairwise disjoint open

subintervals Iν of I such that Uε =
⋃

ν Iν .

For σ > 1, and for every ν, set Jν = σIν ∩ I. It results Iν ⊂ Jν ⊂ I

and |Jν ∩ (I − E)| > 0, then λ = ess supJν
f and so

λ|Jν | ≤ ess sup
Jν

f · |Jν | ≤ c

∫

Jν

f(x)dx

that is

λσ|Iν | ≤ c

∫

σIν

f(x)dx

and, as σ → 1,

λ|Iν | ≤ c

∫

Iν

f(x)dx .

So we have:

λ|E| ≤ λ|Uε| = λ
∑

ν

|Iν | ≤ c
∑

ν

∫

Iν

f dx = c

∫

Uε

f dx =

= c

∫

E

f dx +

∫

Uε−E

f dx ,

and, because |Uε − E| → 0 for ε → 0, we get λ|E| ≤ c
∫
E f dx.

Corollary. In the hypotheses of Theorem 2 if f is in G∞(I0; c),

then the inequality (2.2) holds for every open subinterval I of I0 and for

every λ ≤ αI = c
∫
I f(x)dx.

Proof. If λ ≤ ess supI f , then the assertion follows from the impli-

cation a) ⇒ b) of Theorem 2. If ess supI f < λ ≤ αI = c
∫
I f(x)dx, then

it is {fI < λ} = I and so λ|{fI < λ}| ≤ αI |I| = c
∫
{fI<λ} f dx.
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3 – Propagation

The following lemmas are crucial to obtain the propagation of the

inequalities (1.2), characterizing the class G∞, into the inequalities (1.1)

with suitable constants and exponents.

Lemma 4. Let µ be a σ-finite positive measure on a σ-algebra

over a set X and f : X →]0,+∞[ measurable. If ϕ :]0,+∞[→]0,+∞[ is

decreasing, absolutely continuous in ]0, t[ for every t < +∞, and it results

limt→+∞ ϕ(t) = 0, then

∫

X

ϕ ◦ f dµ = −
∫ +∞

0

ϕ′(t)µ({f < t})dt .

Proof. It follows by Fubini theorem and the equality ϕ(f(x)) =

− ∫ +∞
f(x) ϕ

′dt (see also [15]).

Lemma 5. In the hypotheses of Lemma 4 it results, for every λ > 0

(3.1)

∫

{f<λ}
ϕ(f(x))dµ = −

∫ λ

0

ϕ′(t)µ({f < t})dt + ϕ(λ)µ({f < λ}) .

Proof. By applying Lemma 4 to the set Eλ = {f < λ}, we get

∫

{f<λ}
ϕ(f(x))dµ = −

∫ +∞

0

ϕ′(t)µ({x ∈ Eλ : f(x) < t})dt =

−
∫ λ

0

ϕ′(t)µ({x ∈ Eλ : f(x) < t})dt+

−
∫ +∞

λ

ϕ′(t)µ({x ∈ Eλ : f(x) < t})dt =

−
∫ λ

0

ϕ′(t)µ({x ∈ Eλ : f(x) < t})dt− µ(Eλ)

∫ +∞

λ

ϕ′(t)dt =

−
∫ λ

0

ϕ′(t)µ(Et)dt + ϕ(λ)µ(Eλ) .
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Remark 2. By choosing ϕ(t) = tr, r < 0, the equality (3.1) becames

(3.2)

∫

{f<λ}
f(x)rdµ = −r

∫ λ

0

tr−1µ({f < t})dt + λrµ({f < λ}) .

The next lemma ensures the propagation of the reverse Chebychev type

inequalities (2.1) and the sommability of suitable negative powers of the

involved function f .

Lemma 6. Let X ⊆ Rn be a measurable set with |X| < +∞ and f

a positive measurable function on X. If there exist α > 0 and c > 1 s.t.

(3.3) λ|{f < λ}| ≤ c

∫

{f<λ}
f dx

for every λ ≤ α, then, for every λ ≤ α and r : 1
1−c

< r < 0, it results

(3.4)

∫

{f<λ}
f(x)rdx ≤ λr

rc− r + 1
|{f < λ}| .

Proof. Let r be a negative number and dµ = f dx; by applying the

equality (3.2) with exponent r − 1, we get

∫

{f<λ}
f rdx =

∫

{f<λ}
f r−1dµ = −(r − 1)

∫ λ

0

tr−2µ({f < t})dt+

+ λr−1µ({f < λ}) =

= (1 − r)

∫ λ

0

tr−2
( ∫

{f<t}
dµ

)
dt + λr−1

∫

{f<λ}
dµ =

= (1 − r)

∫ λ

0

tr−2
( ∫

{f<t}
f dx

)
dt + λr−1

∫

{f<λ}
f dx ;

then, by (3.3)

∫

{f<λ}
f rdx ≥ (1 − r)

∫ λ

0

tr−2 t

c
|{f < t}|dt + λr−1λ

c
|{f < λ}| =

=
1 − r

c

∫ λ

0

tr−1|{f < t}|dt +
λr

c
|{f < λ}| ;
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by the above inequality and representing
∫ λ

0 tr−1|{f < t}|dt by means of

the formula (3.2), we obtain the inequality

∫

{f<λ}
f rdx ≥ r − 1

rc

[ ∫

{f<λ}
f rdx− λr|{f < λ}|

]
+

λr

c
|{f < λ}|

or, in other terms

r − 1 − rc

rc

∫

{f<λ}
f rdx≤λr r − 1

rc
|{f < λ}|− λr

c
|{f < λ}|=−λr

rc
|{f < λ}| ;

for r−1−rc
rc

> 0, that is r > 1
1−c

, the above inequality is equivalent

to (3.4).

Remark 3. The inequality (3.4), written for r = − 1
p−1

, holds for

p > c:

(3.5)

∫

{f<λ}
f− 1

p−1dx ≤ λ− 1
p−1

p− 1

p− c
|{f < λ}| .

Remark 4. The lower bound 1
1−c

for the exponent r and the constant
λr

rc−r+1
in (3.4) are the best possible. Indeed for the function

f : x = (x1, x2, · · · , xn) ∈ (0, 1)n → xc−1
1 c > 1

and for λ ≤ 1, it results

{f < λ} = {x : xc−1
1 < λ} = {x : x1 < λ

1
c−1 } = (0, λ

1
c−1 ) × (0, 1)n−1

and
∫

{f<λ}
f dx =

∫ λ
1

c−1

0

xc−1
1 dx1 =

[xc
1

c

]λ 1
c−1

0
=

1

c
λλ

1
c−1 ;

finally

c

∫

{f<λ}
f dx = λ|{f < λ}| ;
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so f verifies the condition (3.3) for every λ ≤ 1. Furthermore f is not

integrable for r ≤ 1
1−c

and

∫

{f<λ}
f rdx =

∫

{f<λ}
x
r(c−1)
1 dx =

∫ λ
1

c−1

0

xrc−r
1 dx1 =

[ xrc−r+1
1

rc− r + 1

]λ 1
c−1

0
=

=
λ

rc−r+1
c−1

rc− r + 1
=

λr

rc− r + 1
λ

1
c−1

that is ∫

{f<λ}
f rdx =

λr

rc− r + 1
|{f < λ}| .

Once the above results have been acquired, we are able to exhibit the

proof of Theorem 1 (see the Introduction)

Proof of Theorem 1. By applying the corollary of Theorem 2

and Lemma 6 with r = − 1
p−1

(see Remark 3) we get, for every interval

I ⊆ I0, λ ≤ c
∫
I f(x)dx and p > c

∫

I

f− 1
p−1dx =

∫

{fI<λ}
f− 1

p−1dx +

∫

{fI≥λ}
f− 1

p−1dx ≤

≤ λ− 1
p−1

(p− 1

p− c

)
|{fI < λ}| +

∫

{fI≥λ}
f− 1

p−1dx ≤

≤ λ− 1
p−1

(p− 1

p− c

)
|{fI < λ}| + λ− 1

p−1 |{fI ≥ λ}| ≤

≤ λ− 1
p−1

(p− 1

p− c

)
|{fI < λ}|+

+ λ− 1
p−1

(p− 1

p− c

)
|{fI ≥ λ}| = λ− 1

p−1

(p− 1

p− c

)
|I| .

By choosing λ = c
∫
I f(x)dx we obtain

∫

I

f− 1
p−1dx ≤

(
c

∫

I

f(x)dx
)− 1

p−1 p− 1

p− c
|I|

that is

(3.6)
(∫

I

f(x)dx
)(∫

I

f(x)−
1

p−1dx
)p−1

≤ 1

c

(p− 1

p− c

)p−1

.
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The constant 1
c
(p−1
p−c

)p−1 and the lower bound c for the exponent p are the

best possible. Indeed the function

f : x = (x1, x2, · · · , xn) ∈ (0, 1)n → xc−1
1 , c > 1 ,

is in G∞(I0; c) and verifies (3.7) as equalities, for every p > c; furthermore

f lies in L− 1
p−1 if, and only if, p > c.
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[6] L. D’Apuzzo – C. Sbordone: Reverse Hölder inequalities. A sharp result , Ren-
diconti di Matematica, serie VII, 10 (1990), 357-366.

[7] F.W. Gehring: The Lp-integrability of the partial derivatives of a quasiconformal
mapping , Acta Mathematica, 130 (1973), 145-152.

[8] J. Garcia-Cuerva – J. Rubio de Francia: Weighted norm inequalities and
related topics, North Holland, 1985.

[9] G.H. Hardy – J.E. Littlewood – G. Polya: Inequalities, Cambridge Univer-
sity Press, Cambridge, 1934.

[10] J. Kinnunen: Sharp results on reverse Hölder inequalities, Annales Accademiae
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