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A generalization of Vesentini’s theorem

to locally m-convex Q-algebras

A. POPA

Riassunto: Lo scopo di questo lavoro è la generalizzazione del teorema di Ve-
sentini sulle algebre m-convesse. Si considera il caso delle Q-algebre m-convesse e
sequenzialmente complete. Si ottiene un teorema del tipo di quello di Vesentini per
le algebre m-convesse e sequenzialmente complete che non sono necessariamente Q-
algebre. Il risultato finale è un teorema del tipo di quello di Kleinecke-Shirokov per
algebre m-convesse e sequenzialmente complete.

Abstract: The aim of this paper is to generalize Vesentini’s theorem to m-convex
algebras. We obtain this result in case of sequentially complete m-convex Q-algebras. As
an auxiliary result a Vesentini type theorem for sequentially complete m-convex algebras
which are not necessarily Q-algebras is previously proved. As a final result a Kleinecke-
Shirokov type theorem for sequentially complete m-convex algebras is obtained.

1 – Preliminaries

We now briefly recall some facts needed in the sequel.

Let A be a locally m-convex algebra with identity, whose topology is

defined by the separating family (pα)α∈I of submultiplicative seminorms

such that pα(1) = 1 for each α ∈ I. Moreover, A is a Q-algebra if the set

of all invertible elements of A is open.
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We denote by G(A) the set of all invertible elements of A, by σ(x)

the set

σ(x) = {λ ∈ C/λ · 1 − x �∈ G(A)}

called the spectrum of the element x of A and by ρ(x) the spectral ra-

dius of x,

ρ(x) = sup
λ∈σ(x)

|λ| .

The element x ∈ A is called quasi-nilpotent if ρ(x) = 0.

It is well known that

lim
n→∞

(pα(xn))1/n = inf
n

(pα(xn))1/n

for any x ∈ A and α ∈ I; therefore, if we set

ρα(x) = lim
n→∞

(pα(xn))1/n

for x ∈ A and α ∈ I, then in accordance with the generalization to

sequentially complete m-convex algebras of Beurling’s formula (see [5],

[7]) we have

ρ(x) = sup
α∈I

lim
n→∞

(pα(xn))1/n

for all x ∈ A and α ∈ I, and so

ρ(x) = sup
α∈I

ρα(x)

for any x ∈ A and α ∈ I.

We can consider (ρα)α∈I as a family of spectral radiuses and it is easy

to prove that each of these have the following properties:

(i) ρα(xy) = ρα(yx), for any x, y of A

(ii) ρα(λx) = |λ|ρα(x), for any λ ∈ C and x ∈ A.

These properties are used at the end of this paper when we give an

application of the generalization of Vesentini’s theorem.

Let D ⊂ C be an open connected set. Then u : D → [−∞,∞) is a

subharmonic function if u is upper semicontinuous and

u(z0) ≤
1

2π

∫ 2π

0

u(z0 + reiθ)dθ

whenever Dr(z0) ⊂ D.
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As it is known, subharmonicity is preserved by finite sums, products

with positive scalars, finite supremums, limits of decreasing sequences.

Moreover, ϕ ◦ u is subharmonic whenever u is subharmonic and ϕ is

convex and increasing.

We recall that for u a subharmonic function on the domain D ⊂ C

and for z0 ∈ D one has

u(z0) = lim
z→z0
z �=z0

u(z) .

2 – A generalization of Vesentini’s theorem

As an auxiliary result, we prove the following theorem.

Theorem 2.1. Let A be a sequentially complete unital m-convex

algebra and D ⊂ C an open connected set. If f is an analytic function

defined on D and A valued, then for each α ∈ I, pα(f(·)) as well as

ln pα(f(·)) are subharmonic functions.

Proof. Let α ∈ I. First we prove that pα(f(·)) is a subharmonic

function. To this end, let λ be an arbitrary real number and

M = {z ∈ D/pα(f(z)) < λ} .

We claim that M is an open set. Indeed, if we suppose that M is not an

open set, then there exists z0 ∈ M and the sequence zn −→
n

z0 such that

pα(f(zn)) ≥ λ. Since z0 ∈ M , we have pα(f(z0)) < λ. Further f being an

analytic function, f is continuous which implies f(zn) −→
n

f(z0). From

this and from the inequalities

−pα(f(zn) − f(z0)) ≤ pα(f(zn)) − pα(f(z0)) ≤ pα(f(zn) − f(z0))

we get pα(f(zn)) −→
n

pα((f(z0)). Hence, pα(f(z0)) ≥ λ, contradicting the

fact that z0 ∈ M . We now prove that whenever Dr(z0) ⊂ D,

pα(f(z0)) ≤
1

2π

∫ 2π

0

pα(f(z0 + reiθ))dθ .

From Cauchy’s integral representation theorem it follows that

f(z0) =
1

2πi

∫

∂Dr(z0)

f(ζ)

ζ − z0

dζ .
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From the Hahn-Banach theorem (see [3]) we get the existence of a

linear and continuous form Fα on A such that pα(f(z0)) = Fα(f(z0)) and

|Fα(y)| ≤ pα(y) for any y ∈ A.

Now we have

pα(f(z0)) = Fα(f(z0)) = Fα

( 1

2πi

∫

∂Dr(z0)

f(ζ)

ζ − z0

dζ
)

=

=
1

2πi

∫

∂Dr(z0)

Fα(f(ζ))

ζ − z0

dζ =

=
1

2π

∫ 2π

0

Fα(f(z0 + reiθ))dθ ≤ 1

2π

∫ 2π

0

pα(f(z0 + reiθ))dθ .

Hence, pα(f(·)) is a subharmonic function.

Now we show that ln pα(f(·)) is upper semicontinuous. To this end

we are going to prove that for λ an arbitrary real number, the set

M = {z ∈ D/ ln pα(f(z)) < λ}

is an open set. Let z0 ∈ M . Then ln pα(f(z0)) < λ and hence pα(f(z0)) <

eλ. Because pα(f(·)) is upper semicontinuous there exists r > 0 with the

property that for every z for which |z− z0| < r we have pα(f(z)) < eλ. It

follows that there exists r > 0 such that for every z for which |z− z0| < r

we have ln pα(f(z)) < λ.

From the fact that Dr(z0) ⊂ M it follows that M is an open set and

hence ln pα(f(·)) is upper semicontinuous.

As it is known, if u is a complex analytic function then ln |u| is a

subharmonic function.

Now, using Hahn-Banach theorem we get the existence of a linear and

continuous form Fα on A such that pα(f(z0)) = Fα(f(z0)) and |Fα(y)| ≤
pα(y) for any y ∈ A. Also we use the fact that Fα(f(·)) is an analytic

function. So we have

ln pα(f(z0)) = lnFα(f(z0)) ≤
1

2π

∫ 2π

0

lnFα(f(z0 + reiθ))dθ ≤

≤ 1

2π

∫ 2π

0

ln pα(f(z0 + reiθ))dθ ,

whenever Dr(z0) ⊂ D.

So, ln pα(f(·)) is a subharmonic function.
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Theorem 2.2. Let A be a sequentially complete m-convex algebra,

D ⊂ C be open connected and f : D → A be an analytic function. Then

ρα(f(·)) is subharmonic for any α ∈ I.

Proof. Let α ∈ I. For z ∈ D

ρα(f(z)) = lim
n→∞

pα(f(z)n)1/n = inf
n
pα(f(z)n)1/n .

Because f is an analytic function, fn is also analytic for every n

positive integer. By Theorem 2.1. the mapping z → ln pα(f(z)n) is

subharmonic which implies that the mappings

z → 1

n
ln pα(f(z)n)

z → ln pα(f(z)n)1/n

z → pα(f(z)n)1/n

z → inf
n
pα(f(z)n)1/n

are subharmonics.

Thus, the mapping z → ρα(f(z)) is a subharmonic function.

Theorem 2.3. Let A be a sequentially complete unital m-convex

Q-algebra, D ⊂ C be an open connected set and f : D → A be an analytic

function. Then ρ(f(·)) is a subharmonic function.

Proof. Let z0 ∈ D, r > 0 such that Dr(z0) ⊂ D and α ∈ I. From

Theorem 2.2. it follows that

ρα(f(z0)) ≤
1

2π

∫ 2π

0

ρα(f(z0 + reiθ))dθ ≤ 1

2π

∫ 2π

0

ρ(f(z0 + reiθ))dθ .

Therefore

ρ(f(z0)) = sup
α∈I

ρα(f(z0)) ≤
1

2π

∫ 2π

0

ρ(f(z0 + reiθ))dθ .

Now we have to prove the upper semicontinuity of ρ(f(·)).
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For this, we first prove that ifM⊂A is a bounded set then supx∈M ρ(x)

is finite.

We suppose that supx∈M ρ(x) is not finite. Then supx∈M ρ(x) > n

for any n positive integer.

For n positive integer there exists xn ∈ M such that ρ(xn) > n.

Let λn ∈ σ(xn) satisfying ρ(xn) > |λn| > n.

From the fact that 0 �= λn ∈ σ(xn) it follows that 1 ∈ σ( 1
λn

xn) and

because |λn| −→
n

∞ we have 1
λn

xn −→
n

0 and so 1 − 1
λn

xn −→
n

1.

Since A is a Q-algebra and 1 is an invertible element we get 1− 1
λn

xn

is an invertible element, in contradiction with 1 ∈ σ( 1
λn

xn).

Therefore, we must have that supx∈M ρ(x) is finite.

To prove the upper semicontinuity of ρ(f(·)) we consider r one real

number and the set M = {z ∈ C/ρ(f(z)) < r}.
In order to show that M is an open set, we take z0 ∈ M , r0 =

ρ(f(z0)) < r and r1 > 0 such that r0 < r1 < r.

Suppose M is not open. Then there exists the sequence zn −→
n

z0

and ρ(f(zn)) ≥ r > r1. Let λn ∈ σ(f(zn)) such that |λn| ≥ r1. Since for

each n positive integer |λn| ≤ ρ(f(zn)) we have supn |λn| ≤ supn ρ(f(zn)).

Now because supn |λn| is finite we can choose a convergent subse-

quence of (λn)n, λn −→
n

λ0, and |λ0| ≥ r1.

From the facts 1− 1
λn

f(zn) −→
n

1− 1
λ0
f(z0) and 1− 1

λn
f(zn) �∈ G(A)

it follows that 1 − 1
λ0
f(z0) �∈ G(A).

Hence λ0 ∈ σ(f(z0)) and ρ(f(z0)) ≥ |λ0| ≥ r1. We have r0 ≥ r1,

contradicting the choice of r0, r1 such that r0 < r1. Thus we get that

ρ(f(·)) is a subharmonic function.

Corollary 2.4 (Vesentini’s theorem, see [1], [6]). If f is an ana-

lytic Banach algebra valued mapping on D then ρ(f(·)) is subharmonic.

3 – An application

Theorem 3.1. Let A be a sequentially complete unital m-convex

algebra and x, y ∈ A such that x commutes with xy − yx. Then xy − yx

is quasi-nilpotent.
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Proof. For x, y ∈ A we denote [x, y] = xy − yx.

The mapping λ → exp(λx)y exp(−λx) is an analytic function and

f ′(λ) = [x, exp(λx)y exp(−λx)].

By induction is easy to verify that its n-th derivative is

f (n)(λ) = [x, [x, . . . [︸ ︷︷ ︸
n

x, exp(λx)y exp(−λx)] . . . ]] .

Because f is an analytic function, we can use Taylor’s formula

f(λ) =
∞∑

n=0

f (n)(0)

n!
λn .

So, f(λ) =
∑∞

n=0
λn

n!
[x, [x, . . . [x, y] . . . ]] = y + λ[x, y].

Consequently, we have for any z �= 0 complex number

zy + [x, y] = exp
(1

z
x
)
(zy) exp

(
− 1

z
x
)
.

Let α ∈ I. We have

ρα(zy + [x, y]) = ρα
(

exp
(1

z
x
)
(zy) exp

(
− 1

z
x
))

= |z|ρα(y) .

By the subharmonicity of z → ρα(zy+[x, y]) and by the above prop-

erty of subharmonic functions we get

ρα(xy − yx) = lim
z→0
z �=0

ρα(zy + [x, y]) = lim
z→0
z �=0

|z|ρα(y) = 0 .

So ρα(xy− yx) = 0 for any α ∈ I. Hence ρ(xy− yx) = 0 and xy− yx

is a quasi-nilpotent element of A.

Corollary 3.2 (Kleinecke-Shirokov). If x, y belong to a Banach

algebra and x commutes with xy − yx then xy − yx is quasi-nilpotent.
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[2] F.F. Bonsall – J. Duncan: Complete Normed Algebras, Springer Verlag, 1973.

[3] H. Jarchow: Locally Convexes Spaces, B. G. Teubner Stuttgart 1981.
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