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Convergence of some energies for the

Dirichlet problem in perforated domains

M. RAJESH

Riassunto: Si studia la convergenza delle energie
∫
Ωε

B∇uε · ∇uεdx per ε → 0,

essendo uε la soluzione del problema omogeneo di Dirichlet in un dominio perforato
di Ωε.

Abstract: We study the convergence of energies,
∫
Ωε

B∇uε · ∇uε dx as ε → 0,

where uε is the solution of the homogeneous Dirichlet problem in the perforated do-
main, Ωε.

1 – Introduction

Let Ω be a bounded open set in Rn, n ≥ 2. Let ε > 0 be a param-

eter which tends to zero. For ε fixed, one may consider a periodically

perforated domain, Ωε, obtained as follows. First we cover Rn by cubes

of size 2ε periodically arranged with period 2ε. Then it is clear that only

finitely many of the cubes, P ε
i , i = 1, 2, ..., k(ε) intersect Ω. Let T ε

i be

closed balls of radius aε, 0 < aε ≤ ε, centred at the centre of the cubes

P ε
i . Then the perforated domain Ωε is defined by Ωε ≡ Ω \ ∪T ε

i .
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Let f ∈ L2(Ω). The Dirichlet problem in Ωε is: find uε ∈ H1
0 (Ωε)

satisfying,

(1.1)

{
−∆uε = f in Ωε

uε = 0 on ∂Ωε.

The existence of uε follows from the Lax-Milgram theorem and such a

uε is unique. The behaviour of uε as ε → 0 was the subject of study

in a paper by Cioranescu and Murat [2], [3]. Depending on the size of

the holes, aε, various types of behaviour are possible. It was shown that

there exists a critical size of the holes, cε, such that if:

a) aε = cε, then there exists a measure µ such that ũε ⇀ u weakly in

H1
0 (Ω) and u solves,

(1.2)

{
−∆u + µu = f in Ω

u = 0 on ∂Ω.

˜denotes the extension by zero onto the holes. The lower order term

is known in the literature as the “strange term”.

b) If aε << cε, then µ = 0 and ũε ⇀ u weakly in H1
0 (Ω) and u solves

the Dirichlet problem in the domain Ω.

c) If aε >> cε, then ũε −→ 0 strongly in H1
0 (Ω).

In addition, in case of a) or b), the following convergence of energies was

established.

∫

Ωε

|∇uε|2 dx ε→0−→
∫

Ω

|∇u|2 dx +

∫

Ω

u2 dµ.

Obviously,
∫
Ωε

|∇uε|2 dx −→ 0 when aε >> cε.

More generally, they (cf. [2], [3]) considered arbitrary perforated do-

mains Ωε ≡ Ω \ ∪Sε
i , where Sε

i , i = 1, 2, ..., k(ε) are closed subsets of Rn

(the holes). Further they assumed the existence of a sequence wε ∈ H1(Ω)

and a distribution µ ∈ W−1,∞(Ω) satisfying,

CM1) wε = 0 in Ω \ Ωε,

CM2) wε ⇀ 1 weakly in H1(Ω) and,
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CM3) For any sequence vε ∈ H1(Ω) with vε = 0 in Ω \ Ωε and such that

vε ⇀ v weakly in H1(Ω) and for any φ ∈ D(Ω), we have,

∫

Ωε

∇wε.∇(φvε) dx −→ 〈µ, φv〉.

We will henceforth refer to these conditions jointly as [CM] conditions.

Under these assumptions it was shown that

(1.3) ũε ⇀ u weakly in H1
0 (Ω)

where uε, u solve (1.1), (1.2) respectively. Also,

∫

Ωε

|∇uε|2 dx ε→0−→
∫

Ω

|∇u|2 dx + 〈µ, u2〉.

Remark 1.1. In fact, it is enough to have a sequence wε ∈ H1(Ω)

satisfying CM1 and CM2 above. That CM3 is a consequence of these was

shown by Casado-Dı́az [1].

Remark 1.2. From CM3 it follows that (cf. [2] [3])

〈µ, φ〉 = lim
ε→0

∫

Ω

|∇wε|2φdx.

So µ is a positive measure.

In this paper, we consider the convergence of energies
∫
Ωε
B∇uε·∇uε dx

as ε → 0 where B ∈ L∞(Ω)n×n is a matrix satisfying

(1.4) ‖B‖∞ ≤ M

for some constant M .

If Ωε is the periodically perforated domain defined before and holes

are above the critical size i.e., aε >> cε, then
∫
Ωε

B∇uε · ∇uε dx → 0,

since ũε −→ 0 strongly in H1
0 (Ω). When the holes are smaller or equal

to critical size, then we remark that there exists a sequence satisfying

[CM] conditions (cf. [2] [3]). In the next section, we, therefore, treat the

convergence of energies
∫
Ωε

B∇uε · ∇uε dx for the Dirichlet problem on a

general perforated domain, Ωε but assuming the existence of a sequence,
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wε satisfying [CM] conditions. In the third section, we apply the results

obtained in the second section to the homogenization of optimal con-

trol problems whose state equations are Dirichlet problems in perforated

domains.

2 – Strange term for the energy

Let Ωε be a general perforated domain. Assume that there exists a

sequence, wε satisfying the [CM] conditions. We show that there exists a

subsequence ε′ of ε and a distribution µB such that given any f ∈ L2(Ω),

if uε′ solves the Dirichlet problem (1.1) in domain Ωε′ , then

∫

Ωε′
B∇uε′ · ∇uε′ dx →

∫

Ω

B∇u · ∇u dx + 〈µB, u
2〉

where u solves the Dirichlet problem (1.2). Further we show that

B∇ũε′ · ∇ũε′ −→ B∇u · ∇u + u2µB in D′(Ω).

Lemma 2.1. Let ψε ∈ H1
0 (Ωε) be the solution of the boundary value

problem,

(2.1)

{
−∆ψε = −div(B∇wε) in Ωε

ψε = 0 on ∂Ωε.

Then, the sequence, ψ̃ε, is bounded in H1
0 (Ω) .

Proof. Multiplying (2.1) by ψε and integrating by parts we get,

∫

Ωε

|∇ψε|2 dx =

∫

Ωε

B∇wε · ∇ψε dx ≤ M |∇wε|0,Ωε |∇ψε|0,Ωε .

Therefore, since wε is a bounded sequence in H1(Ω),

|∇ψ̃ε|0,Ω = |∇ψε|0,Ωε ≤ M |∇wε|0,Ω ≤ C

where C is a generic constant, and this completes the proof.
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So, by the lemma, H1 boundedness of wε and the bound for B in L∞

(cf. (1.4) ), we also deduce that the sequence, ∇ψ̃ε−B∇wε is bounded in

L2(Ω). Hence, there exists a subsequence ε′ of ε and a function ψ ∈ H1
0 (Ω)

such that,

(2.2)

{
ψ̃ε′ ⇀ ψ weakly in H1

0 (Ω),

∇ψ̃ε′ −B∇wε′ ⇀ ∇ψ weakly in L2(Ω)n.

Define, µB ∈ D′(Ω) by,

(2.3) µB ≡ −∆ψ + ψµ.

Note that the definition of µB depends only on wε and B. Also note that

µB ∈ H−1(Ω).

Proposition 2.1. Let µB be given by (2.3). Let f ∈ L2(Ω) and let

uε′ be the solution of the Dirichlet problem (1.1) in Ωε′, such that uε′ ⇀ u

weakly in H1
0 (Ω). Let pε′ ∈ H1

0 (Ωε′) be the solution of:

(2.4)

{
−∆pε′ = −div(tB∇uε′) in Ωε′

pε′ = 0 on ∂Ωε′ .

Then, p̃ε′ ⇀ p weakly in H1
0 (Ω) and p is the solution of,

(2.5)

{
−∆p + pµ = −div(tB∇u) + uµB in Ω

p = 0 on ∂Ω.

Proof. It can be shown, as in Lemma 2.1., that p̃ε′ is bounded in

H1
0 (Ω). So there is a subsequence ε

′′
of ε′ and p ∈ H1

0 (Ω) such that,

p̃ε′′ ⇀ p weakly in H1
0 (Ω),

ηε′′ ≡ ∇p̃ε′′ −t B∇uε
′′ ⇀ η ≡ ∇p−t B∇u weakly in L2(Ω)n.

We need to show that

−divη + pµ = uµB.
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Let φ ∈ D(Ω). By integration by parts and since −divηε′′ = 0 in Ωε
′′ ,

∫

Ω
ε
′′
ηε′′ · ∇wε

′′φdx = −
∫

Ω
ε
′′
ηε′′ · ∇φwε

′′ dx.

Therefore, since wε
′′ → 1 strongly in L2(Ω) and ηε′′ ⇀ η weakly in

L2(Ω)n,

(2.6) lim
ε
′′→0

∫

Ω
ε
′′
ηε′′ · ∇wε

′′φdx = −
∫

Ω

η.∇φdx = 〈divη, φ〉.

Again,

∫

Ω
ε
′′
ηε′′ · ∇wε

′′φdx=

∫

Ω
ε
′′
∇pε′′ · ∇wε

′′φdx−
∫

Ω
ε
′′

tB∇uε
′′ · ∇wε

′′φdx ≡

≡ Iε′′ + Jε
′′ .

Now,

Iε′′ =

∫

Ω
ε
′′
∇pε′′ · ∇wε

′′φdx =

=

∫

Ω
ε
′′
∇wε

′′ · ∇(pε′′φ) dx−
∫

Ω
ε
′′
pε′′∇wε

′′ · ∇φdx

Therefore, using properties CM2 and CM3 of wε
′′ , the weak convergence

of p̃ε′′ in H1
0 (Ω) and its strong convergence in L2(Ω), we get,

(2.7) lim
ε
′′→0

Iε′′ = 〈µ, φp〉.

Now,

Jε
′′ = −

∫

Ω
ε
′′

tB∇uε
′′ · ∇wε

′′φdx =

= −
∫

Ω
ε
′′
B∇wε

′′ · ∇uε
′′φdx =

=

∫

Ω
ε
′′
(∇ψε

′′ −B∇wε
′′ ) · ∇uε

′′φdx−
∫

Ω
ε
′′
∇ψε

′′ · ∇uε
′′φdx ≡

≡ Kε
′′ + Lε

′′ .
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We have, by (2.1),

0 = 〈div(∇ψε
′′ −B∇wε

′′ ), φuε
′′ 〉 =

=−
∫

Ω
ε
′′
(∇ψε

′′−B∇wε
′′ ) · ∇φuε

′′dx−
∫

Ω
ε
′′
(∇ψε

′′−B∇wε
′′ ) · ∇uε

′′φdx=

= −
∫

Ω
ε
′′
(∇ψε

′′ −B∇wε
′′ ) · ∇φuε

′′ dx−Kε
′′ .

Therefore,

lim
ε
′′→0

Kε
′′ = − lim

ε
′′→0

∫

Ω

(∇ψ̃ε
′′ −B∇wε

′′ ) · ∇φũε
′′ dx =

= −
∫

Ω

∇ψ · ∇φu dx.

Therefore,

lim
ε
′′→0

Kε
′′ =

∫

Ω

∇u · ∇ψφdx + 〈u∆ψ, φ〉.(2.8)

Lε
′′ = −

∫

Ω
ε
′′
∇ψε

′′ · ∇uε
′′φdx =

=

∫

Ω
ε
′′
∇uε

′′ .∇(ψε
′′φ) dx +

∫

Ω
ε
′′
∇uε

′′ · ∇φψε
′′ dx =

= −
∫

Ω

fψ̃ε
′′φdx +

∫

Ω

∇ũε
′′ · ∇φψ̃ε

′′ dx.

Therefore, using (2.2), we have,

lim
ε
′′→0

Lε
′′ = −

∫

Ω

fφψ dx +

∫

Ω

∇u · ∇φψ dx,

which, using (1.2), gives,

(2.9)

lim
ε
′′→0

Lε
′′ = 〈∆u− uµ, ψφ〉 +

∫

Ω

∇u · ∇φψ dx =

= −
∫

Ω

∇u · ∇ψφdx− 〈uµ, φψ〉
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after an integration by parts. From (2.6)-(2.9), we get,

〈divη, φ〉 = 〈pµ, φ〉 + 〈u∆ψ, φ〉 − 〈uψµ, φ〉
= 〈pµ, φ〉 − 〈uµB, φ〉.

Since the above holds for all φ ∈ D(Ω), we have −∆p+pµ=−div(tB∇u)+

uµB, i.e. p satisfies (2.5). Since µ is a postive measure, the solution to

(2.5) is unique, and therefore, it follows that the entire sequence p̃ε′ ⇀ p

weakly in H1
0 (Ω). This completes the proof of the proposition.

We now prove our main theorem.

Theorem 2.1. Let ε′ be the subsequence of ε chosen prior to

Proposition 2.1. Let f ∈ L2(Ω) and uε be the solution of the Dirichlet

problem (1.1). Let µB be given by (2.3). Then,

∫

Ωε′
B∇uε′ · ∇uε′ dx →

∫

Ω

B∇u · ∇u dx + 〈µB, u
2〉(2.10)

and,

B∇uε′ · ∇uε′ → B∇u · ∇u + u2µB in D′(Ω).(2.11)

Proof. Define pε′ ∈ H1
0 (Ωε′) to be the solution of (2.4). We write,

∫

Ωε′
B∇uε′ · ∇uε′dx=

∫

Ωε′
∇pε′ · ∇uε′dx−

∫

Ωε′
(∇pε′−tB∇uε′) · ∇uε′dx =

=

∫

Ωε′
∇pε′ · ∇uε′ dx =

∫

Ω

fp̃ε′ dx

where we have used the fact that uε′ and pε′ are solutions of (1.1) and (2.4)

respectively. Therefore, by integration by parts and using Proposition 2.1,

lim
ε′→0

∫

Ωε′
B∇uε′ · ∇uε′ dx =

∫

Ω

fp dx = 〈−∆u + uµ, p〉 =

= 〈u,−∆p + pµ〉 = 〈u,−div(tB∇u) + uµB〉

which proves (2.10).
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Let φ ∈ D(Ω). Set ηε′ as in Proposition 2.1., then

∫

Ωε′
B∇uε′ · ∇uε′φdx =

∫

Ωε′
∇pε′ · ∇uε′φdx−

∫

Ωε′
ηε′ · ∇uε′φdx ≡

≡ Iε′ + Jε′ .

On one hand, it can be shown that (cf. arguments for convergence of Lε
′′

in Proposition 2.1. )

lim
ε′→0

Iε′ = lim
ε′→0

∫

Ωε′
∇pε′ · ∇uε′φdx = 〈−∆u + uµ, pφ〉 −

∫

Ω

∇u · ∇φp dx =

=

∫

Ω

∇u · ∇pφ dx + 〈uµ, pφ〉.

On the other hand, using the fact that pε′ solves (2.4) and using Propo-

sition 2.1.,

lim
ε′→0

Jε′ = lim
ε′→0

−
∫

Ωε′
ηε′ · ∇uε′φdx = lim

ε′→0

∫

Ωε′
ηε′ .∇φuε′ dx =

=

∫

Ω

η · ∇φu dx = −
∫

Ω

η · ∇uφ dx + 〈−divη, uφ〉 =

= −
∫

Ω

η · ∇uφ dx + 〈uµB − pµ, uφ〉.

Therefore,

lim
ε′→0

∫

Ωε′
B∇uε′ · ∇uε′φdx= lim

ε′→0
(Iε′ + Jε′) =

∫

Ω

∇u · ∇pφ dx + 〈uµ, pφ〉+

−
∫

Ω

η · ∇uφ dx + 〈uµB − pµ, uφ〉 =

=

∫

Ω

(∇p− η) · ∇uφ dx + 〈u2µB, φ〉 =

=

∫

Ω

B∇u · ∇uφ dx + 〈u2µB, φ〉.

This holds for all φ ∈ D(Ω). This proves (2.11).
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Remark 2.1. We introduce a parallel notation, Qε for the extension

operator ˜ from H1
0 (Ωε) to H1

0 (Ω). Note the following:

a) If f ∈ L2(Ω), the action of the adjoint operator, Q∗
ε : H−1(Ω) →

H−1(Ωε) on f is nothing but the restriction of f to Ωε.

b) Proposition 2.1 and Theorem 2.1 continue to be true if the right hand

side in the Dirichlet problem (1.1) is Q∗
εfε for a sequence fε ∈ H−1(Ω)

such that fε → f strongly in H−1(Ω). An example of such a sequence

is fε ∈ L2(Ω) such that fε ⇀ f weakly in L2(Ω).

Theorem 2.2. Let µB be as defined in (2.3). Then,

(2.12) 〈µB, φ〉 = lim
ε′→0

∫

Ωε′
B∇wε′ · ∇wε′φdx for all φ ∈ D(Ω).

Proof. Let φ ∈ D(Ω). We have,

∫

Ωε′
B∇wε′ ·∇wε′φdx=

∫

Ωε′
∇ψε′ ·∇wε′φdx−

∫

Ωε′
(∇ψε′−B∇wε′) ·∇wε′φdx=

= −
∫

Ωε′
∇wε′ · ∇φψε′ dx + 〈−∆wε′ , ψ̃ε′φ〉+

+

∫

Ωε′
(∇ψε′ −B∇wε′) · ∇φwε′ dx.

Passing to the limit is easy now and we get,

lim
ε′→0

∫

Ωε′
B∇wε′ · ∇wε′φdx = 〈µ, ψφ〉 +

∫

Ω

∇ψ · ∇φdx =

= 〈µ, ψφ〉 + 〈−∆ψ, φ〉 = 〈µB, φ〉.

This completes the proof.

Corollary 2.1. If B is a positive definite matrix, then µB is a

positive measure.

We now prove a result on the partial uniqueness of µB.

Theorem 2.3. Suppose that µ0 and µ1 are measures. Let f ∈
H−1(Ω) be arbitrary. Let uε solve the Dirichlet problem (1.1) with right
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hand side Q∗
εf and u solve (1.2), so that ũε ⇀ u weakly in L2(Ω) (cf. [3]).

Suppose that,

B∇uε · ∇uε −→ B∇u · ∇u + u2µ0 inD′(Ω) and,

B∇uε · ∇uε −→ B∇u · ∇u + u2µ1 in D′(Ω).

Then µ0 = µ1 in D′(Ω).

Proof. Let v ∈ H1
0 (Ω) be arbitrary. Then ∆v ∈ H−1(Ω). Since,

µ ∈ W−1,∞(Ω), we also have vµ ∈ H−1(Ω). Thus we are allowed to take

f ≡ −∆v + vµ in the hypothesis. Now, let uε be the solution of (1.1)

with right hand side Q∗
εf . Then ũε ⇀ u weakly in H1

0 (Ω) where u solves

−∆u + uµ = −∆v + vµ in Ω

u = 0 on ∂Ω.

Since µ is a positive measure, the solution to the above equation is unique

and therefore, u ≡ v. Now, from the hypothesis of the theorem, we

conclude that,

v2µ0 = v2µ1 in D′(Ω).

But v ∈ H1
0 (Ω) was arbitrary. For any ω ⊂⊂ Ω, we choose v ∈ D(Ω) such

that v ≡ 1 on ω. Then, µ0(φ) = µ1(φ) for any φ ∈ D(Ω) with suppφ ⊂ ω.

That is, µ0|ω = µ1|ω or µ0 = µ1 in D′(ω). As this holds, for all ω ⊂⊂ Ω,

we have µ0 = µ1 in D′(Ω). This ends the proof.

Remark 2.2. The proof of Theorem 2.1 becomes simpler, when

a strong corrector result of Cioranescu and Murat (cf. [3]) holds. The

corrector result is as follows:

Let f ∈ L2(Ω) and let uε be the solution of (1.1) and let u be the solution

of (1.2). Then, ũε −→ u weakly in H1
0 (Ω). Further assume that u is

C1
0 (Ω), then

(2.13) ũε − uwε → 0 strongly in H1
0 (Ω).

When this holds we can give a proof of Theorem 2.1 using Theorem 2.2

as follows.
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Proof. Set rε′ = ũε′ − uwε′ . By Proposition 2.2, rε′ → 0 strongly in

H1
0 (Ω). Therefore,

Iε′ ≡
∫

Ωε′
B∇uε′ · ∇uε′ dx =

∫

Ω

B∇ũε′ · ∇ũε′ dx =

=

∫

Ω

B∇(uwε′) · ∇(uwε′) dx + o(1).

Now, since ∇wε′ ⇀ 0 weakly in H1
0 (Ω) and B and u are bounded functions

on Ω,

∫

Ω

B∇(uwε′)·∇(uwε′)dx =

∫

Ω

B∇wε′ ·∇wε′u
2 dx+

∫

Ω

B∇u·∇uw2
ε′ dx+o(1)

Therefore, using Theorem 2.2 and the strong convergence of wε′ to 1 in

L2(Ω), we conclude that,

lim
ε′→0

Iε′ = 〈µB, u
2〉 +

∫

Ω

B∇u · ∇u dx.

This ends the proof.

3 – An application

We apply Theorem 2.1 to obtain the homogenized cost functional cor-

responding to optimal control problems whose state equations are Dirich-

let problems on perforated domains, Ωε. The type of optimal control

problem which we consider now, has been studied in various situations

before; for e.g cf. Kesavan and Vanninathan [6], Kesavan and Saint Jean

Paulin [4], [5]. The last of the references deals with the homogenization

of an optimal control problem in perforated domains. There, in the state

equation, Neumann condition is assumed on the boundary of holes. So

the homogenization problem is quite different from what we study now.

For fixed ε, the optimal control problem is as follows: Let N > 0 be

a constant. Let B be as before and moreover, assumed to be positive.

We take the space of admissible controls to be U ε
ad = L2(Ωε). For ε > 0

fixed, we define the optimal control problem as follows:
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Minimize the cost functional,

Jε(θ) =
1

2

∫

Ωε

B∇uε · ∇uε dx +
N

2

∫

Ωε

θ2 dx on U ε
ad

where the state uε ≡ uε(θ) is the solution of the Dirichlet problem,

(3.1)

{
−∆uε = θ in Ωε

uε = 0 on Ωε.

It can be shown that there exists a unique θ∗ε ∈ U ε
ad such that

(3.2) Jε(θ
∗
ε) = min

θ∈Uε
ad

Jε(θ).

The homogenization theorem is as follows.

Theorem 3.1. Let ε′ be the subsequence of ε as obtained prior to

Proposition 2.1. Let µB be given by (2.3). Then, for a subsequence ε
′′

of ε′, θ̃∗
ε
′′ ⇀ θ∗ weakly in L2(Ω) where θ∗ is the optimal control of the

problem: minimize the cost functional, J(θ) over θ ∈ L2(Ω) where,

J(θ) ≡ 1

2

∫

Ω

B∇u · ∇u dx +
1

2
〈µB, u

2〉 +
N

2

∫

Ω

θ2 dx

and where the state u ≡ u(θ) solves the Dirichlet problem,

(3.3)

{
−∆u + uµ = θ in Ω

u = 0 on ∂Ω.

Proof. Step 1: First we show that θ̃∗ε is bounded in L2(Ω). Let

θ ∈ L2(Ω) be arbitrary. We will denote its restriction to Ωε also by θ.

We shall denote the solutions (states) of the Dirichlet problem (3.1) for

right hand sides θ∗ε , θ by u∗
ε and uε respectively. It can be shown that

|∇ũε|0,Ω ≤ α|θ|0,Ω where α is the constant which appears in the Poincaré’s

inequality for Ω. Now, Jε(θ
∗
ε) ≤ Jε(θ) implies,

N

2
|θ∗ε |20,Ωε

≤ 1

2
Mα2|θ|20,Ω +

N

2
|θ|20,Ω.
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Therefore, θ̃∗ε is a bounded sequence in L2(Ω).

Step 2: Let ε′ be the subsequence of ε mentioned before. From Step 1,

we conclude that there is a subsequence ε
′′

of ε′ and θ∗ in L2(Ω) such

that θ̃∗
ε
′′ ⇀ θ∗ weakly in L2(Ω). Therefore,

ũ∗
ε
′′ ⇀ u∗,

ũε
′′ ⇀ u weakly in H1

0 (Ω)

where u∗, u are the solutions of (3.3) with right hand sides θ∗, θ respec-

tively. Using a) of Remark 2.1, we conclude that,

∫

Ω
ε
′′
B∇u∗

ε
′′ · ∇u∗

ε′′ dx →
∫

Ω

B∇u∗ · ∇u∗ dx + 〈µB, (u
∗)2〉

and ∫

Ω
ε
′′
B∇uε

′′ · ∇uε′′ dx →
∫

Ω

B∇u · ∇u dx + 〈µB, u
2〉.

Step 3: Let χε be the characteristic function of Ωε. Let us assume that

χε ⇀ χ weakly * in L∞(Ω). Since χεwε = wε, passing to the limit we

get, χ = 1 identically in Ω. Now we pass to the limit in

Jε(θ
∗
ε) ≤ Jε(θ).

From Step 2, it follows that

1

2

∫

Ω

B∇u∗ · ∇u∗ dx +
1

2
〈µB, (u

∗)2〉 +
N

2
lim
ε′′→0

∫

Ωε′′
θ∗ε′′

2 dx ≤

≤ 1

2

∫

Ω

B∇u · ∇u dx +
1

2
〈µB, u

2〉 +
N

2

∫

Ω

θ2 dx.

Starting with Jε(θ
∗
ε) ≤ Jε(θ

∗) and arguing as before we get,

1

2

∫

Ω

B∇u∗ · ∇u∗ dx +
1

2
〈µB, (u

∗)2〉 +
N

2
lim
ε
′′→0

∫

Ω
ε
′′
θ∗
ε
′′

2 dx ≤

≤ 1

2

∫

Ω

B∇u∗ · ∇u∗ dx +
1

2
〈µB, (u

∗)2〉 +
N

2

∫

Ω

(θ∗)2 dx.
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Therefore,

lim
ε
′′→0

∫

Ω
ε
′′
θ∗
ε
′′

2 dx ≤
∫

Ω

(θ∗)2 dx.

However, since θ̃∗
ε
′′ ⇀ θ∗ weakly in L2(Ω), we have,

lim
ε
′′→0

∫

Ω
ε
′′
θ∗
ε
′′

2 dx ≥
∫

Ω

(θ∗)2 dx.

Thus,

(3.4) lim
ε
′′→0

∫

Ω
ε
′′
θ∗
ε
′′

2 dx =

∫

Ω

(θ∗)2 dx.

Putting the above together we get, J(θ∗) ≤ J(θ). This holds for all

θ ∈ L2(Ω). Thus, θ∗ is the optimal control of the problem whose cost

functional is J and whose state equation is (3.3). We remark finally that

(3.4) implies that we have the strong convergence, θ̃∗
ε
′′ → θ∗ in L2(Ω) of

the optimal controls.

We end with a few remarks.

Remark 3.1. We saw in Step 3 of the preceding theorem that if

χε ⇀ χ weakly * in L∞(Ω), then χ ≡ 1. We now observe that,

χε − 1 = χε(1 − wε) + χεwε − 1

= χε(1 − wε) + wε − 1

Therefore, since wε → 1 strongly in L2(Ω), we conclude that χε → 1

strongly in L2(Ω).

Remark 3.2. The optimal control problem can be studied for other

choices for U ε
ad like (cf. [4], [5]);

U ε
ad = {θ ∈ L2(Ωε|θ ≥ ψ in Ωε}

U ε
ad = {θ ∈ L2(Ωε|ψ1 ≤ θ ≤ ψ2 in Ωε}

U ε
ad = {θ ∈ L2(Ωε|

∫

Ωε

θ2 dx ≤ 1}
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The corresponding space of controls in the homogenized problem can be

shown to be
Uad = {θ ∈ L2(Ω)|θ ≥ ψ in Ω}
Uad = {θ ∈ L2(Ω)|ψ1 ≤ θ ≤ ψ2 in Ω}
Uad = {θ ∈ L2(Ω)|

∫

Ω

θ2 dx ≤ 1}

The cost functionals remain the same as in Theorem 3.1.
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